JP3160974B2 - Solid solution thin film and method for producing the same - Google Patents

Solid solution thin film and method for producing the same

Info

Publication number
JP3160974B2
JP3160974B2 JP32266891A JP32266891A JP3160974B2 JP 3160974 B2 JP3160974 B2 JP 3160974B2 JP 32266891 A JP32266891 A JP 32266891A JP 32266891 A JP32266891 A JP 32266891A JP 3160974 B2 JP3160974 B2 JP 3160974B2
Authority
JP
Japan
Prior art keywords
mns
cds
solid solution
thin film
solution thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32266891A
Other languages
Japanese (ja)
Other versions
JPH05160424A (en
Inventor
光佑 池田
裕子 和田
隆博 和田
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32266891A priority Critical patent/JP3160974B2/en
Publication of JPH05160424A publication Critical patent/JPH05160424A/en
Application granted granted Critical
Publication of JP3160974B2 publication Critical patent/JP3160974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は太陽電池の光透過窓層な
ど光電変換デバイスや光学デバイスなどに有用なCdS
ーMnS固溶体薄膜とその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CdS useful for a photoelectric conversion device or an optical device such as a light transmission window layer of a solar cell.
The present invention relates to a MnS solid solution thin film and a method for producing the same.

【0002】[0002]

【従来の技術】近い将来、エネルギー供給が次第に困難
になることが予想され、太陽電池の高効率化、低コスト
化が大きな課題になってきた。なかでも、大面積化が容
易な薄膜系太陽電池は大幅な低コスト化が可能と見られ
そのエネルギー変換効率の向上が強く望まれている。
2. Description of the Related Art In the near future, it is expected that energy supply will gradually become more difficult, and high efficiency and low cost of solar cells have become major issues. Above all, thin-film solar cells, which can be easily enlarged, can be significantly reduced in cost, and it is strongly desired to improve their energy conversion efficiency.

【0003】この薄膜系太陽電池には化合物半導体(II
-VI族やI-III -VI2族)薄膜を用いたものが広く開発さ
れつつある。化合物半導体薄膜を用いた太陽電池の構成
は、バンドギャップが広くて光を透過する窓層としての
n型CdS系半導体層とバンドギャップが狭くて光を吸
収する吸収層としてのp型のCdTe系あるいはCuInS
e2系などの半導体層を積層したヘテロ接合が用いられ
る。
A compound semiconductor (II)
(VI-VI and I-III-VI 2 ) thin films are being widely developed. The structure of a solar cell using a compound semiconductor thin film includes an n-type CdS-based semiconductor layer as a window layer having a wide band gap and transmitting light and a p-type CdTe-based as an absorption layer having a narrow band gap and absorbing light. Or CuInS
A heterojunction in which semiconductor layers such as an e 2 system are stacked is used.

【0004】構成としては、例えばITO(Indium T
in Oxide)を設けたガラス基板上にn型CdS層を、次
いでp型CdTe層を蒸着法で積層形成し、最後に金属電
極を設けて太陽電池とする。あるいは、ガラス基板上に
スクリーン印刷と焼成によってn型CdS層を、次いで
同様にスクリーン印刷と焼成によってp型CdTe層を、
最後に金属あるいは炭素電極層を設けて太陽電池とす
る。
As a configuration, for example, ITO (Indium T
An n-type CdS layer and then a p-type CdTe layer are formed on a glass substrate provided with in oxide) by vapor deposition, and finally a metal electrode is provided to complete a solar cell. Alternatively, an n-type CdS layer is formed on a glass substrate by screen printing and baking, and then a p-type CdTe layer is similarly formed by screen printing and baking.
Finally, a metal or carbon electrode layer is provided to complete a solar cell.

【0005】CdSの代わりにバンドギャップのより広
い半導体例えばCdS-MnS固溶体薄膜を用いること
は、透過光量を増やし変換効率を上げることに大変有効
と考えられる。CdSとMnSはMnSの組成比が50モ
ル%以下の範囲でウルツ鉱型結晶構造の固溶体Cd1ーx
nxS(0<x<0.5)を形成することが高温での単結
晶育成や焼結体形成の結果から知られている(特公昭4
5ー31144号公報、M. イケダ他, J.Phy
s.Soc.Jpn. 25, 455(1968))。
It is considered that the use of a semiconductor having a wider band gap, for example, a CdS-MnS solid solution thin film instead of CdS is very effective in increasing the amount of transmitted light and increasing the conversion efficiency. Solid solution Cd 1 over x M wurtzite crystal structure CdS and MnS in the range compositional ratio below 50 mol% of MnS
n x S to form a (0 <x <0.5) is known from the result of single crystal growth and sintered formed at high temperature (JP-B 4
No. 5-31144, M. Ikeda et al. Phys
s. Soc. Jpn. 25, 455 (1968)).

【0006】これらの方法ではMnSの組成比が50モ
ル%以上の範囲ではウルツ鉱型結晶構造の固溶体Cd0.5
Mn0.5Sと岩塩型結晶構造のMnSとの混合物ができ
る。また、このCdS-MnS固溶体薄膜の形成法として
は、2つの蒸発源からCdSとMnSを独立に蒸発させ
基板上に付着させて固溶体薄膜を形成する方法が考えら
れる。
In these methods, when the composition ratio of MnS is in the range of 50 mol% or more, a solid solution Cd 0.5 having a wurtzite type crystal structure is used.
A mixture of Mn 0.5 S and MnS having a rock salt type crystal structure is obtained. As a method of forming the CdS-MnS solid solution thin film, a method of forming a solid solution thin film by independently evaporating CdS and MnS from two evaporation sources and attaching the CdS and MnS to a substrate is considered.

【0007】[0007]

【発明が解決しようとする課題】この様に、バンドギャ
ップの広いCdSーMnS固溶体を主体とする半導体薄膜
から成る窓層を形成するには作製上注意を要する。例え
ばMnSを抵抗加熱法で蒸着するとMnSが分解し、Mn
が残り易く固溶体膜が形成し難いので蒸着に工夫を必要
とする。またMnSの組成比を50モル%以上のCdSー
MnS固溶体薄膜が実現できればより広いバンドギャッ
プにすることができる筈である。
As described above, formation of a window layer composed of a semiconductor thin film mainly composed of a CdS-MnS solid solution having a wide band gap requires care in fabrication. For example, when MnS is deposited by a resistance heating method, MnS is decomposed and MnS is decomposed.
However, it is difficult for a solid solution film to be formed, so that a device is required for vapor deposition. Further, if a CdS-MnS solid solution thin film having a composition ratio of MnS of 50 mol% or more can be realized, a wider band gap should be achieved.

【0008】[0008]

【課題を解決するための手段】本発明の固溶体薄膜の製
造方法は、 (1)基板上に、CdSおよびMnの2元を蒸着源とし
て、同時に蒸着することを特徴とするウルツ鉱型結晶構
造のCdS-MnS固溶体薄膜の製造方法、 (2)基板上に、CdSおよびMnSの2元を蒸着源とし
て、同時に蒸着する方法において、少なくともMnSは
電子ビーム蒸着法によって蒸着することを特徴とするウ
ルツ型結晶構造のCdS-MnS固溶体薄膜の製造方法、 (3)基板上に、CdSおよびMnSの固溶体あるいは混
合物をスパッタリング蒸着することを特徴とするウルツ
型結晶構造のCdS-MnS固溶体薄膜の製造方法、であ
る。
The solid solution thin film of the present invention is produced.
The fabrication method is as follows: (1) On the substrate, CdS and Mn are used as the evaporation source.
Wurtzite-type crystal structure
The method of manufacturing concrete of CdS-MnS solid solution thin film (2) on a substrate, the 2 original CdS and MnS and the deposition source
In the method of simultaneously depositing, at least MnS is
Characterized by being deposited by an electron beam evaporation method.
A method for producing a CdS-MnS solid solution thin film having a Ruth-type crystal structure, (3) a solid solution or mixture of CdS and MnS on a substrate.
Wurtz characterized by sputtering deposition of the compound
A method for producing a CdS-MnS solid solution thin film having a type crystal structure.
You.

【0009】また、本発明は、上記方法をとることによ
り、MnSの組成比が50モル%以上であるウルツ鉱型
結晶構造のCdS-MnS固溶体薄膜が得られるものであ
る。
Further , the present invention provides a method according to the above method.
Wurtzite with a composition ratio of MnS of 50 mol% or more
A CdS-MnS solid solution thin film having a crystalline structure is obtained.
You.

【0010】[0010]

【作用】本発明によれば、バンドギャップの広いCdS
−MnS固溶体薄膜が得られ、本発明の製造方法によれ
ば、この固溶体薄膜を安価な蒸着装置で、例えばCdS
とMnの2源による同時蒸着によって容易に形成でき
る。しかもその固溶範囲を従来知られている範囲(0<
x<0.5)よりはるかに広げることができる。またI
nなどの添加により低抵抗化が可能であり、太陽電池の
高効率化に有効である。
According to the present invention, CdS having a wide band gap is used.
-MnS solid solution thin film is obtained, and according to the production method of the present invention, this solid solution thin film
And Mn can be easily formed by simultaneous vapor deposition using two sources. Moreover, the solid solution range is set to a conventionally known range (0 <
x <0.5). Also I
The resistance can be reduced by adding n or the like, which is effective for increasing the efficiency of the solar cell.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0012】ガラス基板(コーニング社,#7059)上
に基板温度150℃で、2つの蒸発源を用いてCdSと
Mnを同時に蒸発させ、CdSとMnSのモル比を広範囲
に変えた厚さ約0.5μmのCdSーMnS固溶体薄膜(C
1-xMnxS)を形成した。これら薄膜のX線回折法で
の解析によると、図1に示すように広い固溶範囲(0<
x<1)でCdSと同じウルツ鉱型結晶構造を示し、従
来の既知の固溶範囲(0<x<0.5)と異なる結果を
示した。
CdS and Mn are simultaneously evaporated on a glass substrate (Corning Co., # 7059) at a substrate temperature of 150.degree. C. using two evaporation sources, and the thickness is about 0 in which the molar ratio of CdS to MnS is changed over a wide range. 0.5 µm CdS-MnS solid solution thin film (C
d 1-x Mn x S) was formed. According to X-ray diffraction analysis of these thin films, as shown in FIG. 1, a wide solid solution range (0 <
x <1) showed the same wurtzite-type crystal structure as CdS, showing a result different from the conventional known solid solution range (0 <x <0.5).

【0013】従来は何れも高温(>600℃)の熱処理
によって得られた結晶あるいは焼結体であり、蒸着法
(基板温度Ts=100〜300℃)で得られる薄膜と
は状態が異なるものと考えられる。分光透過率(Tr
は図2に示す様にその吸収端波長はxがある値(x〜
0.14)を越えると短波長側に移動し、バンドギャッ
プが広くなることが分かる。
Conventionally, each is a crystal or a sintered body obtained by heat treatment at a high temperature (> 600 ° C.), and has a different state from a thin film obtained by a vapor deposition method (substrate temperature Ts = 100 to 300 ° C.). Conceivable. Spectral transmittance (T r )
As shown in FIG. 2, the absorption edge wavelength is x at a certain value (x to
It can be seen that when the ratio exceeds 0.14), the wavelength shifts to the shorter wavelength side and the band gap becomes wider.

【0014】ただし、Tr=0.3となる波長を吸収端波
長、これに相当するエネルギーをバンドギャップとす
る。これらの結果を表1に示す。これらの膜は何れもn
型の伝導特性を示し、そのままでも窓層として使える場
合が多いが、xが増大すると一般には電気伝導度σは小
さくなる。その場合はドナー不純物を添加する。例えば
これら膜の上にInを母体に対して1〜3モル%蒸着
し、N2ガス中200〜400℃でアニールし内部に拡
散添加する。これら膜は何れの組成でも10-3〜1Ω -1
・cm-1の伝導度を示した。
Where Tr= 0.3 absorption wavelength
Long, the energy corresponding to this is called the band gap.
You. Table 1 shows the results. Each of these films has n
When it shows the conduction characteristics of the mold and can be used as a window layer as it is
In general, the electrical conductivity σ decreases as x increases.
It will be cheap. In that case, a donor impurity is added. For example
On these films, In is vapor-deposited by 1 to 3 mol% with respect to the base material.
Then NTwoAnneal at 200-400 ° C in gas and expand inside
Add powder. These films have a composition of 10-3~ 1Ω -1
·cm-1Showed the conductivity.

【0015】[0015]

【表1】 [Table 1]

【0016】この様に、従来のCdS膜に比べて短波長
域まで分光透過率が大である上に、電気伝導度も高い。
CdSとMnSの他の組成比のCdS-MnS固溶体を用い
ても、またInの代わりにAlやGaを用いても同様の効
果が得られる。この固溶体薄膜はCdSとMnSの同時蒸
着でMnSを電子ビーム法で蒸着しても、あるいはCdS
−MnSの固溶体や混合物をスパッタリング法で蒸着し
ても得ることができる。
As described above, as compared with the conventional CdS film, the spectral transmittance is high even in a short wavelength region and the electric conductivity is high.
Similar effects can be obtained by using a CdS-MnS solid solution having another composition ratio of CdS and MnS, or by using Al or Ga instead of In. This solid solution thin film can be obtained by depositing MnS by an electron beam method by simultaneous deposition of CdS and MnS, or
It can also be obtained by depositing a solid solution or mixture of -MnS by a sputtering method.

【0017】ところで、MnSの組成比が50モル%以
上のCdS-MnS固溶体は従来合成出来ていなかった組
成であり、本発明の方法により始めて実現できたもので
ある。また、(表1)から分かるようにMnSの組成比
が10モル%以下では太陽電池の窓層として用いた場合
効果がなく、さらに特公昭45ー31144号公報に示
すようにMnSの組成比が0.1モル%以下では光導電
体の応答速度を速くする効果は得られない。
Meanwhile, a CdS-MnS solid solution having a composition ratio of MnS of 50 mol% or more is a composition which could not be synthesized conventionally, and can be realized only by the method of the present invention. Further, as can be seen from Table 1, when the composition ratio of MnS is 10 mol% or less, there is no effect when used as a window layer of a solar cell, and as shown in JP-B-45-31144, the composition ratio of MnS is reduced. If it is less than 0.1 mol%, the effect of increasing the response speed of the photoconductor cannot be obtained.

【0018】[0018]

【発明の効果】本発明によれば、太陽電池の変換効率向
上に有効なバンドギャップの広い、低抵抗のCdS-Mn
S固溶体薄膜を提供できる。また、本発明の製造方法に
よれば、上記CdS-MnS固溶体薄膜を安価な装置を用
いて容易に形成することが可能となる。このCdS-Mn
S固溶体薄膜は太陽電池の変換効率向上とコストダウン
に有効であり、また他の光電変換デバイス、光学デバイ
スなどへの応用を可能にする。
According to the present invention, a low-resistance CdS-Mn having a wide band gap and effective for improving the conversion efficiency of a solar cell.
An S solid solution thin film can be provided. Further, according to the manufacturing method of the present invention, the CdS-MnS solid solution thin film can be easily formed by using an inexpensive apparatus. This CdS-Mn
The S solid solution thin film is effective for improving the conversion efficiency and cost of the solar cell, and enables application to other photoelectric conversion devices and optical devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるCdS-MnS固溶体薄
膜の組成と格子定数を示す図
FIG. 1 is a diagram showing the composition and lattice constant of a CdS—MnS solid solution thin film according to an example of the present invention.

【図2】本発明の実施例におけるCdS-MnS固溶体薄
膜の分光透過率を示すグラフ
FIG. 2 is a graph showing the spectral transmittance of a CdS—MnS solid solution thin film according to an example of the present invention.

【符号の説明】[Explanation of symbols]

x MnSの組成比(Cd1-xMnxS) a ウルツ鉱型結晶構造の格子定数(a軸) c ウルツ鉱型結晶構造の格子定数(c軸) λ 波長 Tr 透過率The composition ratio of x MnS (Cd 1-x Mn x S) a wurtzite lattice constant of the crystal structure (a-axis) c lattice constant a wurtzite type crystal structure (c-axis) lambda wave T r transmittance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭57−95676(JP,A) 特開 昭61−106499(JP,A) Semiconductors an d Materials,Chapte r 1(pp.1−33),W.Giri at at al.,1988,Acade mic Press Inc. (58)調査した分野(Int.Cl.7,DB名) H01L 31/00 - 31/119 H01L 21/365 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-57-95676 (JP, A) JP-A-61- 106499 (JP, A) Semiconductors and Materials, Chapter 1 (pp. 1-33); Giri at at al. , 1988, Academic Press Inc. (58) Fields investigated (Int. Cl. 7 , DB name) H01L 31/00-31/119 H01L 21/365

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、CdSおよびMnの2元を蒸着
源として、同時に蒸着することを特徴とするウルツ鉱型
結晶構造のCdS-MnS固溶体薄膜の製造方法。
1. Binary deposition of CdS and Mn on a substrate
Wurtzite type characterized by simultaneous evaporation as a source
A method for producing a CdS-MnS solid solution thin film having a crystal structure .
【請求項2】 基板上に、CdSおよびMnSの2元を蒸
着源として、同時に蒸着する方法において、少なくとも
MnSは電子ビーム蒸着法によって蒸着することを特徴
とするウルツ鉱型結晶構造のCdS-MnS固溶体薄膜の
製造方法。
2. The method according to claim 1, wherein a binary of CdS and MnS is vaporized on the substrate.
A method for producing a CdS-MnS solid solution thin film having a wurtzite crystal structure , wherein at least MnS is deposited by an electron beam evaporation method in a simultaneous deposition method as a deposition source .
【請求項3】 基板上に、CdSおよびMnSの固溶体あ
るいは混合物をスパッタリング蒸着することを特徴とす
ウルツ鉱型結晶構造のCdS-MnS固溶体薄膜の製造
方法。
3. A method for producing a CdS-MnS solid solution thin film having a wurtzite crystal structure, wherein a solid solution or a mixture of CdS and MnS is deposited by sputtering on a substrate.
【請求項4】請求項1〜3の何れかに記載の製造方法に
よって作られるCdS−MnSの固溶体薄膜であって、
MnSの組成比が50モル%以上であることを特徴とす
るウルツ鉱型結晶構造のCdS-MnS固溶体薄膜。
4. The method according to claim 1, wherein
It is a solid solution thin film of CdS-MnS thus produced,
The composition ratio of MnS is 50 mol% or more.
CdS-MnS solid solution thin film with wurtzite crystal structure.
JP32266891A 1991-12-06 1991-12-06 Solid solution thin film and method for producing the same Expired - Fee Related JP3160974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32266891A JP3160974B2 (en) 1991-12-06 1991-12-06 Solid solution thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32266891A JP3160974B2 (en) 1991-12-06 1991-12-06 Solid solution thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05160424A JPH05160424A (en) 1993-06-25
JP3160974B2 true JP3160974B2 (en) 2001-04-25

Family

ID=18146275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32266891A Expired - Fee Related JP3160974B2 (en) 1991-12-06 1991-12-06 Solid solution thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3160974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905761A (en) * 2020-07-29 2020-11-10 广西科技师范学院 Mn (manganese)1Cd3S4Method for preparing photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Semiconductors and Materials,Chapter 1(pp.1−33),W.Giriat at al.,1988,Academic Press Inc.

Also Published As

Publication number Publication date
JPH05160424A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
EP1489654B1 (en) METHOD OF MANUFACTURING LnCuO(S, Se, Te) MONOCRYSTALLINE THIN FILM
US7288332B2 (en) Conductive layer for biaxially oriented semiconductor film growth
US6294274B1 (en) Oxide thin film
WO2002017368A1 (en) Semiconductor polysilicon component and method of manufacture thereof
Hiramatsu et al. Mechanism for heteroepitaxial growth of transparent p-type semiconductor: LaCuOS by reactive solid-phase epitaxy
US20120152337A1 (en) Hetero-junction photovoltaic device and method of fabricating the device
CN108346712B (en) Preparation method of silicon-doped boron nitride/graphene PN junction type ultraviolet detector
TW201305059A (en) New compound semiconductors and their application
US6013565A (en) High conductivity thin film material for semiconductor device
JP3160974B2 (en) Solid solution thin film and method for producing the same
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
TWI457287B (en) New compound semiconductors and their application
JP3181074B2 (en) Method for producing Cu-based chalcopyrite film
JP3063326B2 (en) Solar cell and manufacturing method thereof
JP3049889B2 (en) Solar cell and manufacturing method thereof
JP3146612B2 (en) Method for producing solid solution thin film and method for producing solar cell
JPH06151931A (en) Znse-mnse solid solution film and its manufacture
JPH06244441A (en) Cdse-mnse solid-solution thin film and manufacture thereof
JPH01289173A (en) Solar cell
JP3136765B2 (en) Thin film photoelectric conversion element and method of manufacturing the same
JP3064658B2 (en) Solar cell and manufacturing method thereof
JPH0548140A (en) Manufacture of highly oriented cuinse2 film
JPH07206439A (en) Semiconductor thin film and production thereof
JP3178248B2 (en) Semiconductor thin film manufacturing method
JP2776009B2 (en) Solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees