JP4811890B2 - Method for producing photoconductive member - Google Patents

Method for producing photoconductive member Download PDF

Info

Publication number
JP4811890B2
JP4811890B2 JP35001499A JP35001499A JP4811890B2 JP 4811890 B2 JP4811890 B2 JP 4811890B2 JP 35001499 A JP35001499 A JP 35001499A JP 35001499 A JP35001499 A JP 35001499A JP 4811890 B2 JP4811890 B2 JP 4811890B2
Authority
JP
Japan
Prior art keywords
thin film
raw material
zinc
photoconductive member
zno thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35001499A
Other languages
Japanese (ja)
Other versions
JP2001168035A (en
Inventor
浩一 羽賀
雅弘 野口
裕之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Priority to JP35001499A priority Critical patent/JP4811890B2/en
Publication of JP2001168035A publication Critical patent/JP2001168035A/en
Application granted granted Critical
Publication of JP4811890B2 publication Critical patent/JP4811890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛半導体を用いた光導電部材製造方法に関する。
【0002】
【従来の技術】
近年、近紫外領域の半導体発光素子は研究の段階から実用化へと進展している。近紫外領域の半導体発光素子の応用としては、大容量の光ディスクやレーザプリンタへの高精細な書込み光源等が期待されている。しかし、このような発光素子と同様な波長領域で使用される受光素子に関する研究報告は非常に少ない現状にある。
【0003】
本発明者らは、バンドギャップが2.8eV以上で近紫外領域の光感度が期待されるII−VI族半導体中から、製造プロセスが簡易で、環境に優しく、安価な材料である酸化亜鉛(ZnO)の受光素子材料としての可能性を研究してきた。即ち、酸化亜鉛は亜鉛華として古来より白色顔料、触媒として用いられてきた材料で、その構成成分である亜鉛材料は自然界に豊富にあり、また、酸化亜鉛は酸化物であるため環境汚染の心配もほとんどなく、その安全性が既に確立している。
【0004】
【発明が解決しようとする課題】
もっとも、酸化亜鉛薄膜はZn原子とO原子との組成比が1になりにくいn形半導体である。Znの未結合手に捕獲された電子の伝導により、抵抗率が低く、さらに光入射で生成される光キャリアが未結合手に捉えられ光応答特性が劣化するなど、受光素子材料として解決しなければならない課題も多い。
【0005】
これらの課題の解決法として、Zn原子とO原子との組成比を制御する方法や、未結合手によるドナー準位をリチウム(Li)や窒素(N2)等のp形不純物で補償する方法(片平、羽賀 平成10年度電気関係学会東北支部連合大会 講演予稿集 2B17 p.80(1998)…報告1)(片平、羽賀、渡辺 第46回応用物理学会連合講演会 講演予稿集29pM p.649(1999)…報告2)などが提案されている。
【0006】
報告1の例は、高周波(r.f.)スパッタリング法を用いてLiを添加したZnO薄膜を作成することで、光応答性を向上させたものである。より具体的には、ZnO薄膜の作成には、r.f.スパッタリング法を用い、ZnOターゲット(99.999%以上)上にLi2Oの小片を置いてp形不純物の添加を行うようにした。作成条件は、Arガス流量0.75cc/min、O2ガス流量0.25cc/min、高周波電力100W、ZnO薄膜の堆積にはパイレックスガラス基板を用いた。常温で作成したZnO薄膜の暗抵抗率は、Li添加の有無に関わらず106Ω・cm以下の値となったが、Liを添加せずに基板温度100℃で作成した試料では暗抵抗率が3桁ほど低下したものである。また、基板温度100℃でLiを添加した試料では暗抵抗率が増加し、常温で作成した試料と同程度の値を示したものである。また、常温で作成した試料の光応答特性を調べたところ、Li添加したものにあっては、光応答特性が大きく改善されることが確認されたものである。
【0007】
報告2の例は、作成されたZnO薄膜に対してN2プラズマによる表面処理を施すことにより、光応答特性の向上を図ったものである。ZnO薄膜の作成方法及びその条件は、報告1の例の場合と同じである。表面処理は、高周波電力100WでZnO薄膜を55分間堆積させた後、N2ガス流量を10cc/minとし、高周波電力100〜250Wとして5分間N2処理を行うようにしている。このような表面処理の結果、光を薄膜側から入射させた場合、表面未処理の試料に比べて光感度が向上し、光応答特性の立上り、立下りがともに改善されたことが確認されている。
【0008】
ところが、このように光導電部材として利用されるZnO薄膜を、高周波スパッタリング法などにより焼成されたZnOターゲットなどと同時に第I族金属化合物(例えば、LiO2など)をスパッタリングしてドーピングする製法では、充分なドーピング量及びキャリア濃度のコントロールが難しく、生産性が著しく悪いものである。
【0009】
そこで、本発明は、酸化亜鉛薄膜に第I族元素を不純物としてドーピングして所定のキャリア濃度のコントロールを行い、光応答特性のよい近紫外領域まで光感度を有する電子写真用感光体や光センサ等に好適な光導電部材製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1記載の発明の光導電部材の製造方法は、有機金属化学気相成長法により酸化亜鉛を母材とする半導体薄膜を堆積させる工程と、前記半導体薄膜を堆積させる工程中において、亜鉛源として亜鉛アセチルアセトナートを、酸素源としてO 2、 又はH Oのいずれかを、キャリアガスとしてN 用い、前記半導体薄膜に周期律表の第I族元素の原料としてβ−ジケトン系の有機金属であるLi(DPM)を不純物としてドーピングさせて、その不純物濃度を10-5〜10[at・%]なる範囲とする工程と、を備えることを特徴とする。
【0011】
従って、亜鉛アセチルアセトナート及び第I族元素の原料としてβ−ジケトン系の有機金属であるLi(DPM)を用いることで、大気中で非常に安定しており扱いやすい材料であるため、ドーピング量及びキャリア濃度の制御が容易となり、生産性が向上する。
【0014】
より具体的には、有機金属化学気相成長法(MO−CVD法)は、組成の変化しない原料の供給が連続的に行われ、結晶の配向性と組成が制御された薄膜を広い面積に成膜できるという利点を有する。また、白色粉末状の固体有機金属化合物であり大気中で安定な亜鉛アセチルアセトナートを原料として酸素ガスを加えることより、配向性の優れたZnO薄膜を再現性よく得られることが既に報告されており、このプロセス中にLi(DPM)を原料として加えてドーピングさせることより、ドーピング量及びキャリア濃度の制御が容易な条件下に、抵抗率が増加しかつ光応答特性が向上するLi添加ZnO薄膜を作成することができる。
【0021】
【発明の実施の形態】
本発明の一実施の形態を図1を参照して説明する。本実施の形態では、亜鉛アセチルアセトナート、酸素ガスO2、Li(DPM)を原料として用いて、窒素ガスN2をキャリアガスとして有機金属化学気相成長法(MO−CVD法)によりパイレックスガラス1上に光導電部材としてのLi添加ZnO薄膜2を形成した。さらに、これにAl電極3を形成して光センサ4を作製した。この結果、立上り時間、立下り時間の非常に高速応答可能で近紫外領域まで光感度を有する光センサ4が得られたものである。
【0022】
【実施例】
(実験方法)
本実施例は、上述した実施の形態における光センサ4の具体的な製造方法を明らかにするものである。亜鉛Znの供給原料として亜鉛アセチルアセトナート(Zn(acac)2)なる大気中で安定なβジケトン系の有機金属、酸素の供給原料として純度99.99%の酸素ガスO2、周期律表の第I族元素であるリチウムLiの原料としてβ−ジケトン系の有機金属であるDipivaloylmethanato Lithium(Li(DPM))が用いられている(なお、酸素の供給源としては、オゾン(O3)、水(H2O)を用いても同様な結果が得られる)。また、昇華した原料を輸送するキャリアガスには純度99.99%の窒素ガスN2が用いられる。酸素ガス流量は400ml/minとし、Zn原料シリンダー部、Li原料シリンダー部のキャリアガス流量は各々400ml/min,100ml/minとした。基板にはパイレックスガラス1を用い、基板温度は475℃とした。また、Zn原料シリンダー温度は亜鉛アセチルアセトナート(Zn(acac)2)の最適な昇華温度である122℃で一定とし、Li原料シリンダー温度は129℃から216℃へと変化させた。
【0023】
抵抗率は、Li添加ZnO薄膜2表面にAlの平行平板電極3を蒸着し、電極間の抵抗値と膜厚から計算により求めた。光応答の測定に使用した光源は、高圧水銀ランプの輝線の中からフィルタで波長365nm〜425nmの範囲だけを選択し、試料表面で3.8mW/cm2の照射強度に調整するようにした。結晶配向性の測定にはX線回折装置、膜厚の測定には触針式膜厚計、薄膜表面の観察には原子間力顕微鏡 (AFM)を使用した。
【0024】
(実験結果と考察)
図2にLi原料シリンダー温度(Tc)とLi添加ZnO薄膜2の抵抗率との関係を示す。Tcが160℃付近までは、抵抗率はあまり変化せず、ノンドープの値に近い10-2〜10-1[Ω・cm]を示している。熱分析測定から、Li(DPM)の昇華開始温度が155℃付近であることが確かめられており、Tcが160℃付近では薄膜へのLi添加量が非常に少なく、ノンドープの結果とほぼ同じ抵抗率を示したものと考えられる。また、Li(DPM)の昇華量が増加する170℃付近から抵抗率の増加が観察され、Tc=216℃で最も大きい3.7×106[Ω・cm]という値に達した。この図2によれば、不純物濃度としては、130℃における10-5[at・%]から220℃における10[at・%]なる範囲が適当で、特に、10-2[at・%]なる不純物濃度の場合に好ましい結果が得られたものである。
【0025】
図3(a)(b)(c)は、Li原料シリンダー温度Tcを129℃、183℃、216℃と変えて作成した試料のAFM像を示すものである。測定条件として、走査範囲は10μm×10μmとし、高さ方向の最大値は0.35μmに統一した。図3(a)の試料では、表面に小さい結晶粒が見られるが、比較的平坦であることが図から確認できる。Li添加量が増加するに従って、表面の結晶粒が増大し、図3(c)の試料では、粒径0.6μm、高さ0.19μm程度の結晶粒が一様に見られる。また、これらの試料のX線回折の結果は、全て(002)面の一軸配向性を示している。しかし、Li原料シリンダー温度Tcの増加に伴いX線回折ピーク強度が低下しており、結晶粒径が増大するAFMの測定結果と対応させると、ランダムな方向に結晶成長が起きているものと考えられる。
【0026】
光電特性については、Li添加量(不純物濃度)を最適化することにより、光感度の向上と光応答特性の改善が確認できた。本発明者の実験によれば、Li添加量としてその不純物濃度が前述したように10-5〜10[at・%]なる範囲とすれば良好なる結果が得られたものである。
【0027】
図4にr.f.スパッタリング法を用いLi2Oの添加量を2.4mgとして作成した試料と、本実施例の如く常圧MO−CVD法を用いLi原料シリンダー温度Tc=194℃として作成した試料に関する光応答特性を対比させて示す。図中に示す数字の単位はμmである。この特性図によれば、光のオン・オフによる光電流の立上り、立下り特性が大きく改善されているのが分かる。
【0028】
このように、本実施例によれば、Zn(C5722)とLi(DPM)による常圧MO−CVD法を用いてLi添加ZnO薄膜を作成した結果、抵抗率の増加、光感度及び光応答特性の向上が確認できたものである。もっとも、AFM像とX線回折測定の結果から、Li添加量(不純物濃度)の増加でZnO薄膜の結晶粒は増大するものの、結晶性が向上しておらず、上記のような適正なLi添加量が存在することがわかる。
【0029】
なお、これらの実施の形態及び実施例では、光センサ4への適用例として説明したが、Li添加ZnO薄膜を感光層に有する電子写真用感光体(特に図示せず)にも同様に適用し得る。
【0030】
【発明の効果】
請求項1記載の発明の光導電部材の製造方法によれば、亜鉛アセチルアセトナート及び第I族元素の原料としてβ−ジケトン系の有機金属であるLi(DPM)を用いることで、大気中で非常に安定しており扱いやすい材料であるため、ドーピング量及びキャリア濃度の制御が容易となり、生産性を向上させることができる。
【0031】
また、有機金属化学気相成長法により半導体薄膜を堆積させることにより、薄膜の成膜条件の制御が容易となり、生産性をより一層向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す光センサの概略斜視図である。
【図2】本発明の一実施例における抵抗率のLiシリンダー温度依存性を示す特性図である。
【図3】Li添加ZnO薄膜のLiシリンダー温度に応じたAFM像を示す写真である。
【図4】製法に応じた光応答特性を示す特性図である。
【符号の説明】
2 Li添加ZnO薄膜=光導電部材
4 光センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how the photoconductive member using a zinc oxide semiconductor.
[0002]
[Prior art]
In recent years, semiconductor light-emitting devices in the near-ultraviolet region have advanced from the research stage to practical use. As applications of semiconductor light-emitting elements in the near ultraviolet region, high-definition light sources for large-capacity optical disks and laser printers are expected. However, there are very few research reports on light receiving elements used in the same wavelength region as such light emitting elements.
[0003]
Among the II-VI group semiconductors expected to have near-ultraviolet light sensitivity with a band gap of 2.8 eV or more, the present inventors have a simple manufacturing process, are environmentally friendly, and are inexpensive materials such as zinc oxide ( The possibility of ZnO) as a light receiving element material has been studied. That is, zinc oxide is a material that has been used as a white pigment and catalyst since ancient times as zinc white, and its constituent components, zinc materials, are abundant in nature, and because zinc oxide is an oxide, there is a concern about environmental pollution. The safety has already been established.
[0004]
[Problems to be solved by the invention]
However, the zinc oxide thin film is an n-type semiconductor in which the composition ratio between Zn atoms and O atoms is difficult to be 1. Due to the conduction of electrons trapped in the unbonded hands of Zn, the resistivity is low, and furthermore, photocarriers generated by light incidence are captured by the unbonded hands and the photoresponse characteristics are deteriorated. There are many issues that must be addressed.
[0005]
As a solution to these problems, a method of controlling the composition ratio between Zn atoms and O atoms, or a method of compensating donor levels due to dangling hands with p-type impurities such as lithium (Li) and nitrogen (N 2 ) (Katahira, Haga 1998 Electrical Engineering Society Tohoku Branch Joint Conference Preliminary Proceedings 2B17 p.80 (1998) ... Report 1) (1999) ... Report 2) has been proposed.
[0006]
In the example of Report 1, the photoresponsiveness is improved by forming a ZnO thin film to which Li is added using a high frequency (rf) sputtering method. More specifically, an rf sputtering method was used to form a ZnO thin film, and a p-type impurity was added by placing a small piece of Li 2 O on a ZnO target (99.999% or more). The production conditions were Ar gas flow rate of 0.75 cc / min, O 2 gas flow rate of 0.25 cc / min, high frequency power of 100 W, and a Pyrex glass substrate was used for depositing the ZnO thin film. The dark resistivity of the ZnO thin film prepared at room temperature was 10 6 Ω · cm or less regardless of whether or not Li was added. However, the dark resistivity of the sample prepared at a substrate temperature of 100 ° C. without adding Li was Is about 3 digits lower. In addition, the dark resistivity increased in the sample to which Li was added at the substrate temperature of 100 ° C., and the same value as the sample prepared at room temperature was shown. Further, when the photoresponse characteristics of the sample prepared at room temperature were examined, it was confirmed that the photoresponse characteristics were greatly improved in the case of adding Li.
[0007]
In the example of report 2, the optical response characteristics are improved by subjecting the prepared ZnO thin film to surface treatment with N 2 plasma. The method for producing the ZnO thin film and the conditions thereof are the same as in the case of Report 1. In the surface treatment, a ZnO thin film is deposited for 55 minutes at a high frequency power of 100 W, and then the N 2 gas flow rate is set to 10 cc / min, and the N 2 treatment is performed at a high frequency power of 100 to 250 W for 5 minutes. As a result of such surface treatment, it was confirmed that when light was incident from the thin film side, the photosensitivity was improved compared to the untreated sample, and both the rise and fall of photoresponse characteristics were improved. Yes.
[0008]
However, in the manufacturing method in which a ZnO thin film used as a photoconductive member is doped by sputtering a Group I metal compound (for example, LiO 2 ) simultaneously with a ZnO target fired by a high-frequency sputtering method or the like, It is difficult to control a sufficient doping amount and carrier concentration, and the productivity is extremely poor.
[0009]
In view of this, the present invention provides a photosensitive member for electrophotography and an optical sensor having a photosensitivity up to the near-ultraviolet region having good photoresponse characteristics by doping a zinc oxide thin film with a Group I element as an impurity to control a predetermined carrier concentration. and to provide a manufacturing method suitable photoconductive member to equal.
[0010]
[Means for Solving the Problems]
Method for producing a photoconductive member of the invention of claim 1 wherein the zinc oxide by metal organic chemical vapor deposition and depositing a semiconductor thin film whose base material, during the step of depositing the semiconductor film, a source of zinc as the zinc acetylacetonate, one of O 2, O 3 or H 2 O as the oxygen source, the N 2 is used as a carrier gas, the β- diketone as a raw material of group I elements of the periodic table in the semiconductor thin film And a step of doping Li (DPM) , which is an organic metal of the system, as an impurity to bring the impurity concentration into a range of 10 −5 to 10 [at ·%].
[0011]
Therefore, the use of Li (DPM) , which is a β-diketone-based organic metal , as a raw material for zinc acetylacetonate and Group I elements makes the material extremely stable and easy to handle in the atmosphere. In addition, the carrier concentration can be easily controlled and the productivity is improved.
[0014]
More specifically, in the metal organic chemical vapor deposition (MO-CVD) method, a raw material whose composition does not change is continuously supplied, and a thin film whose crystal orientation and composition are controlled has a large area. It has the advantage that a film can be formed. In addition, it has already been reported that a ZnO thin film having excellent orientation can be obtained with good reproducibility by adding oxygen gas from zinc acetylacetonate, which is a white powdery solid organometallic compound and stable in the atmosphere. In this process, Li (DPM) is added as a raw material for doping, so that the Li-doped ZnO thin film increases in resistivity and improves the light response characteristics under the condition that the doping amount and carrier concentration are easily controlled. Can be created.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. In the present embodiment, pyrex glass is formed by metal organic chemical vapor deposition (MO-CVD method) using zinc acetylacetonate, oxygen gas O 2 , and Li (DPM) as raw materials and nitrogen gas N 2 as a carrier gas. A Li-added ZnO thin film 2 as a photoconductive member was formed on 1. Further, an Al electrode 3 was formed thereon to produce an optical sensor 4. As a result, an optical sensor 4 capable of responding at a very high rise time and fall time and having photosensitivity up to the near ultraviolet region is obtained.
[0022]
【Example】
(experimental method)
This example clarifies a specific method for manufacturing the optical sensor 4 in the above-described embodiment. Zinc acetylacetonate (Zn (acac) 2 ), a β-diketone organic metal that is stable in the atmosphere as the zinc feedstock, oxygen gas O 2 with a purity of 99.99% as the oxygen feedstock, As a raw material for lithium Li, which is a group I element, Dipivaloylmethanato Lithium (Li (DPM)), which is a β-diketone-based organic metal, is used (as the oxygen supply source, ozone (O 3 ), water Similar results are obtained using (H 2 O)). A nitrogen gas N 2 having a purity of 99.99% is used as a carrier gas for transporting the sublimated raw material. The oxygen gas flow rate was 400 ml / min, and the carrier gas flow rates of the Zn raw material cylinder portion and the Li raw material cylinder portion were 400 ml / min and 100 ml / min, respectively. Pyrex glass 1 was used for the substrate, and the substrate temperature was 475 ° C. The Zn raw material cylinder temperature was constant at 122 ° C., which is the optimum sublimation temperature of zinc acetylacetonate (Zn (acac) 2 ), and the Li raw material cylinder temperature was changed from 129 ° C. to 216 ° C.
[0023]
The resistivity was obtained by calculation from the resistance value and the film thickness between the electrodes by depositing an Al parallel plate electrode 3 on the surface of the Li-doped ZnO thin film 2. The light source used for the measurement of the optical response was selected from the bright line of the high-pressure mercury lamp with a filter in the wavelength range of 365 nm to 425 nm, and adjusted to the irradiation intensity of 3.8 mW / cm 2 on the sample surface. An X-ray diffractometer was used to measure the crystal orientation, a stylus thickness meter to measure the film thickness, and an atomic force microscope (AFM) to observe the thin film surface.
[0024]
(Experimental results and discussion)
FIG. 2 shows the relationship between the Li raw material cylinder temperature (Tc) and the resistivity of the Li-added ZnO thin film 2. The resistivity does not change so much until Tc is around 160 ° C., indicating 10 −2 to 10 −1 [Ω · cm] which is close to the non-doped value. From the thermal analysis measurement, it was confirmed that the sublimation start temperature of Li (DPM) was around 155 ° C., and when Tc was around 160 ° C., the amount of Li added to the thin film was very small, which was almost the same resistance as the result of non-doping. It is thought that it showed the rate. Further, an increase in resistivity was observed from around 170 ° C. at which the sublimation amount of Li (DPM) increased, and the maximum value of 3.7 × 10 6 [Ω · cm] was reached at Tc = 216 ° C. According to FIG. 2, the impurity concentration is suitably in the range of 10 −5 [at ·%] at 130 ° C. to 10 [at ·%] at 220 ° C., and particularly 10 −2 [at ·%]. In the case of the impurity concentration, preferable results are obtained.
[0025]
FIGS. 3A, 3B, and 3C show AFM images of samples prepared by changing the Li raw material cylinder temperature Tc to 129 ° C., 183 ° C., and 216 ° C., respectively. As measurement conditions, the scanning range was 10 μm × 10 μm, and the maximum value in the height direction was unified to 0.35 μm. In the sample of FIG. 3A, small crystal grains are observed on the surface, but it can be confirmed from the figure that the sample is relatively flat. As the amount of Li added increases, the surface crystal grains increase, and in the sample of FIG. 3C, crystal grains having a grain size of about 0.6 μm and a height of about 0.19 μm are seen uniformly. Further, the results of X-ray diffraction of these samples all show uniaxial orientation of the (002) plane. However, the X-ray diffraction peak intensity decreases as the Li raw material cylinder temperature Tc increases, and it is considered that crystal growth occurs in a random direction when corresponding to the measurement result of AFM in which the crystal grain size increases. It is done.
[0026]
Regarding the photoelectric characteristics, it was confirmed that the photosensitivity was improved and the photoresponse characteristics were improved by optimizing the Li addition amount (impurity concentration). According to the experiment by the present inventor, good results were obtained when the impurity concentration of Li was in the range of 10 −5 to 10 [at ·%] as described above.
[0027]
FIG. 4 shows a sample prepared by using the rf sputtering method with an addition amount of Li 2 O of 2.4 mg, and a sample prepared by using the atmospheric pressure MO-CVD method and setting the Li raw material cylinder temperature Tc = 194 ° C. as in this example. The photoresponse characteristics are shown in comparison. The unit of the numbers shown in the figure is μm. From this characteristic diagram, it can be seen that the rise and fall characteristics of the photocurrent due to the turning on and off of light are greatly improved.
[0028]
As described above, according to this example, as a result of forming the Li-added ZnO thin film using the atmospheric pressure MO-CVD method using Zn (C 5 H 7 O 2 ) 2 ) and Li (DPM), the resistivity increased. It was confirmed that the photosensitivity and photoresponse characteristics were improved. However, from the results of the AFM image and X-ray diffraction measurement, although the crystal grains of the ZnO thin film increase with the increase of the Li addition amount (impurity concentration), the crystallinity is not improved, and the appropriate Li addition as described above It can be seen that there is an amount.
[0029]
In these embodiments and examples, application examples to the optical sensor 4 have been described. However, the present invention is similarly applied to an electrophotographic photoreceptor (not shown) having a Li-doped ZnO thin film in a photosensitive layer. obtain.
[0030]
【The invention's effect】
According to the method for producing a photoconductive member of the invention described in claim 1, by using Li (DPM) , which is a β-diketone organic metal , as a raw material for zinc acetylacetonate and Group I elements, Since the material is very stable and easy to handle, the doping amount and the carrier concentration can be easily controlled, and the productivity can be improved.
[0031]
Further, by depositing a semiconductor thin film by a metal organic chemical vapor deposition method, it becomes easy to control the film forming conditions of the thin film, and the productivity can be further improved.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an optical sensor showing an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing Li cylinder temperature dependence of resistivity in one embodiment of the present invention.
FIG. 3 is a photograph showing an AFM image according to the Li cylinder temperature of a Li-added ZnO thin film.
FIG. 4 is a characteristic diagram showing optical response characteristics according to a manufacturing method.
[Explanation of symbols]
2 Li-doped ZnO thin film = photoconductive member 4 optical sensor

Claims (1)

有機金属化学気相成長法により酸化亜鉛を母材とする半導体薄膜を堆積させる工程と、
前記半導体薄膜を堆積させる工程中において、亜鉛源として亜鉛アセチルアセトナートを、酸素源としてO 2、 又はH Oのいずれかを、キャリアガスとしてN 用い、前記半導体薄膜に周期律表の第I族元素の原料としてβ−ジケトン系の有機金属であるLi(DPM)を不純物としてドーピングさせて、その不純物濃度を10-5〜10[at・%]なる範囲とする工程と、
を備えることを特徴とする光導電部材の製造方法。
Depositing a semiconductor thin film using zinc oxide as a base material by metal organic chemical vapor deposition;
In the step of depositing the semiconductor thin film, zinc acetylacetonate is used as a zinc source, O 2, O 3 or H 2 O is used as an oxygen source , and N 2 is used as a carrier gas. A step of doping Li (DPM) , which is a β-diketone-based organic metal , as an impurity as a raw material of the Group I element in the table so that the impurity concentration ranges from 10 −5 to 10 [at ·%];
A method for producing a photoconductive member, comprising:
JP35001499A 1999-12-09 1999-12-09 Method for producing photoconductive member Expired - Fee Related JP4811890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35001499A JP4811890B2 (en) 1999-12-09 1999-12-09 Method for producing photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35001499A JP4811890B2 (en) 1999-12-09 1999-12-09 Method for producing photoconductive member

Publications (2)

Publication Number Publication Date
JP2001168035A JP2001168035A (en) 2001-06-22
JP4811890B2 true JP4811890B2 (en) 2011-11-09

Family

ID=18407661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35001499A Expired - Fee Related JP4811890B2 (en) 1999-12-09 1999-12-09 Method for producing photoconductive member

Country Status (1)

Country Link
JP (1) JP4811890B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197159A (en) * 2002-12-18 2004-07-15 Nagaoka University Of Technology Thin film deposition method, and cvd system
JP2008039665A (en) * 2006-08-09 2008-02-21 Kochi Univ Of Technology Ultraviolet detection device
CN111004405B (en) * 2019-12-16 2024-03-26 山东理工大学 Method for preparing metal organic framework material film on carriers with different proportions in one step

Also Published As

Publication number Publication date
JP2001168035A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
Nair et al. Opto-electronic characteristics of chemically deposited cadmium sulphide thin films
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
CN110676339B (en) Gallium oxide nanocrystalline film solar blind ultraviolet detector and preparation method thereof
KR101747395B1 (en) Molybdenum substrates for cigs photovoltaic devices
CN112086344B (en) Preparation method of aluminum gallium oxide/gallium oxide heterojunction film and application of aluminum gallium oxide/gallium oxide heterojunction film in vacuum ultraviolet detection
CN108346712B (en) Preparation method of silicon-doped boron nitride/graphene PN junction type ultraviolet detector
Mondal et al. Extraordinarily high ultraviolet photodetection by defect tuned phosphorus doped ZnO thin film on flexible substrate
Locovei et al. Physical properties of Cu and Dy co-doped ZnO thin films prepared by radio frequency magnetron sputtering for hybrid organic/inorganic electronic devices
Patel et al. Toward CdCl 2 activation on CdSe thin films for absorber layer applications
JPS6091627A (en) Method of producing pin semiconductor device
KR101582200B1 (en) A method for preparing CZTS thin film for solar cell
Giri MgZnO nanoparticle-based metal–semiconductor–metal UV photodetector
JP4811890B2 (en) Method for producing photoconductive member
CA1187588A (en) Amorphous silicon pin semiconductor device having a hybrid construction
CN109524491B (en) GaN-CdZnTe composite structure component with ZnTe transition layer, application and preparation method thereof
Kim et al. Effect of Oxygen Plasma on β-Ga2O3 Deep Ultraviolet Photodetectors Fabricated by Plasma-Assisted Pulsed Laser Deposition
Ming et al. Study of Ar+ O 2 deposition pressures on properties of pulsed laser deposited CdTe thin films at high substrate temperature
JP2724892B2 (en) Amorphous silicon pin type photoelectric conversion element
JPH10226598A (en) Transparent conductive titanium oxide film and its production
Bacaksiz et al. Light-assisted deposition of CdS thin films
Pirposhte et al. ZnO Thin Films: Fabrication Routes, and Applications
FR2465319A1 (en) PHOTOVOLTAIC CELL
Boroomand Nasab et al. Effect of Oxygen Flow Rate in Zinc Oxide Radio Frequency Magnetron Sputtering on the Structural and Optical Properties of ZnO| PEDOT: PSS Inorganic| Organic Hetero-Junction
JPH10256577A (en) Microcrystalline compound optical semiconductor and manufacture of the same, and optical semiconductor device
JP2726323B2 (en) Thin-film solar cell fabrication method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091008

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees