JPS627267B2 - - Google Patents

Info

Publication number
JPS627267B2
JPS627267B2 JP57009372A JP937282A JPS627267B2 JP S627267 B2 JPS627267 B2 JP S627267B2 JP 57009372 A JP57009372 A JP 57009372A JP 937282 A JP937282 A JP 937282A JP S627267 B2 JPS627267 B2 JP S627267B2
Authority
JP
Japan
Prior art keywords
diamond
cemented carbide
coated
base material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57009372A
Other languages
Japanese (ja)
Other versions
JPS58126972A (en
Inventor
Naoharu Fujimori
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP937282A priority Critical patent/JPS58126972A/en
Publication of JPS58126972A publication Critical patent/JPS58126972A/en
Publication of JPS627267B2 publication Critical patent/JPS627267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はダイヤモンドを被覆した超硬合金工具
に関する。 1種以上の炭化物を含み鉄族金属を主体とする
結合相を有する超硬合金は切削工具、耐摩工具等
巾広い用途に利用されているが、近年この超硬合
金の表面にTiC、Al2O3等の硬質物質を被覆した
いわゆるコーチング工具が急速に普及しつつあ
る。 特に硬い材料を加工する場合には工具自体の硬
さは重要な性質であり、最も硬い物質であるダイ
ヤモンドはその意味では現在も貴重な材料であ
る。このダイヤモンド工具としては単結晶や焼結
体として、あるいは金属、他の無機化合物、有機
物で固めたものが多く用いられているが、これ等
はダイヤモンド自体の原料が高価であり、これよ
り硬いものが無いため難加工性であるため製造コ
ストも高く、また形状的にも制約されている。 発明者らはダイヤモンドの持つ硬い性質を最大
限に生かす工具を検討して本発明に至つたもので
ある。複雑な形状のものや大型の部品にダイヤモ
ンドの硬度を活用するには気相から被覆すること
が最も適している。この場合母材の性質として弾
性率が高い方が被覆膜の破損を少くする上で望ま
しい。従つて高弾性母材として1種以上の炭化物
及び/又は窒化物を主成分とする超硬合金が最も
適している。 この超硬合金の表面に気相よりダイヤモンドを
被覆しようとした場合、本来ダイヤモンドを合成
する際の触媒となるべき物質が存在すると合成し
にくくなるばかりでなく、例え被覆できたとして
も高温で使用した場合にダイヤモンド膜が変態を
起してグラフアイト化してしまい本来の高硬度を
利用することができない。従つてCoやNiを含む
超硬合金に直接被覆するのは好ましくない。そこ
で安定したダイヤモンド被覆膜を得るために超硬
合金とダイヤモンドの間に中間層を介した被覆超
硬合金を提案するものである。 中間層としては、Fe、Co、Ni等の金属を含ま
ないことが必要であり、またこれらの金属の拡散
が少い物質が望ましい。この中間層の物質として
種々検討した結果、コーチング物質として工業的
に安定して利用できるものは、周期律表a、
a、a族元素の炭化物、窒化物、酸化物、硼化
物及びこれらの混合物、化合物、更にAl2O3
AlN、B4C、Si3N4、SiC、SiO2であることが判明
した。これらの中で接着強度の点では炭化物が最
も望ましいが他の物質でも中間層としてこのよう
にダイヤモンドを被覆した場合、上記に述べたダ
イヤモンド膜の不安定性は解決される。 超硬合金を母材とする被覆の厚みは中間層も外
層のダイヤモンド膜も0.1μm以下ではその効果
をほとんど示さないが10μm以上では強度が著し
く低下して工具として適さない。 また気相からの被覆法としてはCVD法(化学
蒸着)、PVD(物理的気相法)いずれの場合でも
効果は変らない。 なお、ダイヤモンドの被覆方法としては水素と
炭化水素の混合気流をWフイラメントを2000℃程
度の高温に加熱することによつて励起するWフイ
ラメント法、高周波、マイクロ波を印加して励起
するプラズマ法などのいわゆるCVD法が良く知
られている。又、炭素イオンのイオンビームによ
るイオンビームデボジシヨン法なども好ましい。 次に実施例によつて詳しく説明する。 実施例 1 ISO K10超硬合金によつて0.5mmφから0.35mm
φに伸線加工する線引ダイスを作成し、この表面
にCVD法でTiCを1μm被覆した後、CVD法で
母材を850℃に加熱してダイヤモンドを1μm被
覆した。 これを実際の線引加工に使用した結果、本発明
品は28Kgの鋼線が可能であつたのに対し、従来の
ISO K10超硬合金ダイスでは12Kgしか線引がで
きなかつた。 実施例 2 ISO M10超硬合金によつてSNG432の工具を作
成し、CVD法でTiCとダイヤモンドを第1表に示
す膜厚で被覆し、次の条件で切削試験を行つた。 切削条件: 被削材:Al合金(AA−4032) 速 度:800m/min 切り込み:1.0〜7.0mm 送 り:0.5mm/rev
The present invention relates to a diamond coated cemented carbide tool. Cemented carbide, which has a binder phase mainly composed of iron group metals and contains one or more carbides, is used in a wide range of applications such as cutting tools and wear-resistant tools . So-called coaching tools coated with a hard material such as O 3 are rapidly becoming popular. Especially when processing hard materials, the hardness of the tool itself is an important property, and diamond, the hardest substance, is still a valuable material in that sense. Diamond tools are often used in the form of single crystals, sintered bodies, or solidified with metal, other inorganic compounds, or organic materials, but the raw material of diamond itself is expensive, and diamond tools that are harder than these are often used. Since there is no porosity, it is difficult to process, resulting in high manufacturing costs and is also limited in shape. The inventors studied a tool that makes the most of the hard properties of diamond, and arrived at the present invention. To take advantage of diamond's hardness for complex-shaped or large parts, coating from the gas phase is most suitable. In this case, it is desirable for the base material to have a high modulus of elasticity in order to reduce damage to the coating film. Therefore, a cemented carbide whose main component is one or more carbides and/or nitrides is most suitable as a highly elastic base material. If you try to coat the surface of this cemented carbide with diamond using a vapor phase, the presence of a substance that should normally act as a catalyst when synthesizing diamond will not only make it difficult to synthesize diamond, but even if it can be coated, it will be used at high temperatures. In this case, the diamond film undergoes transformation and becomes graphite, making it impossible to utilize its original high hardness. Therefore, it is not preferable to directly coat cemented carbide containing Co or Ni. Therefore, in order to obtain a stable diamond coating film, we propose a coated cemented carbide with an intermediate layer interposed between the cemented carbide and diamond. The intermediate layer must not contain metals such as Fe, Co, and Ni, and it is desirable to use a material that allows these metals to diffuse less. As a result of various studies on the materials for this intermediate layer, we found that the ones that can be stably used industrially as coating materials are those from the periodic table a,
a, carbides, nitrides, oxides, borides, and mixtures and compounds of group a elements, as well as Al 2 O 3 ,
It turned out to be AlN, B4C , Si3N4 , SiC, and SiO2 . Among these, carbide is the most desirable in terms of adhesive strength, but if diamond is coated with other materials as an intermediate layer in this manner, the above-mentioned instability of the diamond film can be solved. If the thickness of the coating made of cemented carbide as a base material is 0.1 μm or less for both the intermediate layer and the diamond film of the outer layer, it will hardly exhibit any effect, but if it exceeds 10 μm, the strength will drop significantly and it will not be suitable as a tool. Furthermore, the effect remains the same whether the coating method is from the gas phase, CVD (chemical vapor deposition) or PVD (physical vapor deposition). Methods for coating diamond include the W filament method, in which a mixed gas flow of hydrogen and hydrocarbon is excited by heating the W filament to a high temperature of approximately 2000°C, and the plasma method, in which it is excited by applying radio frequency or microwave. The so-called CVD method is well known. Also preferred is an ion beam deposition method using an ion beam of carbon ions. Next, a detailed explanation will be given with reference to examples. Example 1 ISO K10 cemented carbide from 0.5mmφ to 0.35mm
A wire drawing die for wire drawing to φ was prepared, and its surface was coated with TiC to a thickness of 1 μm using the CVD method, and then the base material was heated to 850° C. using the CVD method and coated with diamond to a thickness of 1 μm. As a result of using this in actual wire drawing processing, the product of the present invention was able to produce a 28 kg steel wire, whereas the conventional product
The ISO K10 cemented carbide die could only draw 12 kg. Example 2 A SNG432 tool was made from ISO M10 cemented carbide, coated with TiC and diamond at the film thickness shown in Table 1 using the CVD method, and subjected to a cutting test under the following conditions. Cutting conditions: Work material: Al alloy (AA-4032) Speed: 800m/min Depth of cut: 1.0 to 7.0mm Feed: 0.5mm/rev

【表】 第1表でみられるようにTiCの中間層を介して
ダイヤモンド膜を被覆することによつて切削工具
としての寿命が飛躍的に向上し、TiC層のみの被
覆超硬合金よりも改善されることがわかる。また
被覆層の厚みが中間層としてもダイヤモンド膜と
しても10μm以上になると却つて強度が低下して
いる。 実施例 3 WC−15%Co超硬合金に第2表に示す物質をイ
オンプレーテイング法にて各2μm被覆し、さら
に母材を750℃に加熱してその上に2μmのダイ
ヤモンドをイオンビームデポジツシヨン法にて被
覆した被覆超硬合金を作成し、この表面にAl2O3
焼結体を10Kg/mm2の圧力で押し当て150m/min
の速度で摩耗テストを60分行い表面の摩耗深さを
測定した。その結果を第2表に示す。 表に示す通り、中間層を介することにより本発
明のダイヤモンド被覆超硬合金はいずれの場合も
耐摩耗性が向上することがわかる。
[Table] As shown in Table 1, by coating a diamond film through an intermediate layer of TiC, the life of a cutting tool is dramatically improved, which is an improvement over cemented carbide coated with only a TiC layer. I know it will happen. Moreover, when the thickness of the coating layer is 10 μm or more, whether it is an intermediate layer or a diamond film, the strength is rather reduced. Example 3 WC-15%Co cemented carbide was coated with the substances shown in Table 2 to a thickness of 2 μm each using the ion plating method, the base material was further heated to 750°C, and 2 μm of diamond was deposited on top of it by ion beam deposition. A coated cemented carbide coated using a dispensing method is prepared, and Al 2 O 3 is applied to the surface of the coated cemented carbide.
Press the sintered body at a pressure of 10Kg/mm 2 at 150m/min
A wear test was conducted at a speed of 60 minutes to measure the depth of wear on the surface. The results are shown in Table 2. As shown in the table, it can be seen that the wear resistance of the diamond-coated cemented carbide of the present invention is improved in all cases by interposing the intermediate layer.

【表】【table】

【表】 上記の実施例ではWC−Co超硬合金を母材とす
る例を示したが、WC−TiC−Co、WC−TiC−
TiN−Co系超硬合金を母材としても同様の効果が
得られ、ダイヤモンドの高硬度、耐摩耗性を最大
限に発揮できる安定な強度の高い被覆超硬合金と
して切削工具、ダイス、ローラー等の耐摩工具と
して工業的価値が高いものである。
[Table] In the above example, an example was shown in which WC-Co cemented carbide was used as the base material, but WC-TiC-Co, WC-TiC-
The same effect can be obtained using TiN-Co based cemented carbide as a base material, and it is a stable and strong coated cemented carbide that can maximize the hardness and wear resistance of diamond, such as cutting tools, dies, rollers, etc. It has high industrial value as a wear-resistant tool.

Claims (1)

【特許請求の範囲】 1 1種以上の炭化物または/及び窒化物を含む
超硬合金を母材とする被覆超硬合金において、該
母材に隣接する内層が、a、a、a族元素
の炭化物、窒化物、硼化物、酸化物及びこれらの
化合物、混合物並びにAl2O3、AlN、B4C、
Si3N4、SiO2から選ばれた1種以上より成り、外
層はダイヤモンドより成ることを特徴とするダイ
ヤモンド被覆超硬合金工具。 2 特許請求の範囲第1項において、内層の厚み
が0.1〜10μmであり、外層の厚みが0.1〜10μm
であることを特徴とするダイヤモンド被覆超硬合
金工具。
[Scope of Claims] 1. A coated cemented carbide whose base material is a cemented carbide containing one or more types of carbide or/and nitride, in which the inner layer adjacent to the base material contains a group a, a, group a element. Carbides, nitrides, borides, oxides and their compounds, mixtures, Al2O3, AlN, B4C,
A diamond-coated cemented carbide tool made of one or more selected from Si3N4 and SiO2, and characterized in that the outer layer is made of diamond. 2 In claim 1, the inner layer has a thickness of 0.1 to 10 μm, and the outer layer has a thickness of 0.1 to 10 μm.
A diamond-coated cemented carbide tool characterized by:
JP937282A 1982-01-22 1982-01-22 Diamond coated sintered hard alloy tool Granted JPS58126972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP937282A JPS58126972A (en) 1982-01-22 1982-01-22 Diamond coated sintered hard alloy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP937282A JPS58126972A (en) 1982-01-22 1982-01-22 Diamond coated sintered hard alloy tool

Publications (2)

Publication Number Publication Date
JPS58126972A JPS58126972A (en) 1983-07-28
JPS627267B2 true JPS627267B2 (en) 1987-02-16

Family

ID=11718632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP937282A Granted JPS58126972A (en) 1982-01-22 1982-01-22 Diamond coated sintered hard alloy tool

Country Status (1)

Country Link
JP (1) JPS58126972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379220A1 (en) * 1989-01-20 1990-07-25 Idemitsu Petrochemical Co. Ltd. Diamond coated sintered body
EP0627498A1 (en) 1993-05-25 1994-12-07 Ngk Spark Plug Co., Ltd Ceramic-based substrate, and methods for producing same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166402A (en) * 1983-03-10 1984-09-19 Mitsubishi Metal Corp Surface covering sintered hard alloy member for cutting tool and abrasion-resistant tool
JPS59166672A (en) * 1983-03-11 1984-09-20 Mitsubishi Metal Corp Surface-coated tool member excellent in wear resistance
JPS60114572A (en) * 1983-11-25 1985-06-21 Mitsubishi Metal Corp Sintered hard alloy member having very hard coating layer
JPS60152676A (en) * 1984-01-18 1985-08-10 Hitachi Choko Kk Surface-coated sintered hard member
JPS60208473A (en) * 1984-03-30 1985-10-21 Mitsubishi Metal Corp Artificial diamond-coated tool member
SE453474B (en) * 1984-06-27 1988-02-08 Santrade Ltd COMPOUND BODY COATED WITH LAYERS OF POLYCristalline DIAMANT
JPS6152363A (en) * 1984-08-21 1986-03-15 Mitsubishi Metal Corp Method for depositing and forming artificial diamond film on surface of cermet member
JPS6187870A (en) * 1984-10-05 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> Coating film and its formation
JPS61104078A (en) * 1984-10-26 1986-05-22 Toshiba Tungaloy Co Ltd Hard coated sintered alloy and its manufacture
JPS61109628A (en) * 1984-10-29 1986-05-28 Toshiba Tungaloy Co Ltd Diamond coated tool
JPS61106494A (en) * 1984-10-29 1986-05-24 Kyocera Corp Member coated with diamond and its production
JPS6286161A (en) * 1985-10-11 1987-04-20 Mitsubishi Metal Corp Formation of artificial diamond film at high deposition forming rate
JPH0713298B2 (en) * 1985-10-31 1995-02-15 京セラ株式会社 Diamond coated cutting tools
JPH0643280B2 (en) * 1986-03-27 1994-06-08 東芝タンガロイ株式会社 Vapor phase synthesis of film diamond
KR920000801B1 (en) * 1988-02-04 1992-01-23 이데미쯔세끼유가가꾸 가부시기가이샤 Method of producing sintered hard metal with diamond film
JP2564627B2 (en) * 1988-10-11 1996-12-18 株式会社半導体エネルギー研究所 Member covered with carbon film and manufacturing method thereof
DE68916207T3 (en) * 1988-12-21 1999-11-25 Mitsubishi Materials Corp Diamond coated tool, substrates therefor and process for its manufacture.
CA2029873A1 (en) * 1989-03-10 1990-09-11 Toshimichi Ito Diamond-coated member and process for the preparation thereof
JP2995705B2 (en) * 1989-10-31 1999-12-27 株式会社島津製作所 Hard carbon film forming method
US5334453A (en) * 1989-12-28 1994-08-02 Ngk Spark Plug Company Limited Diamond-coated bodies and process for preparation thereof
CA2061944C (en) * 1991-03-08 1999-01-26 Naoya Omori A diamond and/or diamond-like carbon-coated hard material
KR0134942B1 (en) * 1993-06-11 1998-06-15 이다가끼 유끼오 Method for deposition of amorphous hard carbon films
JPH10310494A (en) * 1996-05-31 1998-11-24 Ngk Spark Plug Co Ltd Production of cemented carbide member with diamond coating film
EP0828015A3 (en) 1996-09-06 1998-07-15 SANYO ELECTRIC Co., Ltd. Hard carbon film-coated substrate and method for fabricating the same
CN109750291A (en) * 2017-11-07 2019-05-14 深圳先进技术研究院 A kind of boron-doped diamond electrode and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566920A (en) * 1979-06-28 1981-01-24 Philips Nv Dry lubricating bearing
JPS5641372A (en) * 1979-09-10 1981-04-18 Mitsubishi Metal Corp Surface covered ultra hard alloy member for cutting tool
JPS56108876A (en) * 1980-02-04 1981-08-28 Citizen Watch Co Ltd Silver plated exterior decorative parts for watch and their manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566920A (en) * 1979-06-28 1981-01-24 Philips Nv Dry lubricating bearing
JPS5641372A (en) * 1979-09-10 1981-04-18 Mitsubishi Metal Corp Surface covered ultra hard alloy member for cutting tool
JPS56108876A (en) * 1980-02-04 1981-08-28 Citizen Watch Co Ltd Silver plated exterior decorative parts for watch and their manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379220A1 (en) * 1989-01-20 1990-07-25 Idemitsu Petrochemical Co. Ltd. Diamond coated sintered body
EP0627498A1 (en) 1993-05-25 1994-12-07 Ngk Spark Plug Co., Ltd Ceramic-based substrate, and methods for producing same

Also Published As

Publication number Publication date
JPS58126972A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
JPS627267B2 (en)
US3999954A (en) Hard metal body and its method of manufacture
EP0074759A2 (en) Sintered hard metal products having a multi-layer wear-restistant coating
JP2003311510A (en) Coated cutting tool for turning steel
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JPH04120274A (en) Coated cemented carbide and production thereof
JPS63195268A (en) Cutting tool made of surface coated sintered hard alloy
JPS6210301B2 (en)
JPS5993869A (en) Structure coated with hard layer containing diamond
JPH10237650A (en) Wc base cemented carbide and its production
JP2646247B2 (en) AlN coated silicon nitride based cutting tool
JP4284144B2 (en) Surface coated cutting tool
JPH07243023A (en) Cutting tool made of surface treated tungsten carbide-base sintered hard alloy, excellent in breaking resistance
JP2974285B2 (en) Manufacturing method of coated carbide tool
JP3519127B2 (en) High thermal conductive coated tool
JP2660180B2 (en) Coated carbide tool
JPS59166673A (en) Surface-coated tool member excellent in wear resistance
JP2974284B2 (en) Manufacturing method of coated carbide tool
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JPH02131802A (en) Cutting tool made of surface coating tungsten carbide group cemented carbide excellent in abrasion resistance
JPS59166671A (en) Surface-coated tool member excellent in wear resistance
JPH0387368A (en) Coated sintered hard alloy tool
JPH06146009A (en) Sintered alloy with surface layer containing al and its manufacture
JPS59166672A (en) Surface-coated tool member excellent in wear resistance
JPH05140729A (en) High adhesion coated member and its production