JPS61104078A - Hard coated sintered alloy and its manufacture - Google Patents

Hard coated sintered alloy and its manufacture

Info

Publication number
JPS61104078A
JPS61104078A JP22559984A JP22559984A JPS61104078A JP S61104078 A JPS61104078 A JP S61104078A JP 22559984 A JP22559984 A JP 22559984A JP 22559984 A JP22559984 A JP 22559984A JP S61104078 A JPS61104078 A JP S61104078A
Authority
JP
Japan
Prior art keywords
inner layer
sintered alloy
diamond
layer
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22559984A
Other languages
Japanese (ja)
Other versions
JPH0582472B2 (en
Inventor
Noritoshi Horie
堀江 則俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP22559984A priority Critical patent/JPS61104078A/en
Publication of JPS61104078A publication Critical patent/JPS61104078A/en
Publication of JPH0582472B2 publication Critical patent/JPH0582472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture the titled hard coated sintered alloy having excellent adhesive strength by forming an inner layer consisting of a non-stoichiometric metallic compd. on the surface of a substrate consisting of a sintered alloy, and forming an outer layer consisting of diamond carbon, etc., on the surface of the inner layer. CONSTITUTION:A single or multilayered inner layer consisting of >=1 kind among solid solns. of a metal such as Ti, Zr, Hf, V, Nb, Ta, W, Mo, Cr, and Si or their alloy and a non-stoichiometric compd. consisting of the carbide, nitride, and oxide of 4a, 5a, and group 6a metals in the periodic table and the carbide and nitride of Si is coated on the surface of a substrate consisting of a sintered alloy contg. the carbide and nitride of 4a, 5a, and group 6a metals in the periodic table, their solid soln., etc., and contg. Fe, Ni, Co, W, Mo, Cr, etc. Then an outer layer consisting of diamond carbon and/or diamond is coated on the surface of the inner layer. When the outer layer is coated, carbon is diffused into the inner layer, and a non-stoichiometric compd. composed of 1 mole metallic element and 0.7 mole nonmetallic element is obtained. Consequently, a hard coated sintered alloy having high strength in the coated layer and excellent adhesive strength is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼結合金からなる基体の表面に付着、性のす
ぐれたダイヤモンド状カーボン及び/又はダイヤモンド
の硬質薄膜を形成してなる切削用工具及び#摩耗用工具
に適する硬質被覆焼結合金及びその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a cutting tool in which a hard thin film of diamond-like carbon and/or diamond with excellent properties is formed on the surface of a substrate made of a sintered alloy. This invention relates to a hard-coated sintered alloy suitable for tools and wear tools, and a method for producing the same.

(従来の技術) WCを主体とする超硬合金やTiCを主体とするサーメ
ットからなる焼結合金の表面にTi(:、TiN。
(Prior art) Ti (:, TiN) is applied to the surface of a sintered alloy made of a cemented carbide mainly composed of WC or a cermet mainly composed of TiC.

^9.203などの耐摩耗性物質を被覆した焼結合金が
工具として普及しており、更に現在もこれらの被覆層と
しての耐摩耗性物質と焼結合金からなる  ・基体との
関連性においての追究が行われている。
Sintered alloys coated with a wear-resistant material such as ^9.203 are widely used as tools, and even now these coating layers are made of wear-resistant materials and sintered alloys.・In relation to the base material. is being investigated.

一方、cvn法、プラズマCVD法、イオンビーム法、
レーザビーム法、電子ビーム法、イオン注入法などによ
り、ダイヤモンド状カーボン又はダイヤモンドからなる
硬質膜を作成する方法が種々提案されている。このダイ
ヤモンド状カーボン又はダイヤモンドからなる硬質膜を
焼結合金からなる基体の表面に被覆して工具に応用しよ
うという試みがなされているけれども実用性に乏しいの
が現状である。
On the other hand, cvn method, plasma CVD method, ion beam method,
Various methods have been proposed for creating a hard film made of diamond-like carbon or diamond using a laser beam method, an electron beam method, an ion implantation method, and the like. Attempts have been made to coat the surface of a substrate made of sintered alloy with a hard film made of diamond-like carbon or diamond and apply it to a tool, but it is currently impractical.

(発明が解決しょとする闇題点) ダイヤモンド状カーボン又はダイヤモンドからなる硬質
膜を作成する方法は、大別すると2通りあり、その第1
の方法は蒸91源にダイヤモンド状カーボン又はダイヤ
モンドを使用し、これを加熱尊発することによって基体
表面に硬質膜を合成する固相合成法であり、ttS2の
方法はメタン、ブタン、ベンゼン等の炭化水素の熱分解
によって基体表面に硬質膜を堆積させる気相合成法であ
る。
(Dark problem to be solved by the invention) There are two ways to create a hard film made of diamond-like carbon or diamond.
The ttS2 method is a solid-phase synthesis method that uses diamond-like carbon or diamond as the vapor source and heats and evaporates it to synthesize a hard film on the substrate surface. This is a vapor phase synthesis method that deposits a hard film on the surface of a substrate by thermal decomposition of hydrogen.

これらの固相合成法又は気相合成法によりダイヤモンド
状カーボン又はダイヤモンドからなる硬質膜を形成する
場合、硬質膜の形成と同時にカーボンも析出して硬質膜
中に軟質なカーボンが混在しやすくなる。このため鉄族
金属を含む焼結合金からなる基体の表面に直接ダイヤモ
ンド状カーボン又はダイヤモンドからなる硬質膜を形成
すると硬質膜中に混在するカーボンが基体表面の鉄属金
属と反応して基体内部に固溶拡散し基体内部に遊#炭素
を発生させて基体の強度低下を生じさせたり、又は基体
と硬質膜との付着性が悪くなったり、更には生成した硬
質膜の質が低下するという問題がある。特に、気相合成
法によってダイヤモンド状カーボン又はダイヤモンドか
らなる硬質膜を焼結合金からなる基体の表面に形成させ
る場合には、基体表面の鉄属金属が気相合成法のための
供給炭化水素ガスの分解の触媒として作用し、このため
に基体の表面に非晶質カーボン又はグラファイトでなる
軟質なカーボンの析出量が多くなって基体内部へのカー
ボンの固溶拡散も多くなるという問題がある。これらの
問題点を改良したものに゛超硬合金からなる基体の表面
に4a、5a、6a族金属の炭化物、窒化物、1朋化物
及び酸化物などを内層として被覆した後、この内層の表
面にダイヤモンドを外層として被覆した被覆超硬合金工
具が提案°されている。しかし、このような内層は、ダ
イヤモンド被覆過程において生成するカーボンを基体内
部に拡散固溶するのを防止する効果があるけれども、内
層及び外層内に遊離カーボンを生じさせたり、又は内層
とダイヤモンド層の境界面にもカーボンが堆積するため
に、各層内の結合強度の低下もしくは内層と外層との境
界面での付着強度の低下が生じるという問題がある。 
      6本発明は、上記のような問題点を解決し
たもので、具体的には、ダイヤモンド状カーボン及び/
又はダイヤモンドからなる硬質膜の生成過程で主層内及
び層の境界面に遊離カーボンを生じさせないようにして
被WI層内強度及び被Wi層境界面での付着強度のすぐ
れた硬質被覆焼結合金及びその製造方法の提供を目的と
するものである。
When a hard film made of diamond-like carbon or diamond is formed by these solid-phase synthesis methods or vapor-phase synthesis methods, carbon also precipitates simultaneously with the formation of the hard film, making it easy for soft carbon to be mixed in the hard film. For this reason, if a hard film made of diamond-like carbon or diamond is directly formed on the surface of a substrate made of a sintered alloy containing iron group metals, the carbon mixed in the hard film will react with the ferrous metals on the surface of the substrate and become trapped inside the substrate. Problems such as solid solution diffusion and generation of free carbon inside the substrate, resulting in a decrease in the strength of the substrate, poor adhesion between the substrate and the hard film, and furthermore, a decrease in the quality of the produced hard film. There is. In particular, when a hard film made of diamond-like carbon or diamond is formed on the surface of a substrate made of sintered alloy by vapor phase synthesis, the ferrous metal on the surface of the substrate becomes the hydrocarbon gas supplied for vapor phase synthesis. Therefore, there is a problem in that the amount of soft carbon such as amorphous carbon or graphite deposited on the surface of the substrate increases, and the solid solution diffusion of carbon into the interior of the substrate also increases. In order to improve these problems, the surface of the substrate made of cemented carbide is coated with carbides, nitrides, monoholides, oxides, etc. of group 4a, 5a, and 6a metals as an inner layer, and then the surface of this inner layer is A coated cemented carbide tool coated with diamond as an outer layer has been proposed. However, although such an inner layer has the effect of preventing carbon generated during the diamond coating process from diffusing into the substrate, it may generate free carbon within the inner layer and the outer layer, or cause the bonding between the inner layer and the diamond layer. Since carbon is also deposited on the interface, there is a problem in that the bonding strength within each layer or the adhesion strength at the interface between the inner layer and the outer layer decreases.
6 The present invention solves the above-mentioned problems. Specifically, the present invention solves the above-mentioned problems.
Or, a hard-coated sintered alloy with excellent strength in the WI layer and adhesion strength at the boundary surface of the Wi layer by preventing free carbon from being generated in the main layer and at the interface between the layers in the process of forming a hard film made of diamond. The object of the present invention is to provide a method for manufacturing the same.

(問題点を解決するための手段) 本発明者らは、焼結合金からなる基体の表面にダイヤモ
ンドからなる硬質膜を被覆することによって工具に応用
することを試みたところ、工具特に、切削用工具のよう
な苛酷な条件で使用す名工共には、基体と被WI層間の
付着強度が相当高くなければ使用に耐えられないことを
確認し、基体と被!!2層間の付着性を追究することに
よって本発明を完成するに至ったものである。
(Means for Solving the Problems) The present inventors attempted to coat the surface of a substrate made of sintered alloy with a hard film made of diamond, and found that it was possible to apply it to tools. For master craftsmen who use tools under harsh conditions, we have confirmed that the adhesion strength between the base and the WI layer must be extremely high to withstand use. ! The present invention was completed by investigating the adhesion between the two layers.

すなわち1本発明の硬質被覆焼結合金は、周期律表4a
、5a、ea族金属の炭化物、窒化物及びこれらの相互
固溶体の中の少なくとも1種とFe 、Ni 、Co 
、W、Mo 、Cr(1)中の少なくとも1種を含む焼
結合金からなる基体の表面に金属化合物からなる内層と
該内層の表面にダイヤモンド状カーボン及び/又はダイ
ヤモンドからなる外層を形成してなる被覆焼結合金にお
いて、前記内層が周期律表4a、5a、6a族金属の炭
化物、炭窒化物、炭酸化物、炭窒酸化物、炭廊目化物及
びSiの炭化物、TR窒化物並びにこれらの相互固溶体
の中の少なくとも1種であり、かつ非化学量論的化合物
からなる単層もしくは多重層からなる硬質被覆焼結合金
である。この本発明の硬質被覆焼結合金における焼結合
金からなる基体は、外部から加わる荷重に対して塑性変
形を起さない程度の剛性又は硬度を有する組成に選定す
る必要があり、一般に使用されている超硬合金又はサー
メット更には、用途によっては、 Fe、Ni。
That is, 1 the hard coated sintered alloy of the present invention is
, 5a, at least one of carbides, nitrides, and mutual solid solutions of group metals thereof, and Fe, Ni, Co.
, W, Mo 2 , and Cr(1), an inner layer made of a metal compound is formed on the surface of the substrate, and an outer layer made of diamond-like carbon and/or diamond is formed on the surface of the inner layer. In the coated sintered alloy, the inner layer comprises carbides, carbonitrides, carbonates, carbonitrides, carbonitides, carbides of Si, TR nitrides of metals of groups 4a, 5a, and 6a of the periodic table, and It is a hard-coated sintered alloy consisting of a single layer or multiple layers of at least one type of mutual solid solution and non-stoichiometric compound. The base body made of a sintered alloy in the hard-coated sintered alloy of the present invention must be selected to have a composition that has a rigidity or hardness that does not cause plastic deformation under externally applied loads, and is generally used. Cemented carbide or cermet, and depending on the application, Fe, Ni.

Co、W 、 M o 、 Crの中の少なくとも1種
を微量に含有したセラミックスに近い焼結合金でもよい
、また、本発明の硬質被覆焼結合金における内層は、周
期律表4a、5a、6a族金属の炭化物1炭窒化物、炭
酸化物、炭窒醜化物、炭浸朋化物及びSiの炭化物、炭
窒化物並びにこれらの相互固溶体の中の少なくとも1種
からなる化合物で。
A sintered alloy similar to ceramics containing a trace amount of at least one of Co, W, Mo, and Cr may be used.In addition, the inner layer in the hard coated sintered alloy of the present invention may be a sintered alloy containing a trace amount of at least one of Co, W, Mo, and Cr. Group metal carbides 1 A compound consisting of at least one of carbonitrides, carbonates, carbonitrides, carbonitrides, Si carbides, carbonitrides, and mutual solid solutions thereof.

しかもこの化合物が金属元素に対して非金属元素の少な
い非化学R論的化合物でなる。特に、非化学量論的化合
物からなる内層は、金属元素1モルに対して非金属元素
0.7モル以上の非化学量論的化合物からなることが望
ましく、その内層の厚さは外層を形成する被覆工程にお
いて外層からのカーボンが基体内部に拡散しないで、し
かも被rR層全体の強度を維持できるように0.1 μ
m〜lopmにすることが望ましい、さらに、本発明の
硬質波、覆焼結合金における外層は、ダイヤモンド状カ
ー゛ポン及び/又はダイヤモンドからな、す、その厚さ
は0.54m〜5pinにすることが望ましい、これら
の内層と外層を合計した被覆層全体の厚さは、1〜10
4mが望ましく、特に穴あけ工具のような切刃の鋭角な
工具に応用するときには1〜4ILmの厚さにするのが
望ましい、ここで記載するダイヤモンド状カーボンとは
、非晶質を含むが成る程度結晶質のものも含有し、電気
抵抗、光透過率。
Furthermore, this compound is a non-chemical R-theoretical compound containing less non-metal elements than metal elements. In particular, the inner layer made of a non-stoichiometric compound is preferably made of a non-stoichiometric compound in an amount of 0.7 mol or more of a non-metallic element per 1 mol of a metal element, and the thickness of the inner layer is equal to that of the outer layer. In order to prevent carbon from the outer layer from diffusing into the substrate during the coating process and to maintain the strength of the entire RR layer,
Furthermore, the outer layer in the hard wave, overcast alloy of the present invention is made of diamond-like carbon and/or diamond, and its thickness is preferably 0.54 m to 5 pin. It is desirable that the total thickness of the coating layer, which is the sum of these inner and outer layers, is 1 to 10
A thickness of 4 m is desirable, and a thickness of 1 to 4 IL m is particularly desirable when applied to tools with sharp cutting edges such as drilling tools. Also contains crystalline materials, electrical resistance, and light transmittance.

硬度などがダイヤモンドに近い性質をもつものを示めす
Indicates something that has properties such as hardness that are similar to diamond.

本発明の硬質被覆焼結合金は、基体の表面に直接非化学
量論的化合物からなる内層を形成する場合、その内層の
形成工程において、基体内に含有しているカーボンが内
層内に拡散して基体内には、例えばη相(WsCozG
)のようなカーボン不足による脆化相を生じることがあ
る。そこで基体表面層に′M遊離カーボン有するような
基体もしくは基体表面層にCo、Niなどの鉄族金属を
殆ど含有してないで周期律表4a、5a、6a族金属の
炭化物、窒化物の中の少なくとも2種以上からなる面心
立方晶系結晶構造を有するB−1型固溶体を有するよう
な基体を用いることもできる。特に基体の合金特性を低
下させずに、非化学量論的化合物からなる内層の種類及
び厚さが容易に調整できて、しかも内層の表面に外層を
形成する場合に生ずる遊離カーボンが5基体内部に拡散
するのを阻止   C・できるような内層にすることが
望ましい、そこで基体の表面に周期律表4a、5a、6
a族金属の炭化物、窒化物、#化物、訓罷化物及びこれ
らの相互固溶体の中の少なくともillの単層又は多重
層からなる第1内層を形成し、この第1内層の表面に周
期律表4a、5a、6a族金属の炭化物、炭、窒化物、
炭酸化物、炭窒酸化物1度4朋化物又はSiの炭化物、
炭窒化物もしくはこれらの相互固溶体の中の少なくとも
18iであり、かつ非化学量論的化合物からなる単層又
は多重層からなるi2内層を形成し、この第2内層の表
面にダイヤモンド状カーボン及び/又はダイヤモンドか
らなる外層を形成してなる被覆焼結合金にする。
When the hard-coated sintered alloy of the present invention forms an inner layer made of a non-stoichiometric compound directly on the surface of a substrate, carbon contained in the substrate diffuses into the inner layer in the process of forming the inner layer. For example, η phase (WsCozG
) may result in brittle phases due to lack of carbon. Therefore, if the substrate surface layer contains 'M free carbon, or the substrate surface layer contains almost no iron group metals such as Co or Ni, the substrate surface layer should contain carbides and nitrides of metals from groups 4a, 5a, and 6a of the periodic table. It is also possible to use a substrate having a B-1 type solid solution having a face-centered cubic crystal structure consisting of at least two or more of the following. In particular, the type and thickness of the inner layer made of a non-stoichiometric compound can be easily adjusted without deteriorating the alloy properties of the substrate, and free carbon generated when forming an outer layer on the surface of the inner layer can be removed from the inside of the substrate. It is desirable to have an inner layer that prevents diffusion into the substrate.
A first inner layer consisting of a single layer or multiple layers of at least ill of group A metal carbides, nitrides, oxides, oxidized compounds, and mutual solid solutions thereof is formed, and the periodic table is formed on the surface of the first inner layer. 4a, 5a, 6a group metal carbides, carbon, nitrides,
carbonate, carbonitride oxide 1 degree tetrahide or Si carbide,
Forming an i2 inner layer consisting of a single layer or multiple layers of a non-stoichiometric compound which is at least 18i of carbonitride or a mutual solid solution thereof, and diamond-like carbon and/or diamond-like carbon is formed on the surface of this second inner layer. Or a coated sintered alloy with an outer layer made of diamond.

本発明の硬質被覆焼結合金の製造方法は、市販のWCを
主体上する超硬合金又はTicを主体とするサーメット
からなる基体もしくは周期律表4a、5a、ea族金属
の炭化物、窒化物及びこれらの相互固溶体の、中の少な
くとも1腫とFe。
The method for producing a hard-coated sintered alloy of the present invention includes a substrate made of a commercially available cemented carbide mainly composed of WC or a cermet mainly composed of Tic, or a carbide, nitride, or At least one of these mutually solid solution contains Fe and Fe.

Ni 、Co 、W、Mo 、Crの中の少なくとも1
種を従来の粉末冶金法によって作製した焼結合金からな
る基体を用いて、この基体の表面を研摩及び洗浄などの
前処理を行った後、T i 、 Z r 。
At least one of Ni, Co, W, Mo, and Cr
Using a substrate made of a sintered alloy prepared by a conventional powder metallurgy method, the surface of this substrate is subjected to pretreatment such as polishing and cleaning, and then subjected to T i and Z r .

Hf 、 V 、 N b 、 T a 、 W 、 
M O、Cr 、 S iの金属又は合金の中の少なく
とも1種を従来の湿式メッキ法、物理蒸着法(PVD)
又は化学蒸着法(G、V’D)に非被覆したりもしくは
周期律表4a。
Hf, V, Nb, Ta, W,
At least one metal or alloy of MO, Cr, and Si is applied by conventional wet plating method or physical vapor deposition (PVD).
Or uncoated by chemical vapor deposition (G, V'D) or periodic table 4a.

5a、6a族金属の炭化物、窒化物9m化物、 !11
11化物でなる非化学量論的化合物又はStの炭化物、
窒化物でなる非化学量論的化合物あるいはこれらの相互
固溶体の中の夕なくとも1種を従来の物理蒸着法や化学
蒸着法で被覆した単層又は多重層からなる内層を基体の
表面に形成し、この内層の表面にダイヤモンド状カーボ
ン及び/又はダイヤモンドからなる外層を形成させる。
Carbides and nitrides of group 5a and 6a metals, ! 11
a non-stoichiometric compound consisting of a 11 compound or a carbide of St,
An inner layer consisting of a single layer or multiple layers coated with a non-stoichiometric compound consisting of nitride or at least one of these mutual solid solutions by conventional physical vapor deposition or chemical vapor deposition is formed on the surface of the substrate. Then, an outer layer made of diamond-like carbon and/or diamond is formed on the surface of this inner layer.

この外層を形成するときに生成する遊離カーボンを金属
又は合金もしくは非化学量論的化合物の中の少なくとも
1種の単層又は多重層でなる内層内に拡散固溶させて、
この内層を金属元素1モルに対して非金属元素067モ
ル以上の非化学量論的化合物にする。内層の表面に外層
を形成させる方法としては、真空中でダイヤモンド粉末
をレーザ又は電子線加熱する内相合成法もしくはその他
のPVD法(イオンブレーティング、スパッタリングな
ど)による固相合成法を利用することができる。また、
メタンなどの炭化水素と水素からなるガスを高周波又は
マイクロ波放電中300℃〜1300℃で熱分解させる
気相合成法を利用することもできる。
Free carbon generated when forming this outer layer is diffused and dissolved into an inner layer consisting of a single layer or multiple layers of at least one metal, alloy, or non-stoichiometric compound,
This inner layer is made of a non-stoichiometric compound containing 067 moles or more of a non-metallic element per 1 mole of a metal element. As a method for forming the outer layer on the surface of the inner layer, an internal phase synthesis method in which diamond powder is heated with a laser or electron beam in a vacuum, or a solid phase synthesis method using other PVD methods (ion blasting, sputtering, etc.) may be used. I can do it. Also,
It is also possible to use a gas phase synthesis method in which a gas consisting of a hydrocarbon such as methane and hydrogen is thermally decomposed at 300° C. to 1300° C. during high frequency or microwave discharge.

さらに公知のCVD法、プラズマCVD法またはイオン
注入法などを応用した気相合成法も利用することができ
る。特に、基体の表面に形成する内層が、湿式メッキ法
又はPVD法による金属又は合金である場合には、内層
の被覆工程において基体表面部の炭素及び窒素が内層内
へ拡散し難くなるので望ましい。
Furthermore, a vapor phase synthesis method applying a known CVD method, plasma CVD method, or ion implantation method can also be used. In particular, when the inner layer formed on the surface of the substrate is made of metal or alloy by wet plating or PVD, it is desirable because carbon and nitrogen on the surface of the substrate are difficult to diffuse into the inner layer during the inner layer coating process.

本発明の硬質被覆焼結合金の製造方法において、基体の
表面に形成する内層は、PVD法。
In the method for producing a hard-coated sintered alloy of the present invention, the inner layer formed on the surface of the substrate is formed by the PVD method.

CVD法又はプラズマCVD法によって周期律表4a、
5a、6a族金屈の炭化物、窒化物、酸化物、看9化物
及びこれらの相互固溶体の中の少なくとも1種の単層又
は多重層からなる第1内層として被覆し、この第1内層
の表面に湿式メッキ法やPVD法によッテ形成するTi
、Zr、If。
Periodic table 4a by CVD method or plasma CVD method,
Coated as a first inner layer consisting of a single layer or a multilayer of at least one of carbides, nitrides, oxides, nitrides, and mutual solid solutions of metals of groups 5a and 6a, and the surface of the first inner layer Ti is formed by wet plating or PVD on
,Zr,If.

V 、 N b 、 T a 、 W 、 M o 、
 Cr 、 S f (7)金属又は合金ならびにPV
D法、CVD法又はプラズマCVD法によって形成する
周期律表4a、5a。
V, Nb, Ta, W, Mo,
Cr, S f (7) Metal or alloy and PV
Periodic table 4a, 5a formed by D method, CVD method or plasma CVD method.

6a族金属の炭化物、窒化物、酸化物1層目化物でなる
非化学量論的化合物もしくはSiの炭化物。
A non-stoichiometric compound consisting of a carbide, nitride, or first-layer oxide of a group 6a metal, or a carbide of Si.

窒化物でなる非化学量論的化合物あるいはこれらの相互
固溶体の中の少なくとも1種からなる単層又は多重層か
らなる第2内層として被覆し、この第2内層の表面に固
相合成法又は気相合成法によって外層を被覆する。この
ように第1内層及び第2内層からなる内層は、内層を形
成するときに基体表面部の炭素及び窒素が内層内へ拡散
するのを阻止しやすく、しかも外層を形成するときに生
成する遊離カーボンが内層内で拡散固溶して基体内部へ
拡散するのを阻止するので望ましいものである。
It is coated as a second inner layer consisting of a single layer or multiple layers made of a non-stoichiometric compound of nitride or at least one of these mutual solid solutions, and the surface of this second inner layer is coated with a solid phase synthesis method or a gaseous method. The outer layer is coated by a phase synthesis method. In this way, the inner layer consisting of the first inner layer and the second inner layer easily prevents carbon and nitrogen on the surface of the substrate from diffusing into the inner layer when forming the inner layer, and also prevents free carbon and nitrogen generated when forming the outer layer. This is desirable because carbon diffuses into solid solution within the inner layer and prevents it from diffusing into the interior of the substrate.

(作用) 本発明の硬質被覆焼結合金は、外層であるダイヤモンド
状カーボン及び/又はダイヤモンドが高硬度性にすぐれ
た良質な硬質薄膜として形成されるために耐摩耗性にす
ぐれた被覆焼結合金である。また、硬質薄膜からなる外
層は、外層を形成する工程で生成する遊離のカーボンが
内層内で拡散固溶することによって外層と内層の層境界
部の付着性を強固なものにしており、外層の耐剥離性が
すぐれた被覆焼結合金になっている。さらに。
(Function) The hard-coated sintered alloy of the present invention is a coated sintered alloy with excellent wear resistance because the outer layer of diamond-like carbon and/or diamond is formed as a high-quality hard thin film with excellent hardness. It is. In addition, the outer layer made of a hard thin film has strong adhesion at the boundary between the outer layer and the inner layer by diffusing and dissolving free carbon generated in the process of forming the outer layer in the inner layer. It is a coated sintered alloy with excellent peeling resistance. moreover.

内層は基体に含有している鉄族全屈との濡れ性及び反応
性にすぐれていることから内層と基体の境界部の付着性
を強固なものにしており、内層の耐!1雌性がすぐれた
被覆焼結合金になっている。特に、内層が第1内層と第
2内層とからなっている場合は、内層を形成するときに
基体表面部での倹素及び窒素の変動が少なく内層と基体
間の付着性を向上した耐剥離性のすぐれた被覆焼結合金
になっている。
The inner layer has excellent wettability and reactivity with the iron group contained in the substrate, making the adhesiveness at the boundary between the inner layer and the substrate strong, and the resistance of the inner layer! 1. It is a coated sintered alloy with excellent female characteristics. In particular, when the inner layer consists of a first inner layer and a second inner layer, when the inner layer is formed, there is less fluctuation of chlorine and nitrogen on the surface of the substrate, and the adhesion between the inner layer and the substrate is improved. It is a coated sintered alloy with excellent properties.

(実施例) 実施例1 基体とし−(wcso%、Ti(:5%、Co5%。(Example) Example 1 As a substrate - (wcso%, Ti(:5%, Co5%).

(重量%)組成の焼結合金をCIS規格5NG432形
状に作成し、この5NG432の表面を洗剤、有機溶剤
、酸、アルカリ及び水などによってよく洗浄し、乾m後
、イオンブレーティング装置内にセットした。この装置
内を0.001Paまで排気した後、炉内真空度を0.
013Paに保持しながら基体を徐々に加熱して最終的
には800℃とした。ついで、基体表面を高純度アルゴ
ンガスで40分間ボンバードし、その後、金属タンタル
を蒸発させて基体表面にTaを被覆した。このときのT
a被覆層の析出速度は6 X 10−’ p、、 m 
/ secであり、そのTa被覆層の厚さは約2μmで
あった。このTa被覆層の付着した基体をプラズマCV
D装置にセラ・トし2450 MH2(7)−Fイクロ
波、 aoo wの出力、 87OOPaの系内圧力、
200烏’/ sin H2、3”/ sin ClA
4の条件で基体を900℃に加熱しながら5時間反応さ
せて約21Lm厚さのダイヤモンド硬質層を被覆した。
(wt%) A sintered alloy with the composition is made in the shape of CIS standard 5NG432, the surface of this 5NG432 is thoroughly washed with detergent, organic solvent, acid, alkali, water, etc., and after drying, it is set in an ion blating device. did. After evacuating the inside of this device to 0.001 Pa, the degree of vacuum inside the furnace was reduced to 0.00 Pa.
The substrate was gradually heated to 800° C. while maintaining the temperature at 0.013 Pa. Next, the surface of the substrate was bombarded with high-purity argon gas for 40 minutes, and then the metal tantalum was evaporated to coat the surface of the substrate with Ta. T at this time
The deposition rate of the coating layer a is 6 x 10-' p, m
/sec, and the thickness of the Ta coating layer was about 2 μm. Plasma CV
D equipment was equipped with 2450 MH2(7)-F microwave, output of aoo w, system pressure of 87OOPa,
200 Crow'/ sin H2, 3"/ sin ClA
The substrate was reacted for 5 hours while being heated to 900° C. under the conditions of No. 4 to coat a diamond hard layer with a thickness of about 21 Lm.

このようにして作製した本発明の硬質被覆焼結合金(1
)は、顕微鏡観察とX線解析の結果、内層がTaCo、
7であり、外層がダイヤモンドを多量に含んだ層である
ことが確認できた。
The hard coated sintered alloy of the present invention produced in this way (1
), as a result of microscopic observation and X-ray analysis, the inner layer is TaCo,
7, and it was confirmed that the outer layer was a layer containing a large amount of diamond.

比較例として実施例1の条件の白金属タンタルを蒸発せ
るときに同時にアセチレンガス分圧0,1OPaの雰囲
気にして他は実施例1と同条件にすることによって内層
がTaC、外層がダイヤモンドを多量に含んだ層からな
る比較量(りを作製した。
As a comparative example, when the white metal tantalum was evaporated under the conditions of Example 1, the atmosphere was made to have an acetylene gas partial pressure of 0.1 OPa, and the other conditions were the same as in Example 1, so that the inner layer contained TaC and the outer layer contained a large amount of diamond. A comparative layer was prepared consisting of a layer containing

この本発明の硬質被覆焼結合金(1)と比較量(1)を
使用してAl合金を被削材に、切削速度890m/si
n、送り0.15m5/re?+切込み0.35mmの
条件で旋削試験を行った結果、この本発明の硬質被覆焼
結合金(1)は230分切削後も正常庁耗であったのに
対し比較量(1)は100分切削後被覆層の剥離が生じ
た。
Using the hard coated sintered alloy (1) of the present invention and the comparative amount (1), an Al alloy was cut at a cutting speed of 890 m/si.
n, feed 0.15m5/re? As a result of a turning test conducted under the condition of a cutting depth of 0.35 mm, the hard coated sintered alloy (1) of the present invention showed normal wear even after 230 minutes of cutting, whereas the comparative material (1) showed normal wear even after 100 minutes of cutting. After cutting, the coating layer peeled off.

実施例2 基体とし−(wc7j%、 Ti010%、−TaQ 
to%。
Example 2 The substrate was -(wc7j%, Ti010%, -TaQ
to%.

Co8%(重量%)組成の焼結合金をCIS規格5NG
432形状に作成し、この5NG432の表面を実施例
1と同様に洗浄及び乾燥後、イオンブレーティング装置
内にセフ)した、ついで、実施例1と同様に炉内を真空
にして基体を5H℃に保持しながら高純度アルゴンガス
でボンバードした。その後金属チタンを蒸発しながら炉
内を窒素ガス分圧で0.05Paにして5分間保持した
後窒素ガスを排気して真空で金属チタンを5分間蒸発、
また、窒素ガス分圧で0.05Paにして金属チタン5
分間ム発と0.05Paの窒素ガス分圧の雰囲気と真空
雰囲気による金属チタンの蒸発を繰り返すことによって
基体の表面に内層を被覆した。この内層は、X線回折の
結果T1No6で、この内層の付着した基体を実施例1
と同様にして内層の表面に約2pm厚さのダイヤモンド
を多量含んだ外層を被覆した。このようにして作製した
本発明の硬質被覆焼結合金(2)は、fJ微鏡観寮とX
線回折の結果、内層が21Lm厚さノTi(No、6.
C1o4)o9sであり、外層がダイヤモンドを多量に
含んだ層であることが確認できた。
Sintered alloy with Co8% (wt%) composition is CIS standard 5NG
After cleaning and drying the surface of this 5NG432 in the same manner as in Example 1, it was placed in an ion blating apparatus.Then, as in Example 1, the inside of the furnace was evacuated and the substrate was heated at 5H°C. bombarded with high purity argon gas while maintaining After that, while evaporating the metallic titanium, the inside of the furnace was set to a nitrogen gas partial pressure of 0.05 Pa and held for 5 minutes, then the nitrogen gas was exhausted and the metallic titanium was evaporated in a vacuum for 5 minutes.
In addition, the metal titanium 5
The inner layer was coated on the surface of the substrate by repeating evaporation of titanium metal in an atmosphere of nitrogen gas partial pressure of 0.05 Pa and a vacuum atmosphere for minutes. This inner layer was found to be T1No.6 as a result of X-ray diffraction, and the substrate to which this inner layer was attached was used in Example 1.
In the same manner as above, the surface of the inner layer was coated with an outer layer containing a large amount of diamond and having a thickness of about 2 pm. The hard-coated sintered alloy (2) of the present invention produced in this way is manufactured by fJ MicroKanryo and X
As a result of line diffraction, the inner layer was 21 Lm thick Ti (No. 6.
C1o4)o9s, and it was confirmed that the outer layer was a layer containing a large amount of diamond.

比較量として実施例2の条件の白金属チタンを蒸発せる
ときに窒素ガス分圧0.13Paの雰囲気を継続して他
は実施例2と同条件にすることによって内層がTiM 
、外層がダイヤモンドを多量に含んだ層からなる比較量
(2)を作製した。
As a comparative amount, when white metal titanium was evaporated under the conditions of Example 2, an atmosphere of nitrogen gas partial pressure of 0.13 Pa was continued, and the other conditions were the same as in Example 2, so that the inner layer was made of TiM.
A comparative amount (2) was prepared in which the outer layer consisted of a layer containing a large amount of diamond.

この本発明の硬質被覆焼結合金(2)と比較量(2)を
使用して実施例1と同条件でA1合金の旋削試験を行っ
た結果、本発明の硬質被覆焼結合金(2)は250分切
削後も正常庁耗であったのに対し比較量“(2)は11
0分切削後被lI層の剥離が生じた。
As a result of conducting a turning test on A1 alloy under the same conditions as in Example 1 using the hard coated sintered alloy (2) of the present invention and the comparative amount (2), it was found that the hard coated sintered alloy (2) of the present invention had normal wear even after 250 minutes of cutting, whereas comparative amount "(2)" had normal wear after 250 minutes of cutting.
After cutting for 0 minutes, peeling of the lI layer occurred.

実施例3 基体とし−(W C74%、T1Co、 7NO,31
0%、TaCl0%、Co6%(重量%)組成の焼結合
金をCIS規格5FCN53Z 形状に作成t、、 :
ノ5FCN53Z 17)表面を実施例1と同様に洗浄
、乾燥後、イオンブレーティング装置内にセットした。
Example 3 As a substrate (WC74%, T1Co, 7NO, 31
A sintered alloy with a composition of 0% TaCl, 0% TaCl, and 6% Co (wt%) was created in the shape of CIS standard 5FCN53Z.
5FCN53Z 17) The surface was washed and dried in the same manner as in Example 1, and then set in an ion blating device.

この装置内を真空排気し、基体を徐々に加熱して500
℃として、アルゴンガスで20分基体表面をボンバード
した後金属チタンを蒸発しながら反応ガスとして10%
cH4−80%M2のガス分圧0.10Paの雰囲気に
よって第1内層としてTiGo、 zNo、 rを形成
し、ついで反応ガスを1度排気した後実施例2と同一条
件でもってT1No6の第2内層とダイヤモンドを多量
に含んだ外層を被覆した。このようにして作製した本発
明の硬質被覆焼結合金(3)は、顕微鏡観察とX線回折
の結果、第1内層が約lJLm厚さのT1Co、 3N
O,Iで第2内層は約1pm厚さのTr(No6.Go
、a>o、qsであり、外層は約2pmのダイヤモンド
を多量に含んだ層であることが確認できた。
The inside of this apparatus was evacuated, and the substrate was gradually heated to 500
℃, after bombarding the substrate surface with argon gas for 20 minutes, 10% as the reaction gas was evaporated while metallic titanium was being evaporated.
TiGo, zNo, r were formed as a first inner layer in an atmosphere of cH4-80%M2 gas partial pressure 0.10 Pa, and then, after exhausting the reaction gas once, a second inner layer of T1No6 was formed under the same conditions as in Example 2. and coated with an outer layer containing a large amount of diamond. As a result of microscopic observation and X-ray diffraction, the hard-coated sintered alloy (3) of the present invention thus produced was found to have a first inner layer of T1Co and 3N with a thickness of about 1JLm.
The second inner layer is made of Tr (No.6.Go) with a thickness of about 1 pm.
, a>o, qs, and it was confirmed that the outer layer was a layer containing a large amount of diamond of about 2 pm.

比較量として、実施例3の・条件の内第1内層と同条件
で内層を作製した後、その表面に実施例1と同様にダイ
ヤモンドからなる外層を形成した比較量(3)を作製し
た。
As a comparative quantity, a comparative quantity (3) was prepared in which an inner layer was prepared under the same conditions as the first inner layer in Example 3, and then an outer layer made of diamond was formed on the surface thereof in the same manner as in Example 1.

この本発明の硬質被覆焼結合金(3)と比較量(3)を
使用してA i−15%St合金を被削材に、切削速度
500■l■in、送り0.2mm/刃の条件でフライ
ス切削試験を行った結果1本発明の硬質被覆焼結合金(
3)は4個共剥離が生じていなかったのに対して比較量
は4個中3個に剥離が生じ寿命になっていた。
Using the hard-coated sintered alloy (3) of the present invention and the comparative amount (3), Ai-15%St alloy was used as the work material, cutting speed was 500 1 in, feed rate was 0.2 mm/tooth. As a result of conducting a milling cutting test under the following conditions: 1. The hard coated sintered alloy of the present invention (
In the case of 3), none of the four pieces had peeled off, whereas in the comparative sample, three out of four pieces had peeled off and had reached the end of their service life.

実施例4 CIS規格KIO相当の超硬合金で作成したミクロンド
リル(ネジレ角30°、先端角120’ 、刃先直径0
.50φms)を基体とし、この基体をイオンプレーテ
ィング装置にセットした。この装着内を実施例1と同様
に処理して基体温度eoo”c 、窒素ガス分圧0.1
0Paにして金属タンタルを蒸発して第1内層を形成し
た後窒素ガスを排気し0.013Paの真空中で金属タ
ンタルを蒸発してfjS2内層を形成し、ついで、実施
例1と同様にして外層を被覆した。この本発明の硬質被
覆焼結合金(0は、顕微鏡観察とX線回折の結果、lI
Lm厚さのTaNの第1内層とlILm厚さのTaCo
、8の第2内層と1.54m厚さのダイヤモンドを多量
に含んだ外層であることが確認できた。
Example 4 Micron drill made of cemented carbide equivalent to CIS standard KIO (helix angle 30°, tip angle 120', cutting edge diameter 0)
.. 50φms) was used as a substrate, and this substrate was set in an ion plating apparatus. The interior of this attachment was treated in the same manner as in Example 1 to achieve a substrate temperature of eoo''c and a nitrogen gas partial pressure of 0.1.
After evaporating metal tantalum at 0 Pa to form a first inner layer, exhausting nitrogen gas and evaporating metal tantalum in a vacuum of 0.013 Pa to form an fjS2 inner layer, then forming an outer layer in the same manner as in Example 1. coated. This hard coated sintered alloy of the present invention (0 is the result of microscopic observation and X-ray diffraction;
A first inner layer of TaN of Lm thickness and TaCo of lILm thickness.
, 8 and a 1.54 m thick outer layer containing a large amount of diamond.

比較量として同様の基体で第2内層の工程を省略するこ
とによって得たlpm厚さの丁aNとダイヤモンドを多
量に含む外層からなる比較量(0を作製した。
As a comparative quantity, a comparative quantity (0) was prepared consisting of an lpm thick diamond-rich outer layer and a diamond-rich outer layer obtained by omitting the step of forming the second inner layer using the same substrate.

この本発明の硬質被覆焼結合金(4)と比較量(4)を
使用して銅板とエポキシ板からなる多層のIC基板(厚
さ16■■)を3枚重ねた被削材で、切削速度250s
/gin、送り0.05m5/revの条件により穴あ
け加工試験を行った結果、本発明の硬質被覆焼結合金(
4)は75,000個の穴あけ加工ができたのに対し比
較量(4)は7,000個穴あけ加工後剥離が生じ寿命
となった。
Using the hard coated sintered alloy (4) of the present invention and the comparative amount (4), cutting was performed using a workpiece made of three stacked multilayer IC boards (thickness: 16mm) consisting of copper plates and epoxy plates. Speed 250s
/gin and feed rate of 0.05m5/rev, the results showed that the hard coated sintered alloy of the present invention (
4) was able to drill 75,000 holes, whereas comparative amount (4) suffered from peeling after 7,000 holes and reached the end of its life.

実施例5 実施例1と同じ組成の基体を使用して、実施例1と同様
の処理を施した後、高周波スパッタリング装置内に設置
した。この装置内を0.001Paまで排気した後、窒
素ガス分圧0.13Paの雰囲気中で金属チタンをスパ
ッターさせ、次いで窒素ガスを排気して0.001Pa
の真空雰囲気にしてから8.8PaのArガス雰囲気に
し、出力300 Wで30分間金属タングステンをスパ
ッターさせた。こうして得た被覆焼結合金をプラズマc
vn装置にセットし実施例1と同条件でダイヤモンド硬
質層を被覆した。
Example 5 A substrate having the same composition as in Example 1 was used, and after being subjected to the same treatment as in Example 1, it was placed in a high frequency sputtering apparatus. After evacuating the inside of this apparatus to 0.001 Pa, metal titanium was sputtered in an atmosphere with a nitrogen gas partial pressure of 0.13 Pa, and then the nitrogen gas was exhausted and the pressure was 0.001 Pa.
After creating a vacuum atmosphere of 8.8 Pa, an Ar gas atmosphere of 8.8 Pa was created, and metallic tungsten was sputtered at an output of 300 W for 30 minutes. Plasma c
It was set in a vn apparatus and coated with a diamond hard layer under the same conditions as in Example 1.

この本発明の硬質被覆焼結合金(5)は、顕微鏡観察、
X線回折及び走査オージェ電子分光法による分析の結果
、第1内層が約3pm厚さのTiNで、第2内層が約5
pmの厚さの炭化タングステン。
This hard coated sintered alloy (5) of the present invention can be observed by microscopic observation,
Analysis by X-ray diffraction and scanning Auger electron spectroscopy shows that the first inner layer is approximately 3 pm thick TiN and the second inner layer is approximately 5 pm thick.
pm thick tungsten carbide.

外層が約21Lm厚さのダイヤモンドであった。こ  
   〆の内、第2内層の炭化タングステンは、外層で
あダイヤモンドと接触している側はWCに近く、第1内
層であるTiNと接触している側は W2Cに近いもの
であった。すなわち、第2内層は、WCである化学量論
的化合物とW Cxcx :20.5)の非化学量論的
化合物とからなる濃度勾配があった。
The outer layer was approximately 21 Lm thick diamond. child
Of the tungsten carbide in the second inner layer, the outer layer on the side in contact with diamond was close to WC, and the first inner layer on the side in contact with TiN was close to W2C. That is, the second inner layer had a concentration gradient consisting of a stoichiometric compound, which is WC, and a non-stoichiometric compound, W Cxcx :20.5).

比較量として、実施例5の条件の内、第2内層の工程を
省略して、TiNからなる内層の表面にダイヤモンドか
らなる外層を被覆した比較量(5)を作製した。
As a comparison sample, a comparison sample (5) was prepared under the conditions of Example 5, omitting the second inner layer step, and coating the surface of the inner layer made of TiN with an outer layer made of diamond.

この本発明の硬質被覆焼結合金(5)と比較量(5)を
引掻き硬さ試験機に相当するスクラッチ試験機によって
被覆層の耐剥離性試験を行った結果、本発明の硬質被覆
焼結合金(5)は6kgの荷重まで被覆層の剥離が生じ
なかったのに対し比較量(5)は3kgの荷重で被覆層
の剥離が少し生じ、4に、のl18J重では大きく被覆
層が剥離した。
The hard coated sintered alloy (5) of the present invention and the comparative amount (5) were subjected to a peeling resistance test of the coating layer using a scratch tester equivalent to a scratch hardness tester. As a result, the hard coated sintered alloy of the present invention For gold (5), the coating layer did not peel off up to a load of 6 kg, whereas for comparison weight (5), the coating layer slightly peeled off at a load of 3 kg, and at 18J load of gold (4), the coating layer peeled off significantly. did.

(発明の効果) 以上の結果、本発明の硬質被覆焼結合金は、耐摩耗性と
耐剥離性にすぐれていることから成る程度衝撃力が加わ
る用途、例えば、旋削工具は勿論のことプライス工具、
エンドミル、ドリル、半導体基板用ミクロンドリルなど
の穴あけ工具を含めた切削用工具、また、印字ピンのピ
ン先端もしくは紙、テープ等の切断用スリッターを含め
た耐摩耗用工具に応用できる産業上有用な材料である。
(Effects of the Invention) As a result of the above, the hard coated sintered alloy of the present invention has excellent wear resistance and peeling resistance, and can be used in applications where a certain degree of impact is applied, such as turning tools as well as price tools. ,
It is an industrially useful tool that can be applied to cutting tools, including drilling tools such as end mills, drills, and micron drills for semiconductor substrates, as well as wear-resistant tools, including the tips of printing pins and slitters for cutting paper, tape, etc. It is the material.

Claims (8)

【特許請求の範囲】[Claims] (1)周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種とFe
、Ni、Co、W、Mo、Crの中の少なくとも1種を
含む焼結合金からなる基体の表面に金属化合物からなる
内層と該内層の表面にダイヤモンド状カーボン及び/又
はダイヤモンドからなる外層を形成してなる被覆焼結合
金において、前記内層が周期律表4a、5a、6a族金
属の炭化物、炭窒化物、炭酸化物、炭窒酸化物、炭硼化
物又はSiの炭化物、炭窒化物もしくは、これらの相互
固溶体の中の少なくとも1種であり、かつ非化学量論的
化合物からなる単層もしくは多重層であることを特徴と
する硬質被覆焼結合金。
(1) At least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table and Fe
, forming an inner layer made of a metal compound on the surface of a substrate made of a sintered alloy containing at least one of Ni, Co, W, Mo, and Cr, and an outer layer made of diamond-like carbon and/or diamond on the surface of the inner layer. In the coated sintered alloy, the inner layer is a carbide, carbonitride, carbonide, carbonitride, carbonitride, carbonitride, or carbide or carbonitride of Si, or A hard-coated sintered alloy characterized by being a single layer or multilayer consisting of at least one of these mutual solid solutions and a non-stoichiometric compound.
(2)上記内層が金属元素1モルに対して非金属元素(
以下炭素、窒素、酸素、硼素を示す。)0.7モル以上
の非化学量論的化合物からなり、該内層の厚さが0.1
μm〜10μmであることを特徴とする特許請求の範囲
第1項記載の硬質被覆焼結合金。
(2) The inner layer has a nonmetallic element (
Carbon, nitrogen, oxygen, and boron are shown below. ) 0.7 mol or more of a non-stoichiometric compound, and the inner layer has a thickness of 0.1
The hard coated sintered alloy according to claim 1, wherein the hard coated sintered alloy has a diameter of μm to 10 μm.
(3)上記外層が0.5μm〜5μmの厚さであること
を特徴とする特許請求の範囲第1項及び第2項記載の硬
質被覆焼結合金。
(3) The hard coated sintered alloy according to claims 1 and 2, wherein the outer layer has a thickness of 0.5 μm to 5 μm.
(4)周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種とFe
、Ni、Co、W、Mo、Crの中の少なくとも1種を
含む焼結合金からなる基体の表面に金属化合物からなる
内層と該内層の表面にダイヤモンド状カーボン及び/又
はダイヤモンドからなる外層を形成してなる被覆焼結合
金において、前記内層が基体に隣接する側の第1内層と
外層に隣接する側の第2内層からなり、該第1内層が周
期律表4a、5a、6a族金属の炭化物、窒化物、酸化
物、硼化物及びこれらの相互固溶体の中の少なくとも1
種の単層もしくは多重層であり、該第2内層が周期律表
4a、5a、6a族金属の炭化物、炭窒化物、炭酸化物
、炭窒酸化物、炭硼化物又はSiの炭化物、炭窒化物も
しくは、これらの相互固溶体の中の少なくとも1種であ
り、かつ非化学量論的化合物からなる単層又は多重層で
あることを特徴とする硬質被覆焼結合 金。
(4) Fe and at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table;
, forming an inner layer made of a metal compound on the surface of a substrate made of a sintered alloy containing at least one of Ni, Co, W, Mo, and Cr, and an outer layer made of diamond-like carbon and/or diamond on the surface of the inner layer. In the coated sintered alloy, the inner layer is composed of a first inner layer on the side adjacent to the base body and a second inner layer on the side adjacent to the outer layer, and the first inner layer is made of a metal of group 4a, 5a or 6a of the periodic table. At least one of carbides, nitrides, oxides, borides, and mutual solid solutions thereof
The second inner layer is a carbide, carbonitride, carbonide, carbonitride, carbonitride, carbonitride, or carbide or carbonitride of a metal of group 4a, 5a, or 6a of the periodic table. 1. A hard-coated sintered alloy, characterized in that it is a single layer or a multi-layer consisting of a non-stoichiometric compound, or a mutual solid solution of these compounds.
(5)上記第2内層が金属元素1モルに対して非金属元
素0.7モル以上の非化学量論的化合物からなり、該第
2内層の厚さが0.1μm〜10μmであることを特徴
とする特許請求の範囲第4項記載の硬質被覆焼結合金。
(5) The second inner layer is made of a non-stoichiometric compound containing 0.7 mole or more of a nonmetallic element per mole of a metal element, and the thickness of the second inner layer is 0.1 μm to 10 μm. A hard-coated sintered alloy according to claim 4 characterized by:
(6)上記外層が0.5μm〜5μmの厚さであること
を特徴とする特許請求の範囲第4項及び第5項記載の硬
質被覆焼結合金。
(6) The hard coated sintered alloy according to claims 4 and 5, wherein the outer layer has a thickness of 0.5 μm to 5 μm.
(7)周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種とFe
、Ni、Co、W、Mo、Crの中の少なくとも1種を
含む焼結合金からなる基体の表面にTi、Zr、Hf、
V、Nb、Ta、W、Mo、Cr、Siの金属又は合金
並びに周期律表4a、5a、6a族金属の炭化物、窒化
物、酸化物、硼化物でなる非化学量論的化合物又はSi
の炭化物、窒化物でなる非化学量論的化合物もしくはこ
れらの相互固溶体の中の少なくとも1種の単層又は多重
層からなる内層を被覆する工程と該内層の表面にダイヤ
モンド状カーボン及び/又はダイヤモンドからなる外層
を被覆する工程による被覆焼結合金の製造方法であって
、該外層を被覆する工程で前記内層に炭素を拡散させて
該内層を金属元素1モルに対して非金属元素0.7モル
以上の非化学量論的化合物にすることを特徴とする硬質
被覆焼結合金の製造方法。
(7) Fe and at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table;
, Ti, Zr, Hf,
Non-stoichiometric compounds consisting of metals or alloys of V, Nb, Ta, W, Mo, Cr, Si and carbides, nitrides, oxides, borides of metals of groups 4a, 5a, 6a of the periodic table, or Si
A step of coating an inner layer consisting of a single layer or multiple layers of at least one of non-stoichiometric compounds of carbides and nitrides or mutual solid solutions thereof, and coating the surface of the inner layer with diamond-like carbon and/or diamond. A method for manufacturing a coated sintered alloy by coating an outer layer consisting of 0.7 of a nonmetallic element per mole of a metal element by diffusing carbon into the inner layer in the step of coating the outer layer. A method for producing a hard-coated sintered alloy, characterized by forming a non-stoichiometric compound in a molar or more amount.
(8)周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種とFe
、Ni、Co、W、Mo、Crの中の少なくとも1種を
含む焼結合金からなる基体の表面に周期律表4a、5a
、6a族金属の炭化物、窒化物、酸化物、硼化物及びこ
れらの相互固溶体の中の少なくとも1種の単層又は多重
層からなる第1内層を被覆する工程と該第1内層の表面
にTi、Zr、Hf、V、Nb、Ta、W、Mo、Cr
、Siの金属又は合金並びに周期律表4a、5a、6a
族金属の炭化物、窒化物、酸化物、硼化物でなる非化学
量論的化合物又はSiの炭化物、窒化物でなる非化学量
論的化合物もしくはこれらの相互固溶体の中の少なくと
も1種の単層又は多重層からなる第2内層を被覆する工
程と該第2内層の表面にダイヤモンド状カーボン及び/
又はダイヤモンドからなる外層を被覆する工程による被
覆焼結合金の製造方法であって、該外層を被覆する工程
中に前記第2内層へ炭素を拡散させて該第2内層を金属
元素1モルに対して非金属元素0.7モル以上の非化学
量論的化合物にすることを特徴とする硬質被覆焼結合金
の製造方法。
(8) Fe and at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table;
, Ni, Co, W, Mo, and Cr.
, a step of coating a first inner layer consisting of a single layer or a multilayer of at least one of group 6a metal carbides, nitrides, oxides, borides, and mutual solid solutions thereof, and coating the surface of the first inner layer with Ti. , Zr, Hf, V, Nb, Ta, W, Mo, Cr
, Si metals or alloys and periodic table 4a, 5a, 6a
A monolayer of at least one of non-stoichiometric compounds of group metal carbides, nitrides, oxides, and borides, or non-stoichiometric compounds of Si carbides and nitrides, or mutual solid solutions thereof. or a step of coating a second inner layer consisting of multiple layers, and coating the surface of the second inner layer with diamond-like carbon and/or
Alternatively, a method for producing a coated sintered alloy by coating an outer layer made of diamond, wherein carbon is diffused into the second inner layer during the step of coating the outer layer, so that the second inner layer is coated with a carbon dioxide per mole of the metal element. 1. A method for producing a hard coated sintered alloy, the method comprising: forming a non-stoichiometric compound containing 0.7 mol or more of a nonmetallic element.
JP22559984A 1984-10-26 1984-10-26 Hard coated sintered alloy and its manufacture Granted JPS61104078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22559984A JPS61104078A (en) 1984-10-26 1984-10-26 Hard coated sintered alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22559984A JPS61104078A (en) 1984-10-26 1984-10-26 Hard coated sintered alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS61104078A true JPS61104078A (en) 1986-05-22
JPH0582472B2 JPH0582472B2 (en) 1993-11-19

Family

ID=16831849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22559984A Granted JPS61104078A (en) 1984-10-26 1984-10-26 Hard coated sintered alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS61104078A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262467A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Formation of hard diamondlike carbon film with satisfactory adhesion
WO1993000454A1 (en) * 1991-06-24 1993-01-07 Idemitsu Petrochemical Company Limited Diamond-covered member and production thereof
JPH05195198A (en) * 1991-07-11 1993-08-03 Praxair St Technol Inc Nonstoichiometrically nitrided titanium coating
EP0589641A2 (en) * 1992-09-24 1994-03-30 General Electric Company Method of producing wear resistant articles
WO1996030557A1 (en) * 1995-03-28 1996-10-03 Trustees Of Boston University Enhanced adherence of diamond coatings employing pretreatment process
EP0738787A1 (en) * 1995-04-21 1996-10-23 ETAT FRANCAIS Représenté par le Délégué Général pour l'Armement Method of making a metal object covered with diamond

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126972A (en) * 1982-01-22 1983-07-28 Sumitomo Electric Ind Ltd Diamond coated sintered hard alloy tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126972A (en) * 1982-01-22 1983-07-28 Sumitomo Electric Ind Ltd Diamond coated sintered hard alloy tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262467A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Formation of hard diamondlike carbon film with satisfactory adhesion
WO1993000454A1 (en) * 1991-06-24 1993-01-07 Idemitsu Petrochemical Company Limited Diamond-covered member and production thereof
JPH05195198A (en) * 1991-07-11 1993-08-03 Praxair St Technol Inc Nonstoichiometrically nitrided titanium coating
EP0589641A2 (en) * 1992-09-24 1994-03-30 General Electric Company Method of producing wear resistant articles
WO1996030557A1 (en) * 1995-03-28 1996-10-03 Trustees Of Boston University Enhanced adherence of diamond coatings employing pretreatment process
EP0738787A1 (en) * 1995-04-21 1996-10-23 ETAT FRANCAIS Représenté par le Délégué Général pour l'Armement Method of making a metal object covered with diamond
FR2733255A1 (en) * 1995-04-21 1996-10-25 France Etat METHOD FOR MANUFACTURING A DIAMOND-COATED METAL PIECE AND METAL PIECE OBTAINED USING SUCH A METHOD
US5925422A (en) * 1995-04-21 1999-07-20 Delegation Generale Pour L'armement Method of depositing a diamond layer on a titanium substrate

Also Published As

Publication number Publication date
JPH0582472B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US4731303A (en) Cubic boron nitride coated material and producing method of the same
JP3384110B2 (en) Coated cutting tool and its manufacturing method
JPS62196371A (en) Diamond coated member having high adhesiveness
Konyashin et al. Plasma‐assisted CVD of cubic boron nitride
WO1992000848A1 (en) Abrasion resistant coated articles
JP3249277B2 (en) Wear resistant coating
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
US6268045B1 (en) Hard material coating of a cemented carbide or carbide containing cermet substrate
Klages et al. Diamond coatings and cBN coatings for tools
JP3214891B2 (en) Diamond coated members
JPS61104078A (en) Hard coated sintered alloy and its manufacture
JP2001293602A (en) Cutting tool, and manufacturing method and device for the same
CN114502774A (en) Coated cutting tool
JP2981012B2 (en) Manufacturing method of diamond coated tool
JP3353239B2 (en) Method for producing diamond-coated member
JPH0558067B2 (en)
JPS60248879A (en) Surface coated hard alloy and its production
JP3408267B2 (en) Multi-layer coated sintered alloy with crystal orientation
JPH06262405A (en) Coating part for tool
JP3179645B2 (en) Wear resistant coating
JPH05263251A (en) Coated and sintered body
JPS6312940B2 (en)
JP3249278B2 (en) Tool cover
JPH116056A (en) Target containing intermetallic compound, and manufacture of hard covered member using it
JPH0873289A (en) Composite high hardness material for tool