JPH0582472B2 - - Google Patents
Info
- Publication number
- JPH0582472B2 JPH0582472B2 JP59225599A JP22559984A JPH0582472B2 JP H0582472 B2 JPH0582472 B2 JP H0582472B2 JP 59225599 A JP59225599 A JP 59225599A JP 22559984 A JP22559984 A JP 22559984A JP H0582472 B2 JPH0582472 B2 JP H0582472B2
- Authority
- JP
- Japan
- Prior art keywords
- inner layer
- sintered alloy
- carbides
- diamond
- metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010410 layer Substances 0.000 claims description 139
- 229910045601 alloy Inorganic materials 0.000 claims description 70
- 239000000956 alloy Substances 0.000 claims description 70
- 239000000758 substrate Substances 0.000 claims description 59
- 229910052751 metal Inorganic materials 0.000 claims description 52
- 239000002184 metal Substances 0.000 claims description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- 229910052799 carbon Inorganic materials 0.000 claims description 42
- 239000010432 diamond Substances 0.000 claims description 35
- 229910003460 diamond Inorganic materials 0.000 claims description 34
- 150000001247 metal acetylides Chemical class 0.000 claims description 27
- 150000002739 metals Chemical class 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 24
- 239000006104 solid solution Substances 0.000 claims description 23
- 150000004767 nitrides Chemical class 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 19
- 230000000737 periodic effect Effects 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 229910052804 chromium Inorganic materials 0.000 claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 16
- 239000002356 single layer Substances 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- -1 carbonitrides Chemical class 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- 150000002736 metal compounds Chemical class 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 239000010408 film Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- 239000011247 coating layer Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 12
- 238000005240 physical vapour deposition Methods 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000007733 ion plating Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910021384 soft carbon Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- RSAQARAFWMUYLL-UHFFFAOYSA-N tic-10 Chemical compound CC1=CC=CC=C1CN1C(CCN(CC=2C=CC=CC=2)C2)=C2C(=O)N2CCN=C21 RSAQARAFWMUYLL-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、焼結合金からなる基体の表面に付着
性のすぐれたダイヤモンド状カーボン及び/又は
ダイヤモンドの硬質薄膜を形成してなる切削用工
具及び耐摩耗用工具に適する硬質被覆焼結合金及
びその製造方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention provides a cutting tool comprising a hard thin film of highly adhesive diamond-like carbon and/or diamond formed on the surface of a substrate made of a sintered alloy. The present invention also relates to a hard-coated sintered alloy suitable for wear-resistant tools and a method for producing the same.
(従来の技術)
WCを主体とする超硬合金やTiCを主体とする
サーメツトからなる焼結合金の表面にTiC、
TiN、Al2O3などの耐摩耗性物質を被覆した焼結
合金が工具として普及しており、更に現在もこれ
らの被覆層としての耐摩耗性物質と焼結合金から
なる基体との関連性においての追究が行われてい
る。(Conventional technology) TiC,
Sintered alloys coated with wear-resistant materials such as TiN and Al 2 O 3 are widely used as tools, and even today, the relationship between these wear-resistant materials as coating layers and the substrate made of sintered alloys remains unclear. Research is currently underway.
一方、CVD法、プラズマCVD法、イオンビー
ム法、レーザビーム法、電子ビーム法、イオン注
入法などにより、ダイヤモンド状カーボン又はダ
イヤモンドからなる硬質膜を作製する方法が種々
提案されている。このダイヤモンド状カーボン又
はダイヤモンドからなる硬質膜を焼結合金からな
る基体の表面に被覆して工具に応用しようという
試みがなされているけれども実用性に乏しいのが
現状である。 On the other hand, various methods have been proposed for producing a hard film made of diamond-like carbon or diamond, such as a CVD method, a plasma CVD method, an ion beam method, a laser beam method, an electron beam method, and an ion implantation method. Attempts have been made to coat the surface of a substrate made of sintered alloy with a hard film made of diamond-like carbon or diamond and apply it to a tool, but it is currently impractical.
(発明が解決しよとする問題点)
ダイヤモンド状カーボン又はダイヤモンドから
なる硬質膜を製作する方法は、大別すると2通り
あり、その第1の方法は蒸発源にダイヤモンド状
カーボン又はダイヤモンドを使用し、これを加熱
蒸発することによつて基体表面に硬質膜を合成す
る固相合成法であり、第2の方法はメタン、ブタ
ン、ベンゼン等の炭化水素の熱分解によつて基体
表面に硬質膜を堆積させる気相合成法である。(Problems to be Solved by the Invention) There are two methods for producing a hard film made of diamond-like carbon or diamond. The first method uses diamond-like carbon or diamond as an evaporation source. This is a solid phase synthesis method in which a hard film is synthesized on the substrate surface by heating and evaporating it.The second method is a solid phase synthesis method in which a hard film is synthesized on the substrate surface by thermal decomposition of hydrocarbons such as methane, butane, and benzene. This is a vapor phase synthesis method that deposits .
これらの固相合成法又は気相合成法によりダイ
ヤモンド状カーボン又はダイヤモンドからなる硬
質膜を形成する場合、硬質膜の形成と同時にカー
ボンも析出して硬質膜中に軟質なカーボンが混在
しやすくなる。このため鉄族金属を含む焼結合金
からなる基体の表面に直接ダイヤモンド状カーボ
ン又はダイヤモンドからなる硬質膜を形成すると
硬質膜中に混在するカーボンが基体表面の鉄属金
属と反応して基体内部に固溶拡散し基体内部に遊
離炭素を発生させて基体の強度低下を生じさせた
り、又は基体と硬質膜との付着性が悪くなつた
り、更には生成した硬質膜の質が低下するという
問題がある。特に、気相合成法によつてダイヤモ
ンド状カーボン又はダイヤモンドからなる硬質膜
を焼結合金からなる基体の表面に形成させる場合
には、基体表面の鉄属金属が気相合成法のための
供給炭化水素ガスの分解の触媒として作用し、こ
のために基体の表面に非晶質カーボン又はグラフ
アイトでなる軟質なカーボンの析出量が多くなつ
て基体内部へのカーボンの固溶拡散も多くなると
いう問題がある。これらの問題点を改良したもの
に超硬合金からなる基体の表面に4a、5a、6a族
金属の炭化物、窒化物、硼化物及び酸化物などを
内層として被覆した後、この内層の表面にダイヤ
モンドを外層として被覆した被覆超硬合金工具が
提案されている。しかし、このような内層は、ダ
イヤモンド被覆過程において生成するカーボンを
基体内部に拡散固溶するのを防止する効果がある
けれども、内層及び外層内に遊離カーボンを生じ
させたり、又は内層とダイヤモンド層の境界面に
もカーボンが堆積するために、各層内の結合強度
の低下もしくは内層と外層との境界面での付着強
度の低下が生じるという問題がある。 When a hard film made of diamond-like carbon or diamond is formed by these solid-phase synthesis methods or vapor-phase synthesis methods, carbon also precipitates simultaneously with the formation of the hard film, making it easy for soft carbon to be mixed in the hard film. For this reason, if a hard film made of diamond-like carbon or diamond is directly formed on the surface of a substrate made of a sintered alloy containing iron group metals, the carbon mixed in the hard film will react with the ferrous metals on the surface of the substrate and become trapped inside the substrate. There are problems such as solid solution diffusion and generation of free carbon inside the substrate, resulting in a decrease in the strength of the substrate, poor adhesion between the substrate and the hard film, and furthermore, a decrease in the quality of the produced hard film. be. In particular, when a hard film made of diamond-like carbon or diamond is formed on the surface of a substrate made of sintered alloy by vapor phase synthesis, the ferrous metal on the surface of the substrate is The problem is that it acts as a catalyst for the decomposition of hydrogen gas, and as a result, a large amount of soft carbon such as amorphous carbon or graphite is precipitated on the surface of the substrate, resulting in an increase in solid solution diffusion of carbon into the interior of the substrate. There is. In order to improve these problems, the surface of the base made of cemented carbide is coated with carbides, nitrides, borides, oxides, etc. of group 4a, 5a, and 6a metals as an inner layer, and then the surface of this inner layer is coated with diamond. A coated cemented carbide tool has been proposed, which is coated with C as an outer layer. However, although such an inner layer has the effect of preventing carbon generated during the diamond coating process from diffusing into the substrate, it may generate free carbon within the inner layer and the outer layer, or cause the bonding between the inner layer and the diamond layer. Since carbon is also deposited on the interface, there is a problem in that the bonding strength within each layer or the adhesion strength at the interface between the inner layer and the outer layer decreases.
本発明は、上記のような問題点を解決したもの
で、具体的には、ダイヤモンド状カーボン及び/
又はダイヤモンドからなる硬質膜の生成過程で生
じる非晶質カーボン又はグラフアイトでなる軟質
カーボンをカーボンと反応しやすい物質との化合
物にし、各層内及び層の境界面に遊離カーボンを
生じさせないようにして被覆層内強度及び被覆層
境界面での付着強度のすぐれた硬質被覆焼結合金
及びその製造方法の提供を目的とするものであ
る。 The present invention solves the above-mentioned problems. Specifically, the present invention solves the above-mentioned problems.
Alternatively, amorphous carbon or soft carbon made of graphite produced in the process of forming a hard film made of diamond is made into a compound with a substance that easily reacts with carbon, so that free carbon is not generated within each layer or at the interface between the layers. The object of the present invention is to provide a hard coated sintered alloy with excellent strength within the coating layer and adhesion strength at the interface between the coating layers, and a method for manufacturing the same.
(問題点を解決するための手段)
本発明者等は、焼結合金からなる基体の表面に
ダイヤモンドかなる硬質膜を被覆することによつ
て工具に応用することを試みたところ、工具特
に、切削用工具のような苛酷な条件で使用する工
具には、基体と被覆層間の付着強度が相当高くな
ければ使用に耐えらられないことを確認し、基体
と被覆層間の付着性を追究することによつて本発
明を完成するに至つたものである。(Means for Solving the Problems) The present inventors attempted to apply it to tools by coating the surface of a substrate made of sintered alloy with a hard film made of diamond. For tools that are used under harsh conditions, such as cutting tools, it is necessary to have a considerably high adhesion strength between the base and the coating layer in order to withstand use, and it is necessary to investigate the adhesion between the base and the coating layer. As a result, the present invention was completed.
すなわち、本発明の硬質被覆焼結合金は、周期
律表4a、5a、6a族金属の炭化物、窒化物及びこ
れらの相互固溶体の中の少なくとも1種とFe、
Ni、Co、W、Mo、Crの中の少なくとも1種も
含む焼結合金からなる基体の表面に金属化合物か
らなる内層と該内層の表面にダイヤモンド状カー
ボン及び/又はダイヤモンドからなる外層を形成
してなる被覆焼結合金において、前記内層が周期
律表4a、5a、6a族金属の炭化物、炭窒化物、炭
酸化物、炭窒酸化物、炭硼化物又はSiの炭化物、
炭窒化物並びにこれらの相互固溶体の中の少なく
とも1種であり、かつ金属元素1モルに対して非
金属元素(以下、炭素、窒素、酸素、硼素を示
す)0.7〜0.95モルの非化学量論的化合物からな
る単層もしくは多重層からなる硬質被覆焼結合金
である。この発明の硬質被覆焼結合金における焼
結合金からなる基体は、外部から加わる荷重に対
して塑性変形を起さない程度の剛性又は硬度を有
する塑性に選定する必要があり、一般に使用され
ている超硬合金又はサーメツト更には、用途によ
つては、Fe、Ni、Co、W、Mo、Crの中の少な
くとも1種を微量に含有したセラミツクスに近い
焼結合金でもよい。また、本発明の硬質被覆焼結
合金における内層は、周期律表4a、5a、6a族金
属の炭化物、炭窒化物、炭酸化物、炭窒酸化物、
炭硼化物及びSiの炭化物、炭窒化物並びにこれら
の相互固溶体の中の少なくとも1種からなる化合
物で、しかもこの化合物が金属元素に対して非金
属元素の少ない非化学量論的化合物でなる。特
に、非化学量論的化合物からなる内層は、金属元
素1モルに対して非金属元素0.7モル以上の非化
学量論的化合物からなることが望ましく、その内
層の厚さは外層を形成する被覆工程において外層
からのカーボンが基体内部に拡散しないで、しか
も被覆層全体の強度を維持できるように0.1μm〜
10μmにすることが望ましい。さらに、本発明の
硬質被覆焼結合金における外層は、ダイヤモンド
状カーボン及び/又はダイヤモンドからなり、そ
の厚さは0.5μm〜5μmにすることが望ましい。こ
れらの内層と外層を合計した被覆層全体の厚さ
は、1〜10μmが望ましく、特に穴あけ工具のよ
うな切刃の鋭角な工具に応用するときには1〜
4μmの厚さにするのが望ましい。ここで記載す
るダイヤモンド状カーボンとは、非晶質を含むが
有る程度結晶質のものも含有し、電気抵抗、光透
過率、硬度などがダイヤモンドに近い性質をもつ
ものを示めす。 That is, the hard-coated sintered alloy of the present invention contains at least one of carbides, nitrides, and mutual solid solutions of metals of groups 4a, 5a, and 6a of the periodic table, Fe,
An inner layer made of a metal compound is formed on the surface of a substrate made of a sintered alloy containing at least one of Ni, Co, W, Mo, and Cr, and an outer layer made of diamond-like carbon and/or diamond is formed on the surface of the inner layer. In the coated sintered alloy, the inner layer is a carbide, carbonitride, carbonide, carbonitride, carbide, or carbide of a metal of group 4a, 5a, or 6a of the periodic table,
Carbonitrides and at least one of these mutual solid solutions, and non-stoichiometric non-metallic elements (hereinafter referred to as carbon, nitrogen, oxygen, and boron) of 0.7 to 0.95 mol per 1 mol of metal elements. It is a hard-coated sintered alloy consisting of a single layer or multiple layers of chemical compounds. The base body made of a sintered alloy in the hard coated sintered alloy of the present invention must be selected to have a plasticity that has enough rigidity or hardness to not cause plastic deformation under externally applied loads, and is generally used. Cemented carbide or cermet, and depending on the application, a sintered alloy similar to ceramics containing a trace amount of at least one of Fe, Ni, Co, W, Mo, and Cr may also be used. In addition, the inner layer in the hard-coated sintered alloy of the present invention may include carbides, carbonitrides, carbonates, carbonitrides, and carbonitrides of metals from groups 4a, 5a, and 6a of the periodic table.
A compound consisting of at least one of carborides, Si carbides, carbonitrides, and mutual solid solutions thereof, and moreover, this compound is a non-stoichiometric compound containing less nonmetallic elements than metallic elements. In particular, the inner layer made of a non-stoichiometric compound is desirably made of a non-stoichiometric compound in an amount of 0.7 mole or more of a non-metallic element per 1 mole of a metal element, and the thickness of the inner layer is determined by the coating that forms the outer layer. 0.1 μm to prevent carbon from the outer layer from diffusing into the inside of the substrate during the process and maintain the strength of the entire coating layer.
It is desirable to set the thickness to 10 μm. Further, the outer layer of the hard coated sintered alloy of the present invention is preferably made of diamond-like carbon and/or diamond, and has a thickness of 0.5 μm to 5 μm. The total thickness of the coating layer, which is the sum of these inner and outer layers, is preferably 1 to 10 μm, especially when applied to tools with sharp cutting edges such as drilling tools.
A thickness of 4 μm is desirable. The diamond-like carbon described here includes amorphous but also crystalline carbon to some extent, and has properties similar to diamond in terms of electrical resistance, light transmittance, hardness, etc.
本発明の硬質被覆焼結合金は、基体の表面に直
接非化学量論的化合物からなる内層を形成する場
合、その内層の形成工程において、基体内に含有
しているカーボンが内層内に拡散して基体内に、
例えばη相(W3Co3C)のようなカーボン不足に
よる脆化相を生じることがある。そこで基体表面
相に遊離カーボンを有するような基体もしくは基
体表面層にCo、Niなどの鉄族金属を殆ど含有し
てないで周期律表4a、5a、6a族金属の炭化物、
窒化物の中の少なくとも2種以上からなる面心立
方晶系結晶構造を有するB−1型固溶体を有する
ような基体を用いることもできる。特に基体の合
金特性を低下させずに、非化学量論的化合物から
なる内層の種類及び厚さが容易に調整できて、し
かも内層の表面に外層を形成する場合に生ずる遊
離カーボンが基体内部に拡散するのを阻止できる
ような内層にすることが望ましい。そこで基体の
表面に周期律表4a、5a、6a族金属の炭化物、窒
化物、酸化物、硼化物及びこれらの相互固溶体の
中の少なくとも1種の単層又は多重層からなる第
1内層を形成し、この第1内層の表面に周期律表
4a、5a、6a族金属の炭化物、炭窒化物、炭酸化
物、炭窒酸化物、炭硼化物又はSiの炭化物、炭窒
化物もしくはこれらの相互固溶体の中の少なくと
も1種であり、かつ非化学量論的化合物からなる
単層又は多重層からなる第2内層を形成し、この
第2内層の表面にダイヤモンド状カーボン及び/
又はダイヤモンドからなる外層を形成してなる被
覆焼結合金にする。 When the hard-coated sintered alloy of the present invention forms an inner layer made of a non-stoichiometric compound directly on the surface of a substrate, carbon contained in the substrate diffuses into the inner layer in the process of forming the inner layer. inside the base,
For example, a brittle phase such as η phase (W 3 Co 3 C) due to lack of carbon may occur. Therefore, carbides of metals from groups 4a, 5a, and 6a of the periodic table, which contain almost no iron group metals such as Co and Ni in the substrate surface phase or substrate surface layer,
It is also possible to use a substrate having a B-1 type solid solution having a face-centered cubic crystal structure composed of at least two kinds of nitrides. In particular, the type and thickness of the inner layer made of a non-stoichiometric compound can be easily adjusted without deteriorating the alloy properties of the substrate, and free carbon generated when forming the outer layer on the surface of the inner layer is absorbed into the interior of the substrate. It is desirable to have an inner layer that can prevent diffusion. Therefore, a first inner layer consisting of a single layer or multiple layers of at least one of carbides, nitrides, oxides, borides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table is formed on the surface of the substrate. The periodic table is displayed on the surface of this first inner layer.
At least one of the carbides, carbonitrides, carbonates, carbonitrides, and carbides of group 4a, 5a, and 6a metals, or the carbides, carbonitrides, or mutual solid solutions of these, and is non-chemical. A second inner layer consisting of a single layer or multiple layers of a stoichiometric compound is formed, and the surface of the second inner layer is coated with diamond-like carbon and/or
Or a coated sintered alloy with an outer layer made of diamond.
本発明の硬質被覆焼結合金の製造方法は、市販
のWCを主体とする超硬合金又はTiCを主体とす
るサーメツトからなる基体もしくは周期律表4a、
5a、6a族金属の炭化物、窒化物及びこれらの相
互固溶体の中の少なくとも1種とFe、Ni、Co、
W、Mo、Crの中の少なくとも1種を従来の粉末
冶金法によつて作製した焼結合金からなる基体を
用いて、この基体の表面を研摩及び洗浄などの前
処理を行つた後、Ti、Zr、Hf、V、Nb、Ta、
W、Mo、Cr、Siの金属又は合金の中の少なくと
も1種を従来の湿式メツキ法、物理蒸着法
(PVD)又は化学蒸着法(CVD)により被覆し
たりもしくは周期律表4a、5a、6a族金属の炭化
物、窒化物、酸化物、硼化物でなる非化学量論的
化合物又はSiの炭化物、窒化物でなる非化学量論
的化合物あるいはこれらの相互固溶体の中の少な
くとも1種を従来の物理蒸着法や化学蒸着法で被
覆した単層又は多重層からなる内層を基体の表面
に形成し、この内層の表面にダイヤモンド状カー
ボン及び/又はダイヤモンドからなる外層を形成
させる。この外層を形成するときに生成する遊離
カーボンを金属又は合金もしくは非化学量論的化
合物の中の少なくとも1種の単層又は多重層でな
る内層内に拡散固溶させて、この内層を金属元素
1モルに対して非金属元素0.7〜0.95モル以上の
非化学量論的化合物にする。内層の表面に外層を
形成させる方法としては、真空中でダイヤモンド
粉末をレーザ又は電子線加熱する固相合成法もし
くはその他のPVD法(イオンプレーテイング、
スパツタリングなど)による固相合成法を利用す
ることができる。また、メタンなどの炭化水素と
水素からなるガスを高周波又はマイクロ波放電中
300℃〜1300℃で熱分解させる気相合成法を利用
することもできる。さらに公知のCVD法、プラ
ズマCVD法またはイオン注入法などを応用した
気相合成法も利用することができる。特に、基体
の表面に形成する内層が、湿式メツキ法又は
PVD法による金属又は合金である場合には、内
層の被覆工程において基体表面部の炭素及び窒素
が内層内へ拡散し難くなるので望ましい。 The method for producing the hard-coated sintered alloy of the present invention includes a substrate made of a commercially available cemented carbide mainly composed of WC or a cermet mainly composed of TiC, or
At least one of carbides, nitrides, and mutual solid solutions of group 5a and 6a metals and Fe, Ni, Co,
Using a base made of a sintered alloy made of at least one of W, Mo, and Cr by conventional powder metallurgy, the surface of this base is pretreated by polishing and cleaning, and then Ti , Zr, Hf, V, Nb, Ta,
At least one metal or alloy of W, Mo, Cr, and Si is coated by conventional wet plating, physical vapor deposition (PVD), or chemical vapor deposition (CVD), or by coating with metals or alloys of W, Mo, Cr, and Si, or by coating with metals or alloys of W, Mo, Cr, and Si, or by coating with metals or alloys of W, Mo, Cr, and Si, or by coating with metals or alloys of W, Mo, Cr, and Si by conventional wet plating, physical vapor deposition (PVD), or chemical vapor deposition (CVD), or by coating with metals or alloys of W, Mo, Cr, and Si. At least one of non-stoichiometric compounds consisting of group metal carbides, nitrides, oxides, and borides, or non-stoichiometric compounds consisting of Si carbides and nitrides, or mutual solid solutions thereof An inner layer consisting of a single layer or multiple layers coated by physical vapor deposition or chemical vapor deposition is formed on the surface of the substrate, and an outer layer consisting of diamond-like carbon and/or diamond is formed on the surface of this inner layer. The free carbon generated when forming this outer layer is diffused into an inner layer consisting of a single layer or multiple layers of at least one of metals, alloys, or non-stoichiometric compounds, and this inner layer is made up of metal elements. The non-stoichiometric compound contains 0.7 to 0.95 moles or more of the nonmetallic element per mole. Methods for forming the outer layer on the surface of the inner layer include solid-phase synthesis in which diamond powder is heated with laser or electron beam in a vacuum, or other PVD methods (ion plating,
A solid phase synthesis method using sputtering, etc.) can be used. In addition, gas consisting of hydrocarbons such as methane and hydrogen can be discharged by high frequency or microwave.
A gas phase synthesis method in which thermal decomposition is performed at 300°C to 1300°C can also be used. Furthermore, a vapor phase synthesis method applying a known CVD method, plasma CVD method, or ion implantation method can also be used. In particular, if the inner layer formed on the surface of the substrate is wet-plated or
It is preferable to use a metal or an alloy produced by the PVD method, since this makes it difficult for carbon and nitrogen on the surface of the substrate to diffuse into the inner layer during the inner layer coating process.
本発明の硬質被覆焼結合金の製造方法におい
て、基体の表面に形成する内層は、PVD法、
CVD法又はプラズマCVD法によつて周期律表
4a、5a、6a族金属の炭化物、窒化物、酸化物、
硼化物及びこれらの相互固溶体の中の少なくとも
1種の単層又は多重層からなる第1内層として被
覆し、この第1内層の表面に湿式メツキ法や
PVD法によつて形成するTi、Zr、Hf、V、Nb、
Ta、W、Mo、Cr、Siの金属又は合金ならびに
PVD法、CVD法又はプラズマCVD法によつて形
成する周期律表4a、5a、6a族金属の炭化物、窒
化物、酸化物、硼化物でなる非化学量論的化合物
もしけはSiの炭化物、窒化物でなる非化学量論的
的化合物あるいはこれらの相互固溶体の中の少な
くとも1種からなる単層又は多重層からなる第2
内層として被覆し、この第2内層の表面に固相合
成法又は気相合成法によつて外層を被覆する。こ
のように第1内層及び第2内層からなる内層は、
内層を形成するときに基体表面部の炭素及び窒素
が内層内へ拡散するのを阻止しやすく、しかも外
層を形成するときに生成する遊離カーボンが内層
内で拡散固溶して基体内部へ拡散するのを防止す
るので望ましいものである。 In the method for producing a hard-coated sintered alloy of the present invention, the inner layer formed on the surface of the substrate is formed by a PVD method,
Periodic table by CVD method or plasma CVD method
carbides, nitrides, oxides of group 4a, 5a and 6a metals;
The first inner layer is coated with a single layer or multiple layers of at least one of boride and a mutual solid solution thereof, and the surface of the first inner layer is coated with a wet plating method or the like.
Ti, Zr, Hf, V, Nb, formed by PVD method
Ta, W, Mo, Cr, Si metals or alloys and
Non-stoichiometric compounds of carbides, nitrides, oxides, and borides of metals from groups 4a, 5a, and 6a of the periodic table formed by PVD, CVD, or plasma CVD, or carbides of Si; A second layer consisting of a single layer or multiple layers consisting of a non-stoichiometric compound consisting of a nitride or at least one of these mutual solid solutions.
The second inner layer is coated with an outer layer by solid phase synthesis or gas phase synthesis. In this way, the inner layer consisting of the first inner layer and the second inner layer is
When forming the inner layer, it is easy to prevent carbon and nitrogen on the surface of the substrate from diffusing into the inner layer, and moreover, free carbon generated when forming the outer layer diffuses into solid solution within the inner layer and diffuses into the inside of the substrate. This is desirable because it prevents
(作用)
本発明の硬質被覆焼結合金は、外層であるダイ
ヤモンド状カーボン及び/又はダイヤモンドが高
硬度性にすぐれた良質な硬質薄膜として形成され
るために耐摩耗性にすぐれた被覆焼結合金であ
る。また、硬質薄膜からなる外層は、外層を形成
する工程で生成する遊離のカーボンが内層内で拡
散固溶することによつて外層と内層の層境界部の
付着性を強固なものにしており、外層の耐剥離性
がすぐれた被覆焼結合金になつている。さらに、
内層は基体に含有している鉄族金属との濡れ性及
び反応性にすぐれていることから内層と基体の境
界部の付着性を強固なものにしており、内層の耐
剥離性がすぐれた被覆焼結合金になつている。特
に、内層が第1内層と第2内層とからなつている
場合は、内層を形成するときに基体表面部での炭
素及び窒素の変動が少なく内層と基体間の付着性
を向上した耐剥離性のすぐれた被覆焼結合金にな
つている。(Function) The hard-coated sintered alloy of the present invention is a coated sintered alloy with excellent wear resistance because the outer layer of diamond-like carbon and/or diamond is formed as a high-quality hard thin film with excellent hardness. It is. In addition, the outer layer made of a hard thin film has strong adhesion at the boundary between the outer layer and the inner layer by diffusing and dissolving free carbon generated in the process of forming the outer layer in the inner layer. The outer layer is a coated sintered alloy with excellent peeling resistance. moreover,
The inner layer has excellent wettability and reactivity with the iron group metals contained in the substrate, so it has strong adhesion at the boundary between the inner layer and the substrate, and the inner layer has excellent peeling resistance. It has become a sintered alloy. In particular, when the inner layer is composed of a first inner layer and a second inner layer, when the inner layer is formed, there is less variation in carbon and nitrogen on the surface of the substrate, and the peeling resistance improves the adhesion between the inner layer and the substrate. It has become an excellent coated sintered alloy.
(実施例)
実施例 1
基体としてWC90%、TiC5%、Co5%、(重量
%)組成の焼結合金をCIS規格SNG432形状に作
製し、このSNG432の表面を洗剤、有機溶剤、
酸、アルカリ及び水などによつてよく洗浄し、乾
燥後、イオンプレーテイング装置内にセツトし
た。この装置内を0.001Paまで排気した後、炉内
真空度を0.013Paに保持しながら基体を徐々に加
熱して最終的には600℃とした。ついで、基体表
面を高純度アルゴンガスで40分間ボンバードし、
その後、金属タンタルを蒸発させて基体表面に
Taを被覆した。このときのTa被覆層の析出速度
は6×10-4μm/secであり、そのTa被覆層の厚
さは約2μmであつた。このTa被覆層の付着した
基体をプラズマCVD装置にセツトし2450MHzの
マイクロ波、300Wの出力、6700Paの系内圧力、
200ml/min H2、3ml/min CH4の条件で基体
を900℃に加熱しながら5時間反応させて約2μm
厚さのダイヤモンド硬質層を被覆した。このよう
にして作製した本発明の硬質被覆焼結合金(1)は、
顕微鏡観察とX線解析の結果、内層がTaC0.7であ
り、外層がダイヤモンドを多量に含んだ層である
ことが確認できた。(Example) Example 1 A sintered alloy with a composition of 90% WC, 5% TiC, 5% Co (by weight) was prepared as a base in the shape of CIS standard SNG432, and the surface of this SNG432 was treated with detergent, organic solvent, etc.
After thoroughly washing with acid, alkali, water, etc., and drying, it was set in an ion plating apparatus. After the inside of this apparatus was evacuated to 0.001 Pa, the substrate was gradually heated to 600° C. while maintaining the degree of vacuum in the furnace at 0.013 Pa. Next, the substrate surface was bombarded with high-purity argon gas for 40 minutes.
Afterwards, the metal tantalum is evaporated onto the substrate surface.
Coated with Ta. The deposition rate of the Ta coating layer at this time was 6×10 -4 μm/sec, and the thickness of the Ta coating layer was about 2 μm. The substrate with this Ta coating layer attached was set in a plasma CVD equipment, and a microwave of 2450MHz, an output of 300W, and an internal pressure of 6700Pa were applied.
The substrate was heated to 900°C and reacted for 5 hours under the conditions of 200ml/min H 2 and 3ml/min CH 4 to form a film with a diameter of approximately 2μm.
Covered with a thick diamond hard layer. The hard coated sintered alloy (1) of the present invention produced in this way is
As a result of microscopic observation and X-ray analysis, it was confirmed that the inner layer was TaC 0.7 and the outer layer was a layer containing a large amount of diamond.
比較例として実施例1の条件の内金属タンタル
を蒸発させるときに同時にアセチレンガス分圧
0.10Pa雰囲気にして他は実施例1と同条件にする
ことによつて内層がTaC、外層がダイヤモンド
を多量に含んだ層からなる比較品(1)を作製した。 As a comparative example, when tantalum metal is evaporated under the conditions of Example 1, the partial pressure of acetylene gas is
A comparative product (1) having an inner layer of TaC and an outer layer containing a large amount of diamond was produced by using a 0.10 Pa atmosphere and using the same conditions as in Example 1.
この本発明の硬質被覆焼結合金(1)と比較品(1)を
使用してAl合金を被削材に、切削速度890m/
min、送り0.15mm/rev、切込み0.35mmの条件で旋
削試験を行つた結果、この本発明の硬質被覆焼結
合金(1)は230分切削後も正常摩耗であつたのに対
し比較品(1)は100分切削後被覆層の剥離が生じた。 Using the hard-coated sintered alloy (1) of the present invention and the comparative product (1), the cutting speed was 890 m/min using Al alloy as the work material.
As a result of conducting a turning test under the conditions of min. In case 1), the coating layer peeled off after 100 minutes of cutting.
実施例 2
基体としてWC72%、TiC10%、TaC10%、
Co8%、(重量%)組成の焼結合金をCIS規格
SNG432形状に作製し、このSNG432の表面を実
施例1と同様に洗浄及び乾燥後、イオンプレーテ
イング装置内にセツトした。ついで、実施例1と
同様に炉内を空にして基体を500℃に保持しなが
ら高純度アルゴンガスでボンバードした。その後
金属チタンを蒸発しながら炉内を窒素ガス分圧で
0.05Paにして5分間保持した後窒素ガスを排気し
て真空で金属チタンを5分間蒸発、また、窒素ガ
ス分圧で0.05Paにして金属チタン5分間蒸発と
0.05Paの窒素ガス分圧の雰囲気と真空雰囲気によ
る金属チタンの蒸発を繰り返すことによつて基体
の表面に内層を被覆した。この内層は、X線回折
の結果TiN0.6で、この内装の付着した基体を実施
例1と同様にして内層の表面に約2μm厚さのダ
イヤモンドを多量含んだ外層を被覆した。このよ
うにして作製した本発明の硬質被覆焼結合金(2)
は、顕微鏡観察とX線回折の結果、内層が2μm
厚さのTi(N0.6C0.4)0.95であり、外層がダイヤモン
ドを多量に含だ層であることが確認できた。Example 2 WC72%, TiC10%, TaC10% as the base,
CIS standard for sintered alloy with Co8% (wt%) composition
A SNG432 was prepared in the shape of SNG432, and the surface of this SNG432 was washed and dried in the same manner as in Example 1, and then set in an ion plating apparatus. Then, as in Example 1, the furnace was emptied and the substrate was bombarded with high purity argon gas while being maintained at 500°C. Afterwards, while evaporating the titanium metal, the inside of the furnace is heated with a partial pressure of nitrogen gas.
After keeping the pressure at 0.05Pa for 5 minutes, exhaust the nitrogen gas and evaporate the titanium metal in a vacuum for 5 minutes.
The inner layer was coated on the surface of the substrate by repeating evaporation of metallic titanium in an atmosphere with a nitrogen gas partial pressure of 0.05 Pa and a vacuum atmosphere. This inner layer was found to be TiN 0.6 as determined by X-ray diffraction, and the surface of the inner layer was coated with an outer layer containing a large amount of diamond with a thickness of about 2 μm in the same manner as in Example 1 of the substrate to which this inner layer was attached. Hard coated sintered alloy of the present invention produced in this way (2)
As a result of microscopic observation and X-ray diffraction, the inner layer is 2 μm.
The thickness of Ti (N 0.6 C 0.4 ) was 0.95 , and it was confirmed that the outer layer contained a large amount of diamond.
比較品として実施例2の条件の内金属チタンを
蒸発せるときに窒素ガス分圧0.13Paの雰囲気を継
続して他は実施例2と同条件にすることによつて
内層がTiN、外層がダイヤモンドを多量に含ん
だ層からなる比較品(2)を作製した。 As a comparison product, the inner layer is TiN and the outer layer is diamond by continuing the atmosphere of nitrogen gas partial pressure of 0.13 Pa when evaporating the metal titanium under the conditions of Example 2, and keeping the other conditions the same as Example 2. A comparative product (2) consisting of a layer containing a large amount of
この本発明の硬質被覆焼結合金(2)と比較品(2)を
使用して実施例1と同条件でAl合金の旋削試験
を行つた結果、本発明の硬質被覆焼結合金(2)は
250分切削後も正常摩耗であつたのに対し比較品
(2)は110分切削後被覆層の剥離が生じた。 Using the hard coated sintered alloy (2) of the present invention and the comparative product (2), an Al alloy turning test was conducted under the same conditions as in Example 1. As a result, the hard coated sintered alloy (2) of the present invention teeth
The comparison product showed normal wear even after 250 minutes of cutting.
In case (2), the coating layer peeled off after 110 minutes of cutting.
実施例 3
基体としてWC74%、TiC0.7N0.310%、TaC10
%、Co6%(重量%)組成の焼結合金をCIS規格
SFCN3Z形状に作製し、このSFCN53Zの表面を
実施例1と同様に、洗浄、乾燥後、イオンプレー
テイング装置内にセツトした。この装置内を真空
排気し、基体を徐々に加熱して500℃として、ア
ルゴンガスで20分基体表面をボンバードした後金
属チタンを蒸発しながら反応ガスとして10%CH4
−90%N2のガス分圧0.10Paの雰囲気によつて第
1内層としてTiC0.3N0.7を形成し、ついで反応ガ
スを1度排気した後実施例2と同一条件でもつて
TiN0.6の第2内層とダイヤモンドを多量に含んだ
外層を被覆した。このようにして作製した本発明
の硬質被覆焼結合金(3)は、顕微鏡観察とX線回折
の結果、第1内層が約1μm厚さのTiC0.3N0.7で第
2内層は約1μm厚さのTi(N0.6、C0.4)0.95であり、
外層は約2μmのダイヤモンドを多量に含んだ層
であることが確認できた。Example 3 WC74%, TiC 0.7 N 0.3 10%, TaC10 as substrate
%, Co6% (wt%) composition sintered alloy according to CIS standard
A SFCN3Z shape was prepared, and the surface of this SFCN53Z was washed and dried in the same manner as in Example 1, and then set in an ion plating apparatus. The inside of this apparatus was evacuated, the substrate was gradually heated to 500°C, the surface of the substrate was bombarded with argon gas for 20 minutes, and then 10% CH 4 was added as a reaction gas while evaporating metallic titanium.
TiC 0.3 N 0.7 was formed as the first inner layer in an atmosphere of −90% N 2 with a gas partial pressure of 0.10 Pa, and then the reaction gas was evacuated once and then treated under the same conditions as in Example 2.
A second inner layer of TiN 0.6 and a diamond rich outer layer were coated. As a result of microscopic observation and X-ray diffraction, the hard coated sintered alloy (3) of the present invention produced in this way shows that the first inner layer is made of TiC 0.3 N 0.7 with a thickness of about 1 μm, and the second inner layer is made of TiC 0.3 N 0.7 with a thickness of about 1 μm. Ti(N 0.6 , C 0.4 ) is 0.95 ,
It was confirmed that the outer layer was a layer containing a large amount of diamonds with a diameter of approximately 2 μm.
比較品として、実施例3の条件の内第1内層と
同条件で内層を作製した後、その表面に実施例1
と同様にダイヤモンドからなる外層を形成した比
較品(3)を作製した。 As a comparison product, an inner layer was prepared under the same conditions as the first inner layer under the conditions of Example 3, and then Example 1 was applied to the surface of the inner layer.
A comparative product (3) with an outer layer made of diamond was fabricated in the same manner as above.
この本発明の硬質被覆焼結合金(3)と比較品(3)を
使用してAl−15%Si合金を被削材に、切削速度
500m/min、送り0.2mm/刃の条件でフライス切
削試験を行つた結果、本発明の硬質被覆焼結合金
(3)は4個共剥離が生じていなかつたのに対して比
較品は4個中3個に剥離が生じ寿命になつてい
た。 Using the hard coated sintered alloy (3) of the present invention and the comparative product (3), the cutting speed was
As a result of a milling test conducted under the conditions of 500 m/min and feed rate of 0.2 mm/blade, the hard coated sintered alloy of the present invention
In the case of (3), none of the four pieces had peeled off, whereas in the comparative product, three out of four pieces had peeled off and had reached the end of their service life.
実施例 4
CIS規格K10相当の超難合金で作製したミクロ
ンドリル(ネジレ角30°、先端角120°、刃先直径
0.50φmm)を基体とし、この基体をイオンプレー
テイング装置にセツトした。この装置内を実施例
1と同様に処理して基体温度600℃、窒素ガス分
圧0.10Paにして金属タンタルを蒸発して第1内層
を形成した後窒素ガスを排気し0.013Paの真空中
で金属タンタルを蒸発して第2内層を形成し、つ
いで、実施例1と同様にして外層を被覆した。こ
の本発明の硬質被覆焼結合金(4)は、顕微鏡観察と
X線回析の結果、1μm厚さのTaNの第1内層と
1μm厚さのTaG0.8の第2内層と1.5μm厚さのダイ
ヤモンドを多量に含んだ外層であることが確認で
きた。Example 4 Micron drill made of ultra-hard alloy equivalent to CIS standard K10 (helix angle 30°, tip angle 120°, cutting edge diameter)
0.50φmm) was used as a substrate, and this substrate was set in an ion plating apparatus. The inside of this apparatus was treated in the same manner as in Example 1, with a substrate temperature of 600°C and a nitrogen gas partial pressure of 0.10 Pa. After evaporating the metal tantalum to form a first inner layer, the nitrogen gas was evacuated and a vacuum of 0.013 Pa was created. A second inner layer was formed by evaporating the tantalum metal, and then an outer layer was coated as in Example 1. As a result of microscopic observation and X-ray diffraction, this hard coated sintered alloy (4) of the present invention has a first inner layer of TaN with a thickness of 1 μm.
It was confirmed that the second inner layer was 1 μm thick and made of TaG 0.8 , and the outer layer was 1.5 μm thick and contained a large amount of diamond.
比較品として同様の基体で第2内層の工程を省
略することによつて得た1μm厚さのTaNとダイ
ヤモンドを多量に含む外層からなる比較品(4)を作
製した。 As a comparative product, a comparative product (4) consisting of a 1 μm thick TaN and diamond-rich outer layer obtained by omitting the process of forming the second inner layer was produced using the same substrate.
この本発明の硬質被覆焼結合金(4)と比較品(4)を
使用して鋼板とエポキシ板からなる多層のIC基
板(厚さ16mm)を3枚重ねた被削材で、切削速度
250m/min、送り0.05mm/revの条件により穴あ
け加工試験を行つた結果、本発明の硬質被覆焼結
合金(4)は75000個の穴あけ加工ができたのに対し
比較品(4)は7000個穴あけ加工後剥離が生じ寿命と
なつた。 Using the hard coated sintered alloy (4) of the present invention and the comparative product (4), the cutting speed was
As a result of a drilling test under the conditions of 250 m/min and feed rate of 0.05 mm/rev, the hard coated sintered alloy (4) of the present invention was able to drill 75,000 holes, while the comparative product (4) was able to drill 7,000 holes. After drilling individual holes, peeling occurred and the product life was reached.
(発明の効果)
以上の結果、本発明の硬質被覆焼結合金は、耐
摩耗性と耐剥離性にすぐれていることから或る程
度衝撃力が加わる用途、例えば、旋削工具は勿論
のことフライス工具、エンドミル、ドリル、半導
体基板用ミクロンドリルなどの穴あけ工具を含め
た切削用工具、また、印字ピンのピン先端もしく
は紙、テープ等の切断用スリツターを含めた耐摩
耗用工具に応用できる産業上有用な材料である。(Effects of the Invention) As a result of the above, the hard coated sintered alloy of the present invention has excellent wear resistance and peeling resistance, so it can be used in applications where a certain degree of impact force is applied, such as turning tools as well as milling tools. Industrial cutting tools including drilling tools such as tools, end mills, drills, and micron drills for semiconductor substrates, as well as wear-resistant tools including pin tips of printing pins and slitters for cutting paper, tape, etc. It is a useful material.
Claims (1)
物及びこれらの相互固溶体の中の少なくとも1種
とFe、Ni、Co、W、Mo、Crの中の少なくとも
1種も含む焼結合金からなる基体の表面に金属化
合物からなる内層と該内層の表面にダイヤモンド
状カーボン及び/又はダイヤモンドからなる外層
を形成してなる被覆焼結合金において、前記内層
が周期律表4a、5a、6a族金属の炭化物、炭窒化
物、炭酸化物、炭窒酸化物、炭硼化物又はSiの炭
化物、炭窒化物もしくは、これらの相互固溶体の
中の少なくとも1種であり、かつ金属元素1モル
に対して非金属元素(以下、炭素、窒素、酸素、
硼素を示す)0.7〜0.95モルの非化学量論的化合
物からなる単層もしくは多重層であることを特徴
とする硬質被覆焼結合金。 2 上記外層が0.5μm〜5μmの厚さであることを
特徴とする特許請求の範囲第1項記載の硬質被覆
焼結合金。 3 周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種
とFe、Ni、Co、W、Mo、Crの中の少なくとも
1種を含む焼結合金からなる基体の表面に金属化
合物からなる内層と該内層の表面にダイヤモンド
状カーボン及び/又はダイヤモンドからなる外層
を形成してなる被覆焼結合金において、前記内層
が基体に隣接する側の第1内層と外層に隣接する
側の第2内層からなり、該第1内層が周期律表
4a、5a、6a族金属の炭化物、窒化物、酸化物、
硼化物及びこれらの相互固溶体の中の少なくとも
1種の単層もしくは多重層であり、該第2内層が
周期律表4a、5a、6a族金属の炭化物、炭窒化物、
炭酸化物、炭窒酸化物、炭硼化物又はSiの炭化
物、炭窒化物もしくは、これらの相互固溶体の中
の少なくとも1種であり、かつ金属元素1モルに
対して非金属元素0.7〜0.95モルの非化学量論的
化合物からなる単層又は多重層であることを特徴
とする硬質被覆焼結合金。 4 上記外層が0.5μm〜5μmの厚さであることを
特徴とする特許請求の範囲第3項記載の硬質被覆
焼結合金。 5 周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種
とFe、Ni、Co、W、Mo、Crの中の少なくとも
1種を含む焼結合金からなる基体の表面にTi、
Zr、Hf、V、Nb、Ta、W、Mo、Cr、Siの金属
又は合金並びに周期律表4a、5a、6a族金属の炭
化物、窒化物、酸化物、硼化物でなる非化学量論
的化合物又はSiの炭化物、窒化物でなる非化学量
論的化合物もしくはこれらの相互固溶体の中の少
なくとも1種の単層又は多重層からなる内層を被
覆する工程と該内層の表面にダイヤモンド状カー
ボン及び/又はダイヤモンドからなる外層を被覆
する工程による被覆焼結合金の製造方法であつ
て、該外層を被覆する工程で前記内層に炭素を拡
散させて該内層を金属元素1モルに対して非金属
元素0.7〜0.95モルの非化学量論的化合物にする
ことを特徴とする硬質被覆焼結合金の製造方法。 6 周期律表4a、5a、6a族金属の炭化物、窒化
物及びこれらの相互固溶体の中の少なくとも1種
とFe、Ni、Co、W、Mo、Crの中の少なくとも
1種を含む焼結合金からなる基体の表面に周期律
表4a、5a、6a族金属の炭化物、窒化物、酸化物、
硼化物及びこれらの相互固溶体の中の少なくとも
1種の単層又は多重層からなる第1内層を被覆す
る工程と該第1内層の表面にTi、Zr、Hf、V、
Nb、Ta、W、Mo、Cr、Siの金属又は合金並び
に周期律表4a、5a、6a族金属の炭化物、窒化物、
酸化物、硼化物でなる非化学量論的化合物又はSi
の炭化物、窒化物でなる非化学量論的化合物もし
くはこれらの相互固溶体の中の少なくとも1種の
単層又は多重層からなる第2内層を被覆する工程
と該第2内層の表面にダイヤモンド状カーボン及
び/又はダイヤモンドからなる外層を被覆する工
程による被覆焼結合金の製造方法であつて、該外
層を被覆する工程中に前記第2内層へ炭素を拡散
させて該第2内層を金属元素1モルに対して非金
属元素0.7〜0.95モルの非化学量論的化合物にす
ることを特徴とする硬質被覆焼結合金の製造方
法。[Claims] 1. At least one of carbides, nitrides, and mutual solid solutions of metals of groups 4a, 5a, and 6a of the periodic table, and at least one of Fe, Ni, Co, W, Mo, and Cr. A coated sintered alloy is formed by forming an inner layer made of a metal compound on the surface of a substrate made of a sintered alloy containing seeds, and an outer layer made of diamond-like carbon and/or diamond on the surface of the inner layer, wherein the inner layer is formed according to the periodic table. At least one of the carbides, carbonitrides, carbonates, carbonitrides, and carbides of group 4a, 5a, and 6a metals, the carbides and carbonitrides of Si, or mutual solid solutions thereof, and the metal Nonmetallic elements (hereinafter referred to as carbon, nitrogen, oxygen,
A hard-coated sintered alloy characterized in that it is a single layer or multilayer consisting of 0.7 to 0.95 moles of a non-stoichiometric compound (representing boron). 2. The hard coated sintered alloy according to claim 1, wherein the outer layer has a thickness of 0.5 μm to 5 μm. 3. A sintered alloy containing at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table and at least one of Fe, Ni, Co, W, Mo, and Cr. A coated sintered alloy comprising an inner layer made of a metal compound on the surface of a substrate, and an outer layer made of diamond-like carbon and/or diamond formed on the surface of the inner layer, the first inner layer on the side where the inner layer is adjacent to the substrate. and a second inner layer adjacent to the outer layer, and the first inner layer is based on the periodic table.
carbides, nitrides, oxides of group 4a, 5a and 6a metals;
A single layer or a multilayer of at least one of borides and mutual solid solutions thereof, and the second inner layer is a carbide, carbonitride, or a metal of group 4a, 5a, or 6a of the periodic table.
At least one type of carbonate, carbonitride oxide, carbonoboride, carbide of Si, carbonitride, or mutual solid solution thereof, and 0.7 to 0.95 mole of nonmetallic element per mole of metal element. A hard coated sintered alloy characterized by being a single layer or multilayer consisting of non-stoichiometric compounds. 4. The hard coated sintered alloy according to claim 3, wherein the outer layer has a thickness of 0.5 μm to 5 μm. 5. A sintered alloy containing at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table and at least one of Fe, Ni, Co, W, Mo, and Cr. Ti on the surface of the substrate consisting of
Non-stoichiometric metals or alloys of Zr, Hf, V, Nb, Ta, W, Mo, Cr, Si, and carbides, nitrides, oxides, and borides of metals from groups 4a, 5a, and 6a of the periodic table. A step of coating an inner layer consisting of a single layer or multiple layers of at least one of a compound or a non-stoichiometric compound of Si carbide or nitride, or a mutual solid solution thereof, and coating the surface of the inner layer with diamond-like carbon and /or A method for manufacturing a coated sintered alloy by coating an outer layer made of diamond, wherein carbon is diffused into the inner layer in the step of coating the outer layer, and the inner layer is made of a nonmetallic element per mole of the metal element. A method for producing a hard coated sintered alloy, characterized in that the amount of a non-stoichiometric compound is 0.7 to 0.95 mol. 6. A sintered alloy containing at least one of carbides, nitrides, and mutual solid solutions of metals of groups 4a, 5a, and 6a of the periodic table and at least one of Fe, Ni, Co, W, Mo, and Cr. carbides, nitrides, and oxides of metals from groups 4a, 5a, and 6a of the periodic table on the surface of a substrate consisting of
A step of coating a first inner layer consisting of a single layer or multiple layers of at least one of boride and a mutual solid solution thereof, and coating the surface of the first inner layer with Ti, Zr, Hf, V,
Metals or alloys of Nb, Ta, W, Mo, Cr, Si, carbides and nitrides of metals of groups 4a, 5a, and 6a of the periodic table,
Non-stoichiometric compounds consisting of oxides, borides, or Si
coating a second inner layer consisting of a single layer or multiple layers of at least one of non-stoichiometric compounds of carbides and nitrides, or mutual solid solutions thereof; and a step of coating diamond-like carbon on the surface of the second inner layer. and/or a method for producing a coated sintered alloy by coating an outer layer made of diamond, wherein carbon is diffused into the second inner layer during the step of coating the outer layer, and the second inner layer is coated with 1 mol of a metal element. 1. A method for producing a hard coated sintered alloy, which comprises forming a non-stoichiometric compound containing 0.7 to 0.95 moles of a nonmetallic element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22559984A JPS61104078A (en) | 1984-10-26 | 1984-10-26 | Hard coated sintered alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22559984A JPS61104078A (en) | 1984-10-26 | 1984-10-26 | Hard coated sintered alloy and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61104078A JPS61104078A (en) | 1986-05-22 |
JPH0582472B2 true JPH0582472B2 (en) | 1993-11-19 |
Family
ID=16831849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22559984A Granted JPS61104078A (en) | 1984-10-26 | 1984-10-26 | Hard coated sintered alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61104078A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2628595B2 (en) * | 1987-04-18 | 1997-07-09 | 住友電気工業株式会社 | Method of forming hard diamond-like carbon film with good adhesion |
KR930701638A (en) * | 1991-06-24 | 1993-06-12 | 홍고오 므쯔미 | Diamond coating member and manufacturing method thereof |
US5185211A (en) * | 1991-07-11 | 1993-02-09 | Praxair S.T. Technology, Inc. | Non-stoichiometric titanium nitride coating |
EP0589641A3 (en) * | 1992-09-24 | 1995-09-27 | Gen Electric | Method of producing wear resistant articles |
US5674572A (en) * | 1993-05-21 | 1997-10-07 | Trustees Of Boston University | Enhanced adherence of diamond coatings employing pretreatment process |
FR2733255B1 (en) * | 1995-04-21 | 1997-10-03 | France Etat | METHOD FOR MANUFACTURING A METAL PIECE COVERED WITH DIAMOND AND METAL PIECE OBTAINED BY SUCH A METHOD |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126972A (en) * | 1982-01-22 | 1983-07-28 | Sumitomo Electric Ind Ltd | Diamond coated sintered hard alloy tool |
-
1984
- 1984-10-26 JP JP22559984A patent/JPS61104078A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126972A (en) * | 1982-01-22 | 1983-07-28 | Sumitomo Electric Ind Ltd | Diamond coated sintered hard alloy tool |
Also Published As
Publication number | Publication date |
---|---|
JPS61104078A (en) | 1986-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4731303A (en) | Cubic boron nitride coated material and producing method of the same | |
JP4205546B2 (en) | Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate | |
WO1992000848A1 (en) | Abrasion resistant coated articles | |
JPH08104583A (en) | Composite high hardness material for tool | |
JP4295830B2 (en) | Coating of cemented carbide substrate or carbide containing cermet substrate with hard material | |
JP2005138209A (en) | Wear-resistant member | |
JP3214891B2 (en) | Diamond coated members | |
JPH0582472B2 (en) | ||
JP2001293602A (en) | Cutting tool, and manufacturing method and device for the same | |
JP3353239B2 (en) | Method for producing diamond-coated member | |
Shih et al. | Application of diamond coating to tool steels | |
JPS6135271B2 (en) | ||
JPS62133068A (en) | Diamond coated member | |
JPH06262405A (en) | Coating part for tool | |
JP2595203B2 (en) | High adhesion diamond coated sintered alloy and method for producing the same | |
JPS6312940B2 (en) | ||
JPH08281502A (en) | Crystal orientating coated tool | |
JPH05263251A (en) | Coated and sintered body | |
JP3333080B2 (en) | High-strength coated members with consistent interfaces | |
JPH05295517A (en) | Multilayer-coated sintered alloy with crystal orientation | |
JPH11277304A (en) | Milling tool excellent in wear resistance | |
JP2620971B2 (en) | Diamond coated sintered body with excellent adhesion and method for producing the same | |
JPH05140729A (en) | High adhesion coated member and its production | |
JPS61174378A (en) | Production of rigid material coated with boron nitride | |
JP2784544B2 (en) | Manufacturing method of coated cemented carbide tool |