JPS6267879A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6267879A
JPS6267879A JP20936685A JP20936685A JPS6267879A JP S6267879 A JPS6267879 A JP S6267879A JP 20936685 A JP20936685 A JP 20936685A JP 20936685 A JP20936685 A JP 20936685A JP S6267879 A JPS6267879 A JP S6267879A
Authority
JP
Japan
Prior art keywords
resist
electrode
source
semiconductor wafer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20936685A
Other languages
Japanese (ja)
Inventor
Kiyoshi Oota
潔 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20936685A priority Critical patent/JPS6267879A/en
Publication of JPS6267879A publication Critical patent/JPS6267879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable the accurate pattern transfer to a resist by bringing source and drain electrodes in contact with a semiconductor wafer at the bottom of the electrodes and on the side planes on the gate side so as to level the surface of the semiconductor wafer and that of the source and drain electrodes on nearly the same plane. CONSTITUTION:On a semi-insulating GaAs substrate 1, an N-type buffer layer 2 and an N-type active layer 3 are epitaxially grown continuously and a resist 8 is selectively formed in a channel region. The active layer 3 is etched by dry etching using the resist 8 as a mask. AuGe-Ni-Au as an ohmic metal is vapor-deposited to obtain a source electrode 4 and a drain electrode 5. The resist 8 is removed together with the ohmic metal and a resist 9 is spread. The resist 9 in the position where a gate electrode is to be arranged is window- opened and is subjected to chemical etching for obtaining a recess 6. Furthermore, aluminum as a Schottky metal is vapor-deposited to obtain a gate electrode 7. Lastly, the Schottky metal on the resist is removed together with the resist 9 to complete the device.

Description

【発明の詳細な説明】 イ〕産業上の利用分野 本発明はショットキ障壁を用いた超高周疫用の電界効果
型トランジスタ(以下FETと1/)う)に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Field of Industrial Application The present invention relates to a field effect transistor (hereinafter referred to as FET) for ultra-high frequencies using a Schottky barrier.

口)従来の技術 GaAsを用いたショットキ障壁qFETは高電子$鰐
皮を有し、超高周波用素子として使用されている。従来
から、例えば特開ff158−54980号にあるよう
に、FETのマイクロ波特性、特に雑音IfjI飲の改
善のためゲート・ソース間の抵抗を低減させるなど、F
ETの改良について種々の提案がされている。
2. Description of the Related Art Schottky barrier qFETs using GaAs have a high electron density and are used as ultra-high frequency devices. Conventionally, as described in Japanese Patent Application Laid-open No. FF158-54980, FETs have been developed to reduce the resistance between the gate and the source in order to improve the microwave characteristics of FETs, especially the noise IfjI.
Various proposals have been made for improving ET.

第4図A乃至Eに従来のF E T O)製造工程の概
略を示す。半絶縁性GaAs基板LAD上にn−型バッ
ファ層は本 nfMvJ作層(lを連続してエピタキシ
ャル成長させ(第4図A)、該幼作層(43上にオーミ
ック金属を選択的に蒸着してソース電極n4)、ドレイ
ン電極ta 1に得る(第4図B)。次にレジスト1編
を全面に塗布しゲート′題極を投ける部位のg開けを行
う(第4図C)。リセス部+47)を得るためのエツチ
ングを行った後、ショットキ金x(n (GaAsに対
しては例えばAt )を蒸着して(第4図D)、ゲート
電極(48a)を形成する。余分なショットキ金属(4
8を前記レジスト凶と共に除去してFETが完成する(
第4図E)。
FIGS. 4A to 4E schematically show the conventional FET O) manufacturing process. On the semi-insulating GaAs substrate LAD, an n-type buffer layer is formed by successively epitaxially growing a main nfMvJ layer (FIG. 4A), and selectively depositing an ohmic metal on the young layer (43). Source electrode n4) and drain electrode ta1 are obtained (Fig. 4B).Next, resist 1 is applied to the entire surface and an opening is made at the part where the gate electrode is to be applied (Fig. 4C).Recessed portion After etching to obtain +47), Schottky gold x(n (for example, At for GaAs) is evaporated (FIG. 4D) to form the gate electrode (48a). (4
8 is removed together with the resist material to complete the FET (
Figure 4E).

第4図Cにおける工程では、レジスト黴へのパターン転
写はホトマスクをレジストに密番させて行う。ホトマス
クとレジストの間がおいていると、光の回折によって光
の強度が半分以下に弱まシ、膜厚の厚い部分では露光が
不完全となる。また所望の線幅も得られない。電子ビー
ム露光を行う時は、ビームのエネルギー強度が一定なの
で膜厚の均一性が求められる。
In the step shown in FIG. 4C, the pattern is transferred to the resist mold by closely covering the resist with a photomask. If there is a gap between the photomask and the resist, the intensity of the light will be weakened to less than half due to light diffraction, and the exposure will be incomplete in the thick part. Furthermore, the desired line width cannot be obtained. When performing electron beam exposure, the energy intensity of the beam is constant, so uniformity in film thickness is required.

しかしながら、ソース電極(旬、ドレイン電極(機が設
けられている凹凸のある而にレジストを塗布した場合、
レジスト面は平坦にならないばかりか、膜厚も不均一と
なってしまう。レジスト面が平坦でないと、必ずレジス
トとホトマスクとの間があくことになる。即ち正確なパ
ターン転写が行えない事になる。
However, if the resist is applied to the uneven surface where the source electrode and drain electrode are located,
Not only will the resist surface not be flat, but the film thickness will also be non-uniform. If the resist surface is not flat, there will always be a gap between the resist and the photomask. In other words, accurate pattern transfer cannot be performed.

ノリ発明が解決しようとする問題点 本兄明は上述の点に販みてなされたもので、レジストへ
の正確なパターン転写が”Tfl?、な構造を有するF
ETを提供するものである。
Problems to be Solved by the Nori Invention The invention was made in view of the above-mentioned points.
ET.

二)間組点t−解決する丸めの手段 本発明は、動作層を含む半導体クエハ上にソース電極、
ゲート′@極及びドレイン電極が配設されているFET
において、ソース電極及びドレイン電極は大々′4極の
底面とゲート側の側面で牛萼体りエハと接触し、該牛辱
体りエハの表面と前記ソース電極及びドレイン電極の上
表面はほぼ同一平面にあるFETである。
2) Means of rounding to resolve the interset point t--The present invention provides a method for forming a source electrode on a semiconductor wafer including an active layer;
FET with gate'@pole and drain electrode arranged
In this case, the source electrode and the drain electrode are in contact with the calyx body wafer at the bottom surface of the four electrodes and the side surface on the gate side, and the surface of the calyx body wafer and the upper surface of the source electrode and the drain electrode are approximately These are FETs located on the same plane.

ホ)作 用 半導体クエハの表面とソース電極及びドレイン電極の上
表面はほぼ同一平面にあるので、ゲート・電極をリフト
オフ技術で形成するために塗布するレジストは凹凸なく
均一な膜厚となり、マスクパターンのレジストへの転写
は正確に行なわれる。
e) Operation Since the surface of the semiconductor wafer and the upper surfaces of the source and drain electrodes are almost on the same plane, the resist applied to form gates and electrodes by lift-off technology has a uniform thickness without any unevenness, and the mask pattern Transfer to the resist is performed accurately.

へ)実  施  例 fJ1図は本発明の一夫厖例の慨略構収図である。f) Implementation example Figure fJ1 is a schematic composition diagram of an example of the present invention.

(1)は半絶縁性GaAs基板、121μn−型パンフ
ァ層、(3)はn型動作層、(4)はソース電極、(5
)はドレイン電極で、このソース電極(4)とドレイン
電極(5)は前記動作層(3)が両電極+4)!5)の
厚さ分圧はエツチングされた部位に形成され、これら両
電極+41 ’51の上表面と曲紀紡作層(3)の表面
はほぼ一平面上にある。
(1) is a semi-insulating GaAs substrate, 121 μn-type expansion layer, (3) is n-type active layer, (4) is a source electrode, (5
) is a drain electrode, and the source electrode (4) and drain electrode (5) are connected to the active layer (3) as both electrodes +4)! The thickness partial pressure 5) is formed in the etched region, and the upper surfaces of these two electrodes +41'51 and the surface of the curved spinning layer (3) are substantially on one plane.

(6)はドレイン飽和電流1直副(財)の為のリセス部
、(7)は該リセス部(6)に設けられたゲート電極で
ある。
(6) is a recessed portion for one drain saturation current, and (7) is a gate electrode provided in the recessed portion (6).

まず本発明F E T L2)製造工程を説明する。半
絶縁性GaAs糸板(1)上にn−型バッファ層(2)
、n型前作JijI(31を気相成長法により連続して
エピタキシャル成長させる(@2図A〕。チャネル領域
部にレジストI8)を過択的に形成し、該レジスト(8
)をマスクとして前記動作/i!t31t−CCf2F
2 に依り4000人の深さまでドライエツチングを施
こす(第2図B〕。オーミック金属としてAuGe−N
i−Auを4000八〇)厚さで蒸着してソース電極(
4)及びドレイン電極(5)を得る(第2−〇)。前記
レジスト(8)をUレジスト(8)上のオーミック金属
と共に除去してレジスト(9)を重布する(第2図D)
。この時レジスト(9)は凹凸のない平面上に塗布され
たレジスト(9)の表面は凹凸がなく、膜厚も均一なも
のとなる。ゲート電極を配設する部位の前記レジスト(
9)の急回けをσい、リセス部(6)を得るための酒ろ
酸系エッチャントでケミカルエツチングを施す。
First, the manufacturing process of the present invention FET L2) will be explained. N-type buffer layer (2) on semi-insulating GaAs thread plate (1)
, N-type previous product JijI (31) is epitaxially grown continuously by vapor phase epitaxy (@2 Figure A). A resist I8) is selectively formed in the channel region, and the resist (8
) as a mask for the above operation/i! t31t-CCf2F
Dry etching is performed to a depth of 4000 mm according to 2 (Fig. 2B).AuGe-N is used as an ohmic metal.
The source electrode (
4) and obtain the drain electrode (5) (No. 2-0). The resist (8) is removed together with the ohmic metal on the U resist (8), and a resist (9) is overlaid (Fig. 2D)
. At this time, the resist (9) is coated on a flat surface with no unevenness, so the surface of the resist (9) has no unevenness and the film thickness is uniform. The resist (
9), and perform chemical etching with alcoholic acid-based etchant to obtain the recessed part (6).

更にショットキ金属としてAtを黒看しゲート電極(7
)を得る(fJ2図E)。最後に前記レジスト(9)と
共に該レジスト(9)上のショットキ金属を除去して本
発明FETが完成する(第2図F)。
Furthermore, At as a Schottky metal was used as a black gate electrode (7
) is obtained (fJ2 Figure E). Finally, the Schottky metal on the resist (9) is removed together with the resist (9) to complete the FET of the present invention (FIG. 2F).

本発明のFETでは、ホトマスクパターンを転写するレ
ジストは平坦な面に塗布されるので、該レジストの表面
も平穏となり、凹凸がないので厚膜も均一となる。従っ
てホトマスクを密着させた時、該ホトマスクとレジスト
との間に隙間が生じないので、パターン転写が止端に行
え、歩留りの向上に大きく寄与する。これは電子ビーム
露光の場合でも同様の効果を得る事ができる。
In the FET of the present invention, since the resist for transferring the photomask pattern is applied on a flat surface, the surface of the resist is also flat and has no unevenness, so that the thick film is also uniform. Therefore, when the photomask is brought into close contact with the resist, there is no gap between the photomask and the resist, so the pattern can be transferred to the toe, which greatly contributes to improving the yield. A similar effect can be obtained even in the case of electron beam exposure.

また本発明FETは第1図に示すように、ソース電極(
4)とドレイン電極(5)がチャネル@駅(ゲート)を
伏んだ構造となっているため、これらソース電極(4)
とドレイン電極(5)のゲート側の側面で電流が流れ、
従来のNETよりもキャリアの移動距離の低減、即ち直
列抵抗の低減がされる。マイクロ波用木子(特に5l(
F帯以上で用いられる素子)では、僅かな直列抵抗の粛
いがその特性に大さく影響を及ぼす(例えば、発熱蝋、
バイアスレベルや増幅度が変化する)ので、この効果は
非常に太さいものである。
Furthermore, as shown in FIG. 1, the FET of the present invention has a source electrode (
4) and the drain electrode (5) have a structure in which the channel @ station (gate) is facing down, so these source electrodes (4)
A current flows through the side surface of the drain electrode (5) on the gate side,
Compared to conventional NETs, the distance traveled by carriers is reduced, that is, the series resistance is reduced. Microwave wood (especially 5l)
For devices used in the F band and higher), a slight reduction in series resistance has a large effect on the characteristics (for example, heat-generating wax,
(bias level and amplification degree change), this effect is very large.

第6図に本発明の他の灰施例を示す。半絶縁性GaAS
基板(1)上にn型初作鳩(3)が成長され、ンース娯
駅(4a)反びドレイン領域(5a)にイオン注入を施
してキャリア類に′!!−上げている。このソース@駅
(4a)及びドレイン類3K(5a)の一部を決してエ
ツチングがされて、このエツチングがされた部分にソー
ス電極(4)戊びドレイン電極(5)が形成されている
。(6)はリセス部(7)はゲート′題極でろる。fJ
6図に示す他の実施例では直列抵抗の低減化に大さく期
待できる。
FIG. 6 shows another ash embodiment of the present invention. Semi-insulating GaAS
An n-type first layer (3) is grown on the substrate (1), and ions are implanted into the drain region (5a) of the drain region (4a) to form carriers. ! -I'm raising it. Parts of this source@station (4a) and drains 3K (5a) are never etched, and a source electrode (4) and a drain electrode (5) are formed in the etched portions. In (6), the recessed part (7) closes at the gate's pole. fJ
In the other embodiment shown in FIG. 6, a significant reduction in series resistance can be expected.

向、本英厖例では基板としてG a Asを用いたが、
本発明はこれに限定されるものではない。
In this example, GaAs was used as the substrate, but
The present invention is not limited to this.

ト)発明の効果 本元例は以上の説明から明らかな如く、レジストが平坦
で均一な膜厚で形成されるので、レジストへのパターン
転写が1億に行なえ、歩留りの向上か図れる。またマイ
クロi用のFETとしての特性が犬さく牧舎される。
g) Effects of the Invention As is clear from the above description, in the original example, the resist is formed with a flat and uniform thickness, so that 100,000,000 patterns can be transferred to the resist, and the yield can be improved. Also, its characteristics as a FET for Micro i are well established.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、弔2は従来の
FETの製造工程図でるる。 (1)・・・半絶縁性G a As基板、(3)・・・
動作層、(4)・・・ソース電i組+5+・・・ドレイ
ン電極、(7)・・・ゲート電極。
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a diagram of a manufacturing process of a conventional FET. (1)...Semi-insulating GaAs substrate, (3)...
Operating layer, (4)...Source electrode group i+5+...Drain electrode, (7)...Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1)動作層を含む半導体ウエハ上にソース電極、ゲート
電極及びドレイン電極が配設されている電界効果型トラ
ンジスタにおいて、ソース電極及びドレイン電極は夫々
電極の底面とゲート側の側面が半導体ウエハと接触し、
該半導体ウエハの表面と前記ソース電極及びドレイン電
極の上表面はほぼ同一平面にある事を特徴とする電界効
果型トランジスタ。
1) In a field effect transistor in which a source electrode, a gate electrode, and a drain electrode are arranged on a semiconductor wafer including an active layer, the bottom surface and the side surface on the gate side of the source electrode and the drain electrode, respectively, are in contact with the semiconductor wafer. death,
A field effect transistor characterized in that a surface of the semiconductor wafer and upper surfaces of the source and drain electrodes are substantially on the same plane.
JP20936685A 1985-09-20 1985-09-20 Field effect transistor Pending JPS6267879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20936685A JPS6267879A (en) 1985-09-20 1985-09-20 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20936685A JPS6267879A (en) 1985-09-20 1985-09-20 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6267879A true JPS6267879A (en) 1987-03-27

Family

ID=16571747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20936685A Pending JPS6267879A (en) 1985-09-20 1985-09-20 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6267879A (en)

Similar Documents

Publication Publication Date Title
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
JPS6267879A (en) Field effect transistor
JPH04177738A (en) Manufacture of semiconductor device
JPS6341078A (en) Manufacture of semiconductor device
GB2064868A (en) Schottky barrier gate field-effect transistor
JPS6376380A (en) Semiconductor device
JPH04186639A (en) Manufacture of semiconductor device
JPH0442940A (en) Manufacture of semiconductor device
JPH0323643A (en) Semiconductor device and manufacture thereof
JPS6257264B2 (en)
JPH01144684A (en) Manufacture of schottky barrier junction gate type field-effect transistor
JPH02273939A (en) Manufacture of field effect type semiconductor device
JPH02262342A (en) Manufacture of semiconductor device
JPH03242941A (en) Field effect semiconductor device
JPS6215861A (en) Manufacture of semiconductor device
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor
JPS60136264A (en) Manufacture of semiconductor device
JPS6161549B2 (en)
JPS62114275A (en) Self-aligned filed effect transistor and manufacture thereof
JPS62162333A (en) Manufacture of semiconductor device
JPS5627975A (en) Manufacture of compound semiconductor device
JPS6231833B2 (en)
JPS6482569A (en) Field-effect transistor and manufacture thereof
JPH03165040A (en) Manufacture of semiconductor device
JPH03233939A (en) Field-effect transistor and its manufacture