JPH04186639A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04186639A
JPH04186639A JP31220590A JP31220590A JPH04186639A JP H04186639 A JPH04186639 A JP H04186639A JP 31220590 A JP31220590 A JP 31220590A JP 31220590 A JP31220590 A JP 31220590A JP H04186639 A JPH04186639 A JP H04186639A
Authority
JP
Japan
Prior art keywords
gate electrode
resist
negative
region
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31220590A
Other languages
Japanese (ja)
Inventor
Hiroyuki Minami
巳浪 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31220590A priority Critical patent/JPH04186639A/en
Publication of JPH04186639A publication Critical patent/JPH04186639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a gate electrode with T-shaped cross section by exposing the part of an upper gate electrode part other than an upper gate electrode region through using optical exposure at the time of forming the upper gate electrode part and by exposing a part of resist film through the electron beam exposure of only a region other than that corresponding to the lower gate electrode in the upper gate electrode region. CONSTITUTION:On a semi-insulating GaAs substrate 1, an active layer 2 is formed by the use of epitaxial growth and a negative type resist 7 is formed by application. Then, an optical exposure region 8 is subjected to optical exposure, e.g. deep UV exposure (wavelength < 300nm) for this negative type resist 7 so that the negative type resist 7 of only that region is completely made negative. Electron beam is applied to a region other than that corresponding to the lower gate electrode in the optical exposure region 8, i.e., only a region Lc on both sides of the region La of the lower gate electrode in the middle of the width Lu of an upper gate electrode by electron- beam exposure. The negative type resist 7 is made negative by the optical exposure and electron-beam exposure, subjected to baking after exposure and developed by alkali developer, etc. After that, a gate metal material such as Al, Ti and Au is deposited on the whole surface so that a gate electrode 5 with a T-shaped cross section is formed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体装置の製造方法、例えば高電子移動
トランジスタ(HEMT)等の高周波電界効果型半導体
装置の低抵抗微細ゲートの形成方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, for example, a method of forming a low resistance fine gate of a high frequency field effect semiconductor device such as a high electron mobility transistor (HEMT). It is.

[従来の技術] ガリウム砒素(GaAs)の高周波電界効果型トランジ
スタにおいては、特性を向上させるために、特にゲート
電極が短いゲート長で、かつ低抵抗なものが要求され、
そのため、断面T字型のゲート形成技術の研究がなされ
ている。
[Prior Art] In order to improve the characteristics of high frequency field effect transistors made of gallium arsenide (GaAs), gate electrodes are particularly required to have a short gate length and low resistance.
Therefore, research is being carried out on techniques for forming gates with a T-shaped cross section.

第5図(a)〜(e)は、例えば特開昭61−7737
0号公報に示された従来の断面T字型ゲート電極の形成
方法の工程断面図である。
FIGS. 5(a) to 5(e) are, for example, Japanese Patent Application Laid-Open No. 61-7737.
FIG. 2 is a process cross-sectional view of a conventional method for forming a gate electrode having a T-shaped cross section as disclosed in Publication No. 0;

このヌにおいて、21は半絶縁性GaAs基板、22は
ノンドープGaAsバッファ層、23はn−GaAs活
性層(n= I X 1017〜2 X108/cm3
) 、24は下層レジスト膜、25は上層レジスト膜、
26はゲートパターン電子ビーム露光を示す線、27は
電子ビーム補助露光を示す線、28は上層レジスト膜2
5の開口、29は下層レジスト膜24の開口、30はゲ
ートリセス、31はゲートメタル材料、32はゲート電
極をそれぞれ示す。 以下、この製造方法を説明する。
In this figure, 21 is a semi-insulating GaAs substrate, 22 is a non-doped GaAs buffer layer, and 23 is an n-GaAs active layer (n=IX1017~2X108/cm3
), 24 is a lower resist film, 25 is an upper resist film,
26 is a line indicating gate pattern electron beam exposure, 27 is a line indicating electron beam auxiliary exposure, and 28 is upper resist film 2.
5, 29 is an opening in the lower resist film 24, 30 is a gate recess, 31 is a gate metal material, and 32 is a gate electrode. This manufacturing method will be explained below.

第5図(a)に示すように、半絶縁性GaAs基板21
上に順にノンドープGaASバッファ層22、n−Ga
As活性層23を順次エピタキシャル成長し、さらに、
レジストCMR(CMRは特開昭54−66829号公
報に開示のレジスト)の下層レジスト膜24、レジスト
EBR−9(東し製のレジストの商品名)の上層レジス
ト膜25を塗布形成する。
As shown in FIG. 5(a), a semi-insulating GaAs substrate 21
Non-doped GaAS buffer layer 22, n-Ga
The As active layer 23 is sequentially grown epitaxially, and further,
A lower resist film 24 of resist CMR (CMR is a resist disclosed in JP-A-54-66829) and an upper resist film 25 of resist EBR-9 (trade name of a resist manufactured by Toshi) are formed by coating.

次に、これらの上、下層レジスト膜25.24に第5図
(b)の線図に示す線26.27の照射量の電子ビーム
を照射する。この線区において、横軸は上層レジスト膜
25の位置、縦軸は照射量強度を示し、線27で示され
る照射量り、は上層レジスト膜25のみを露光する補助
露光を示す線26で示される照射量、Doは下層レジス
ト膜24までを露光する照射量をそれぞれ示す。
Next, these upper and lower resist films 25 and 24 are irradiated with an electron beam at a dose of line 26 and 27 shown in the diagram of FIG. 5(b). In this line section, the horizontal axis shows the position of the upper resist film 25, the vertical axis shows the irradiation intensity, and the irradiation amount shown by line 27 is shown by line 26 showing auxiliary exposure that exposes only the upper resist film 25. The irradiation amount and Do indicate the irradiation amount for exposing up to the lower resist film 24, respectively.

第5図(b)の線区に示す照射量り、、Doで電子ビー
ム露光を行い、次にメチルイソブチルケトン(MIBK
)とイソプロピルアルコール(TPA)の混合液で上、
下層レジスト膜25.24を現像し、第5図(C)に示
されるパターンか得られる。
Electron beam exposure was performed at the dose indicated by the line in Figure 5(b), Do, and then methyl isobutyl ketone (MIBK
) and isopropyl alcohol (TPA).
The lower resist films 25 and 24 are developed to obtain the pattern shown in FIG. 5(C).

なお、第5図(c)以降においては半絶縁性GaAs基
板21は省略しである。
Note that the semi-insulating GaAs substrate 21 is omitted from FIG. 5(c) onwards.

次に、第5図(d)に示すように、開口29が形成され
た下層レジスト膜24をマスクにしてウエットエッチン
グンによりゲートリセス30を形成する。このゲートリ
セス30はn−GaAs活性層23を流れる電流をしゃ
断しつる適当な厚さの活性層23を残すように形成する
。次に、A℃、TiまたはAuの如きゲートメタル材料
31を蒸着し、リフトオフによって不要のゲートメタル
材料31を除去すると、第5図(e)に示すような下部
ゲート長Lg、上部ゲート長Lhを有する断面T字型の
ゲート電極32が得られる。
Next, as shown in FIG. 5(d), a gate recess 30 is formed by wet etching using the lower resist film 24 in which the opening 29 is formed as a mask. This gate recess 30 is formed so as to interrupt the current flowing through the n-GaAs active layer 23 and leave the active layer 23 with an appropriate thickness. Next, a gate metal material 31 such as Ti or Au is deposited at A° C. and unnecessary gate metal material 31 is removed by lift-off, resulting in a lower gate length Lg and an upper gate length Lh as shown in FIG. 5(e). A gate electrode 32 having a T-shaped cross section is obtained.

[発明が解決しようとする課題] 上記したように、下部ゲート長Lgを小さくするとそれ
に対してゲート電極32の抵抗は大きくなる。下部ゲー
ト長Lgを小さく、かつゲート電極32の抵抗を小さく
し、ゲート電極32の断面積を大きくするために開発さ
れたのが断面T字型のゲート電極32である。
[Problems to be Solved by the Invention] As described above, when the lower gate length Lg is made smaller, the resistance of the gate electrode 32 becomes larger. The gate electrode 32 having a T-shaped cross section was developed to reduce the lower gate length Lg, reduce the resistance of the gate electrode 32, and increase the cross-sectional area of the gate electrode 32.

従来の断面T字型のゲート電極32の製造方法は、2層
レジスト構造を用いて、電子ビーム露光技術で上部、下
部ゲート電極部を形成しているが、断面T字型のゲート
電極32を形成する上で上部ゲート電極部のレジスト形
状は、逆テーバ状にしないとゲート電極用金属を蒸着し
、リフトオフ法で上部ゲート電極部も取れてしまう問題
がある。特に、電子ビーム露光技術によるレジスト形状
は、従来例のポジ型のレジストの場合では、レジストの
下地が基板であると逆テーバ状になるが、下地にレジス
トがあるため逆テーバ状にはならないため、前記の問題
点のため、歩留りが悪く量産性の妨げとなっていた。
The conventional method for manufacturing the gate electrode 32 with a T-shaped cross section uses a two-layer resist structure and forms the upper and lower gate electrode parts by electron beam exposure technology. When forming the resist, the resist shape of the upper gate electrode part must be inverted tapered, otherwise there is a problem that the gate electrode metal will be deposited and the upper gate electrode part will also be removed by the lift-off method. In particular, in the case of conventional positive resists, the shape of the resist produced by electron beam exposure technology becomes a reverse tapered shape if the base of the resist is a substrate, but since the resist is located underneath, it does not become a reverse tapered shape. Due to the above-mentioned problems, the yield was poor, which hindered mass production.

また、電子ビーム露光技術による単層レジスト構造で上
部および下部ゲート電極部の照射量を変えて形成する方
法もあるが、電子ビーム露光時間が長くなり、前記と同
様に再瑛性が悪いなどの問題点があった。
There is also a method of forming a single-layer resist structure using electron beam exposure technology by changing the irradiation dose of the upper and lower gate electrodes, but this requires a long electron beam exposure time and has the same problems as the above, such as poor reprintability. There was a problem.

さらに、従来では、レジストにポジ型を使用しているた
め感度が悪く、露光時間が長くなり量産性が悪く、また
、ポジ型であるため、基板との密着性が悪く、レジスト
パターン形成後のリセスを形成する際、ウェットエツチ
ングでレジストがはがれてしまうなどの問題点があった
Furthermore, conventional resists use a positive resist, which results in poor sensitivity and long exposure times, making it difficult to mass-produce.Furthermore, since it is a positive resist, it has poor adhesion to the substrate, resulting in When forming the recess, there were problems such as the resist peeling off due to wet etching.

この発明は、上記のような問題点を解決するためになさ
れたもので、電子ビーム用のネガ型しジス小を使用し、
電子ビーム露光の面積を減らすため、上部ゲート電極部
を除く領域を光学露光でネガ化させ、上部ゲート電極部
内の下部ゲート電極に相当する部分を除いた領域を電子
ビーム露光でレジスト膜の一部をネガ化させ葛ことによ
り、電子ビーム露光の照射量が少なくてすみ、安定に形
成でき量産性がよい断面T字型のゲート電極が形成でき
る半導体装置の製造方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and uses a small negative die for electron beams.
In order to reduce the area for electron beam exposure, the area excluding the upper gate electrode part is made negative by optical exposure, and the area within the upper gate electrode part excluding the part corresponding to the lower gate electrode is exposed to a part of the resist film by electron beam exposure. It is an object of the present invention to provide a method for manufacturing a semiconductor device, which can form a gate electrode having a T-shaped cross section, which requires a small amount of electron beam exposure, can be formed stably, and is suitable for mass production, by making the gate electrode negative.

[課題を解決するための手段1 この発明に係る半導体装置の製造方法は、単層レジスト
構造を用い、しかも、電子ビーム露光で感度がよいネガ
型で、上部ゲート電極部の形成には光学露光を用いて上
部ゲート電極領域以外を露光し、上部ゲート電極領域内
の下部ゲート電極に相当する領域以外のみ電子ビーム露
光でレジスト膜の一部を露光することにより、厚さ方向
の途中までネガ化させ、前記電極の上部、下部寸法に対
応する開口を形成し、この開口を通してゲートリセスを
形成した後、ゲートメタル材料を蒸着し、リフトオフ法
によりゲート電極以外のゲートメタル材料を除去するこ
とにより、断面T字型のゲートリセスを形成するもので
ある。
[Means for Solving the Problems 1] The method for manufacturing a semiconductor device according to the present invention uses a single-layer resist structure, which is a negative resist with high sensitivity to electron beam exposure, and uses optical exposure to form the upper gate electrode portion. By exposing a part of the resist film other than the upper gate electrode area using electron beam exposure, and exposing a part of the resist film except for the area corresponding to the lower gate electrode within the upper gate electrode area using electron beam exposure, it is possible to make the resist film negative up to the middle of the thickness direction. After forming an opening corresponding to the upper and lower dimensions of the electrode and forming a gate recess through this opening, a gate metal material is deposited, and the gate metal material other than the gate electrode is removed by a lift-off method, thereby forming a cross-sectional shape. This forms a T-shaped gate recess.

[作用] この発明においては、低抵抗な微細ゲートを形成するた
め、ネガ型の単層レジスト構造で、光学露光で上部ゲー
ト電極部を除く領域を露光し、また、電子ビーム露光で
上部ゲート電極部内の下部ゲート電極に相当する領域以
外をレジストが完全にネガ化しない照射量で露光して、
厚さ方向の途中までネガ化させることによって、上部寸
法は大きくゲート長にあたる下部寸法は小さい断面T字
型のレジストパターンを得、ゲートメタル材料を蒸着し
、リフトオフの工程によって断面T字型のゲート電極が
再現性よく形成される。
[Operation] In the present invention, in order to form a fine gate with low resistance, a region excluding the upper gate electrode portion is exposed by optical exposure using a negative single layer resist structure, and the upper gate electrode portion is exposed by electron beam exposure. The area other than the area corresponding to the lower gate electrode in the part is exposed to a dose that does not completely turn the resist negative.
By negativeizing halfway in the thickness direction, a resist pattern with a T-shaped cross section is obtained, with the upper dimension being large and the lower dimension corresponding to the gate length being small. Gate metal material is deposited, and a gate with a T-shaped cross section is formed through a lift-off process. Electrodes are formed with good reproducibility.

[実施例〕 以下、この発明の一実施例を図面について説明する。[Example〕 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す半導体装置の断面図
である。この図において、1は半絶縁性GaAs基板、
2は活性層、3はソース電極、4はドレイン電極、5は
ゲート長の短い下部ゲート電極とゲート長の長い上部ゲ
ート電極からなる断面T字型のゲート電極、6はゲート
リセスを示す。半絶縁性GaAs基板1を電流は図で横
方向に流れ、その電流を制御するゲート電極5の活性層
2と接している部分の長さ、すなわちゲート長がノj1
である方が特性のよいものが得られる。
FIG. 1 is a sectional view of a semiconductor device showing an embodiment of the present invention. In this figure, 1 is a semi-insulating GaAs substrate;
Reference numeral 2 indicates an active layer, 3 a source electrode, 4 a drain electrode, 5 a gate electrode having a T-shaped cross section consisting of a lower gate electrode with a short gate length and an upper gate electrode with a long gate length, and 6 a gate recess. Current flows horizontally in the semi-insulating GaAs substrate 1 in the figure, and the length of the portion of the gate electrode 5 that controls the current that is in contact with the active layer 2, that is, the gate length is no j1.
If this is the case, a product with better characteristics can be obtained.

この断面T字型のゲート電極5の形成工程を第2図(a
)〜(d)を参照して説明する。
The process of forming the gate electrode 5 having a T-shaped cross section is shown in FIG.
) to (d).

第2図において、1は半絶縁性GaAs基板、2は活性
層、7はネガ型レジスト、8は光学露光領域、9は電子
ビーム露光領域、1oは上部レジスト開口、11は下部
レジスト開口をそれぞれ示す。
In FIG. 2, 1 is a semi-insulating GaAs substrate, 2 is an active layer, 7 is a negative resist, 8 is an optical exposure area, 9 is an electron beam exposure area, 1o is an upper resist opening, and 11 is a lower resist opening. show.

まず、第2図(a)に示すように、半絶縁性GaAs基
板1の上にエピタキシャル成長を用い、活性層2を形成
し、さらにネガ型レジストアを塗布形成する。ネガ型レ
ジストアとしは、例えば5AL601−ER7(シブレ
イ・ファーイースト株式会社製のレジストの商品名)で
膜厚を0.5〜1.3μmとする。
First, as shown in FIG. 2(a), an active layer 2 is formed on a semi-insulating GaAs substrate 1 by epitaxial growth, and then a negative resist is applied. The negative resist is, for example, 5AL601-ER7 (trade name of resist manufactured by Sibley Far East Co., Ltd.) and has a film thickness of 0.5 to 1.3 μm.

次に、このネガ型レジストアに対して第2図(b)に示
すように、光学露光、例えばdeepTJV露光(波長
<300nm)で、上部ゲート電極に対応するパターン
を除く領域(例えば上部ゲート電極幅をLuとするとL
uが0.5〜1゜5μmとした領域)、すなわち第2図
(b)に示す光学露光領域8を露光し前記領域のみ完全
にネガ型レジストアをネガ化させる。この時、ネガ型レ
ジストアは、第4図に示す線図のようにネガ化される。
Next, as shown in FIG. 2(b), this negative resist is subjected to optical exposure, for example, deep TJV exposure (wavelength < 300 nm), to remove the pattern corresponding to the upper gate electrode (for example, the upper gate electrode If the width is Lu, then L
The area where u is 0.5 to 1.5 .mu.m), that is, the optical exposure area 8 shown in FIG. At this time, the negative resist is made negative as shown in the diagram in FIG.

第4図において、縦軸はネガ型レジストのネガ化率、横
軸はネガ型レジストアの位置を示す。第4図のように、
光学露光領域8を完全(ネガ化率1)にネガ化する。
In FIG. 4, the vertical axis shows the negative conversion rate of the negative resist, and the horizontal axis shows the position of the negative resist. As shown in Figure 4,
The optical exposure area 8 is completely negative (negative conversion rate 1).

次に、電子ビーム露光により光学露光領域8内の下部ゲ
ート電極に相当する領域以外、つまり第2図(b)に示
す上部ゲート電極の幅Luの間の下部ゲート電極の領域
Laの両側の領域Lcのみを電子ビームで照射する。例
えば、Lu=1.0μmで、ゲート長Lgを0.2μm
必要なとき、領域LaはLa=axLg (aは1〜2
の値)′の関係の幅でaを1.5とするとLa=0.3
μmとなり、Lc=0.35μmの領域のみを電子ビー
ム露光領域9とする。このとき領域Lcは0゜35μm
より太(なっても問題はない。aは、電子ビーム露光に
よりパターンがシフトする係数である。照射量は第3図
に示すように、レジストの残膜率が0.2〜0.5とな
る照射量Dg、すなわち、Dgは約5〜30uC/cm
2で電子ビームを電子ビーム露光領域9に露光する。第
3図はネガ型レジストアの感度曲線で横軸は照射量、縦
軸はレジストの残膜率(規格値)を示し、Diはレジス
トがネガ化しはじめる照射量、Dhは完全にネガ化する
照射量を示す。前記した5AL601−ER7はDiは
1〜5μc/cm2で高感度であるためDgが前記した
照射量で露光すると、第4図に示すようにレジストが電
子ビーム露光領域9のようにネガ化率0.2〜0.5で
レジストを形成することがでる。
Next, by electron beam exposure, areas other than the area corresponding to the lower gate electrode in the optical exposure area 8, that is, areas on both sides of the area La of the lower gate electrode between the width Lu of the upper gate electrode shown in FIG. 2(b). Only Lc is irradiated with an electron beam. For example, when Lu=1.0μm, the gate length Lg is 0.2μm.
When necessary, the area La is set as La=axLg (a is 1 to 2
If a is 1.5 in the width of the relationship (value of )', then La = 0.3
μm, and only the region Lc=0.35 μm is the electron beam exposure region 9. At this time, the area Lc is 0°35 μm
There is no problem even if it becomes thicker (a is the coefficient by which the pattern shifts due to electron beam exposure.The irradiation amount is determined when the remaining film rate of the resist is 0.2 to 0.5, as shown in Fig. 3). The irradiation amount Dg, that is, Dg is about 5 to 30 uC/cm
In step 2, the electron beam exposure area 9 is exposed to an electron beam. Figure 3 shows the sensitivity curve of a negative resist. The horizontal axis shows the irradiation dose and the vertical axis shows the residual film rate (standard value) of the resist. Di is the irradiation dose at which the resist starts to turn negative, and Dh is the dose at which it becomes completely negative Indicates the irradiation amount. The above-mentioned 5AL601-ER7 has a high sensitivity with Di of 1 to 5 μc/cm2, so when Dg is exposed with the above-mentioned irradiation amount, the resist has a negative conversion rate of 0 as in the electron beam exposure area 9, as shown in FIG. A resist can be formed with a concentration of .2 to 0.5.

電子ビーム露光領域9は、第4図では一例としてネガ化
率0.5で表わしている。前記した工程でネガ型レジス
トアを光学露光と電子ビーム露光でネガ化させ、露光後
のベークをし、アルカリ現像液などで現像し、第2図(
c)に示す上部レジスト開口10の開口幅Luと下部レ
ジスト開口11の開口幅Ldとなるレジストパターンが
得られる。この時、光学露光によってネガレジストを露
光すると、レジスト上部からネガ化が進むため、容易に
逆テーパ状のパターンが得られる。次に、下部レジスト
開口11をマスクにウェットエツチングで活性層2をあ
る厚さ除去し、ゲートリセス6を形成する。その後、全
面にA℃、TiおよびAuなどのゲートメタル材料を蒸
着し、リフトオフ法により不要のゲートメタル材料を除
去し、第2図(d)に示すように下部ゲート電極と上部
ゲート電極からなる断面T字型のゲート電極5を形成し
、第1図に示す半導体装置を形成する。
The electron beam exposure area 9 is shown in FIG. 4 as an example with a negative conversion ratio of 0.5. In the above process, the negative resist is made negative by optical exposure and electron beam exposure, baked after exposure, and developed with an alkaline developer, etc., as shown in Figure 2 (
A resist pattern having the opening width Lu of the upper resist opening 10 and the opening width Ld of the lower resist opening 11 shown in c) is obtained. At this time, when the negative resist is exposed by optical exposure, negativeization progresses from the upper part of the resist, so that a reverse tapered pattern can be easily obtained. Next, a certain thickness of the active layer 2 is removed by wet etching using the lower resist opening 11 as a mask to form a gate recess 6. After that, gate metal materials such as Ti and Au are deposited on the entire surface at A℃, and unnecessary gate metal materials are removed by a lift-off method, resulting in a lower gate electrode and an upper gate electrode, as shown in Figure 2(d). A gate electrode 5 having a T-shaped cross section is formed to form the semiconductor device shown in FIG.

上記この発明による電子ビーム露光の露光時間は、照射
量が従来の115〜1/10になり量産性に有効である
ことを確認している。なお、第2図以降ではソース、ド
レイン電極は省略して示しである。
It has been confirmed that the exposure time of the electron beam exposure according to the present invention is 115 to 1/10 the irradiation amount of the conventional method, and is effective for mass production. Note that the source and drain electrodes are omitted from FIG. 2 onwards.

[発明の効果] 以上説明したように、この発明は、ネガ型レジストを単
層で使用し、光学露光で上部ゲート電極部を除いた領域
を完全にネガ化させ、電子ビーム露光で上部ゲート電極
部内の下部ゲート電極部を除いた領域を完全にネガ化し
ない照射量で露光させて厚み方向の途中までネガ化させ
ることにより、上部レジスト開口は光学露光を用いて形
成されるため、逆テーパーのパターンが安定に形成され
、また、電子ビーム露光の照射量が従来のポジ型レジス
トを用いた方法の115〜1/10で行えるため、量産
性よく、装置を安価に形成でき、微細なゲート長でゲー
ト抵抗の低い高性能なGaAs  MESFET、Ga
As低雑音HEMTなどの製造に有効である。
[Effects of the Invention] As explained above, the present invention uses a single layer of negative resist, completely negativeizes the area except for the upper gate electrode by optical exposure, and forms the upper gate electrode by electron beam exposure. The upper resist opening is formed using optical exposure by exposing the area in the resist part except for the lower gate electrode part with a dose that does not completely make it negative, and making it negative halfway in the thickness direction. The pattern is stably formed, and the dose of electron beam exposure is 115 to 1/10 of that of the conventional method using positive resist, making it possible to mass-produce the device at low cost and making it possible to achieve fine gate lengths. High performance GaAs MESFET with low gate resistance, Ga
It is effective in manufacturing As low noise HEMTs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による半導体装置の一実施例を示す断
面図、第2図はこの発明の半導体装置の製造工程を示す
断面図、第3図はネガ型レジストの感度曲線を示す図、
第4図はネガ型レジストのネガ化率とその位置を示す図
、第5図は従来の半導体装置の製造方法を示す工程断面
図である。 図において、1は半絶縁性GaAs基板、2は活性層、
3はソース電極、4はドレイン電極、5はゲート電極、
6はゲートリセス、7はネガ型レジスト、8は光学露光
領域、9は電子ビーム露光領域、10は上部レジスト開
口、11は下部レジスト開口をそれぞれ示す。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図 ′第 2図(その1) 第 2図(その2) ] 1 第3図 第4図 LCLC 第 5図(ぞの1) 第 5図(その2) 一一−Lh    :
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor device according to the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the present invention, and FIG. 3 is a view showing a sensitivity curve of a negative resist.
FIG. 4 is a diagram showing the negative conversion rate of a negative resist and its position, and FIG. 5 is a process sectional view showing a conventional method for manufacturing a semiconductor device. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an active layer,
3 is a source electrode, 4 is a drain electrode, 5 is a gate electrode,
Reference numeral 6 indicates a gate recess, 7 indicates a negative resist, 8 indicates an optical exposure area, 9 indicates an electron beam exposure area, 10 indicates an upper resist opening, and 11 indicates a lower resist opening. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1' Figure 2 (Part 1) Figure 2 (Part 2) ] 1 Figure 3 Figure 4 LCLC Figure 5 (Zone 1) Figure 5 ( Part 2) 11-Lh:

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、下部ゲート電極と、これより大きい上
部ゲート電極とからなる断面T字型の微細ゲートを有す
る半導体装置の製造方法において、前記半導体基板上に
、ネガ型レジストを塗布し、前記上部ゲート電極に対応
するパターンを除く領域を光学露光し、レジストを完全
にネガ化させる工程と、電子ビーム露光で前記上部ゲー
ト電極部内の前記下部ゲート電極部を除く領域の前記ネ
ガ型レジストを完全にネガ化させない照射量で厚さ方向
の途中までネガ化させる工程と、現像しネガ化されてい
ない部分を除去し、ゲートリセスを形成し、ゲートメタ
ル材料を蒸着し、不要のゲートメタル材料をリフトオフ
により除去する工程を含むことを特徴とする半導体装置
の製造方法。
In a method of manufacturing a semiconductor device having a fine gate having a T-shaped cross section, consisting of a lower gate electrode and a larger upper gate electrode on a semiconductor substrate, a negative resist is applied on the semiconductor substrate; A step of optically exposing a region excluding the pattern corresponding to the gate electrode to completely make the resist negative, and completely removing the negative resist in the region of the upper gate electrode region excluding the lower gate electrode region by electron beam exposure. A process of making the part of the thickness negative with a dose that does not make it negative, developing and removing the part that is not negative, forming a gate recess, depositing gate metal material, and removing unnecessary gate metal material by lift-off. A method for manufacturing a semiconductor device, comprising a step of removing.
JP31220590A 1990-11-16 1990-11-16 Manufacture of semiconductor device Pending JPH04186639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31220590A JPH04186639A (en) 1990-11-16 1990-11-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31220590A JPH04186639A (en) 1990-11-16 1990-11-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04186639A true JPH04186639A (en) 1992-07-03

Family

ID=18026472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31220590A Pending JPH04186639A (en) 1990-11-16 1990-11-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04186639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679497A (en) * 1995-03-24 1997-10-21 Mitsubishi Denki Kabushiki Kaisha Resist material and method for forming resist pattern
JP2012094726A (en) * 2010-10-28 2012-05-17 Fujitsu Ltd Field-effect transistor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679497A (en) * 1995-03-24 1997-10-21 Mitsubishi Denki Kabushiki Kaisha Resist material and method for forming resist pattern
JP2012094726A (en) * 2010-10-28 2012-05-17 Fujitsu Ltd Field-effect transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6635404B1 (en) Structure and process method of gamma gate for HEMT
JPH04186639A (en) Manufacture of semiconductor device
JPH04177738A (en) Manufacture of semiconductor device
JPS6177370A (en) Pattern formation
JP2894485B2 (en) Method for manufacturing field effect transistor
KR100592765B1 (en) Fabrication method for T-gate of a semiconductor element
JP3080215B2 (en) Method for manufacturing field effect transistor
JPH04179128A (en) Manufacture of semiconductor device
JPS6341078A (en) Manufacture of semiconductor device
JPS6215861A (en) Manufacture of semiconductor device
JPH0442940A (en) Manufacture of semiconductor device
JPH02180032A (en) Manufacture of gaas mesfet
JPH01243476A (en) Formation of electrode
JPH02273939A (en) Manufacture of field effect type semiconductor device
JPS6267879A (en) Field effect transistor
JP2558766B2 (en) Method for manufacturing semiconductor device
JPH04167533A (en) Manufacture of semiconductor device
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JP2626238B2 (en) Method for manufacturing semiconductor device
JPH02275643A (en) Manufacture of semiconductor device
JPH05335338A (en) Manufacture of semiconductor device
JPH0629322A (en) Formation of gate electrode of field-effect transistor
JPS58199567A (en) Schottky barrier field effect transistor and manufacture thereof
JPH09266216A (en) Semiconductor device