JPS6177370A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS6177370A
JPS6177370A JP19880484A JP19880484A JPS6177370A JP S6177370 A JPS6177370 A JP S6177370A JP 19880484 A JP19880484 A JP 19880484A JP 19880484 A JP19880484 A JP 19880484A JP S6177370 A JPS6177370 A JP S6177370A
Authority
JP
Japan
Prior art keywords
resist film
gate
irradiation
resist
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19880484A
Other languages
Japanese (ja)
Other versions
JPH0630361B2 (en
Inventor
Yoshimi Yamashita
良美 山下
Kinshiro Kosemura
小瀬村 欣司郎
Hidetoshi Ishiwari
石割 秀敏
Sumio Yamamoto
純生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59198804A priority Critical patent/JPH0630361B2/en
Publication of JPS6177370A publication Critical patent/JPS6177370A/en
Publication of JPH0630361B2 publication Critical patent/JPH0630361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a gate T-type in cross-section with shorter length of the part of contact with the active region of the semiconductor device than conventional and with a larger dimension of its upper part, by a method wherein apertures are formed each in the upper and lower resist films to electrode dimension, and an electrode metal material is evaporated; then, the metal material except in electrodes is removed. CONSTITUTION:A non-doped GaAs buffer layer 2 and an N-GaAs active layer 3 are successively epitaxially grown on a semi-insulation GaAs substrate 1; further, the lower resist film 4 of resist CMR and the upper resist film 5 of resist EBR-9 are successively formed by coating. Next, these resist films are irradiated with electron beams in amounts of irradiation shown by the line diagram of Fig. (b). The transverse axis represents positions on the upper resist film 5, and the longitudinal axis represents amounts of irradiation and intensities: an amount of irradiation Da indicated by a numeral 7 and an amount of irradiation Do indicated by a numeral 6 express the amount of irradiation of auxialiary exposure only to the upper resist film 5 and the amount of irradiation of exposure to the lower resist film, respectively. Then, as shown by Fig. (d), a gate recess 10 is formed by wet etching with the mask of the resist film with an aperture 9, and a gate metal material 11 is evaporated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパターン形成方法、例えば高周波電界効果半導
体装置の低抵抗微細ゲートの形成において、レジストを
2層構造にし、電子ビーム露光による補助露光を加えて
広範囲寸法の断面T字型の′ゲートをリフトオフ法によ
る作る方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a pattern forming method, for example, in the formation of a low-resistance fine gate for a high frequency field effect semiconductor device, the resist is made into a two-layer structure and auxiliary exposure by electron beam exposure is performed. In addition, the present invention relates to a method of making gates having a T-shaped cross section with a wide range of dimensions by a lift-off method.

〔従来の技術〕[Conventional technology]

ガリウム砒素(GaAs) 、高電子移動トランジスタ
(OEMT)等の高周波FETにおいては、特性向上の
ため特にゲート電極が短いゲート長のものであり、かつ
、低抵抗のものであることが要求され、そのため番こ断
面T字型のゲート形成技術の研究がなされている。
In high-frequency FETs such as gallium arsenide (GaAs) and high electron mobility transistors (OEMTs), gate electrodes are particularly required to have short gate lengths and low resistance in order to improve characteristics. Research is being carried out on techniques for forming gates with a T-shaped cross section.

第1図(blに本発明実施例が断面図で示されるが、図
示の実施例を参照すると、2はノンドープGaAs゛バ
ッファ層、3はn−GaAs活性層、10はゲートリセ
ス、12はゲート、13はソース電極、14はドレイン
電極をそれぞれ示す。活性層3を電流は図に見て左右の
横方向に流れ、それを止める(電流を制限する)ゲート
12の活性N3と接続している部分の電流の流れ方向の
長さが小であるほど良い特性が得られる。前記したゲー
ト長とはゲートの電流の流れる方向の長さをいうもので
ある。
An embodiment of the present invention is shown in cross-sectional view in FIG. Reference numeral 13 indicates a source electrode, and reference numeral 14 indicates a drain electrode.A current flows horizontally in the left and right directions in the active layer 3, and this is stopped (limits the current) at a portion connected to the active N3 of the gate 12. The smaller the length of the gate in the direction of current flow, the better the characteristics can be obtained.The gate length mentioned above refers to the length of the gate in the direction of current flow.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した如くゲート長を小にするとゲートの抵抗は大に
なる。ゲート長を小にする一方でゲート抵抗を小にする
ためにゲートの断面積を大にする、という互いに相反す
る要求を満足するために開発されたものが図示のT字型
断面のゲートである。
As described above, when the gate length is made small, the gate resistance becomes large. The T-shaped cross-sectional gate shown in the figure was developed to satisfy the contradictory requirements of increasing the cross-sectional area of the gate in order to reduce the gate length and reduce the gate resistance. .

かかるT字型断面のゲートを作る方法として、従来2N
レジスト、3層レジスト構造が用いられているが、ゲー
ト長0.15μmに対し、T字型ゲートの上部寸法は0
.6μm程度の寸法にしか形成されず、この上部寸法を
より大になし得るゲートの形成方法が求められている。
As a method of making such a gate with a T-shaped cross section, the conventional 2N
A three-layer resist structure is used, but the gate length is 0.15 μm, and the upper dimension of the T-shaped gate is 0.
.. There is a need for a method for forming a gate that can be formed to a size of only about 6 μm and that can make the upper size larger.

他方、金属層を中間層として現像レベルを変化させてT
字型断面のゲートを形成する方法も提案されているが、
この方法ではプロセスの工程数が多くなるという問題が
ある。
On the other hand, by using a metal layer as an intermediate layer and changing the development level, T
A method of forming a gate with a letter-shaped cross section has also been proposed;
This method has a problem in that the number of process steps increases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し断面T字型のゲートを、半
導体装置の活性領域表接触する部分の長さくゲートの下
部寸法)は従来よりも小に、またゲートの上部寸法は従
来のものよりも大に形成する方法を提供するもので、そ
の手段は、基板上に断面T字型電極を形成する方法にし
て、前記基板上に順に下層レジスト膜と該下層レジスト
膜よりも感度の大なる上層レジスト膜を形成し、電子ビ
ームの照射量を変更することにより、上層レジスト膜と
下層レジスト膜に前記電極の上部寸法と下部寸法番こそ
れぞれ対応する開口を形成し、これら開口を通して電極
メタル材料を蒸着し、リフトオフ法により電極以外のメ
タル材料を除去することを特徴とするパターン形成方法
によって達成される。
The present invention solves the above problems and provides a gate with a T-shaped cross section.The length of the part that contacts the active region surface of a semiconductor device (the lower dimension of the gate) is smaller than that of the conventional one, and the upper dimension of the gate is smaller than that of the conventional one. The present invention provides a method of forming a T-shaped cross-section electrode on a substrate, and sequentially forming a lower resist film and a T-shaped electrode having a higher sensitivity than the lower resist film on the substrate. By forming an upper resist film and changing the amount of electron beam irradiation, openings corresponding to the upper and lower dimensions of the electrode are formed in the upper resist film and the lower resist film, and the electrode metal is passed through these openings. This is achieved by a pattern forming method characterized by depositing a material and removing metal material other than the electrodes by a lift-off method.

〔作用〕[Effect]

上記方法においては、低抵抗微細ゲート長のT字型断面
のゲートを作るために、レジストを2N構造のものとし
、上層のレジストは高感度のものとし、下層のレジスト
は上層のレジストよりは低感度のものとし、電子ビーム
露光によるゲートパターン露光にEBの補助露光を加え
、上層レジストのパターンは大なる寸法に形成し、ゲー
ト形成金属の蒸着、リフトオフの工程によってT字型断
面ゲートの上部寸法を大にするものである。
In the above method, in order to create a gate with a T-shaped cross section with a small gate length and low resistance, the resist has a 2N structure, the upper layer resist is of high sensitivity, and the lower layer resist is lower than the upper layer resist. By adding EB auxiliary exposure to the gate pattern exposure using electron beam exposure, the pattern of the upper resist layer is formed to a large size, and the upper size of the T-shaped cross-section gate is adjusted by vapor deposition of gate forming metal and lift-off process. It is something that increases the.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の方法によって形成されるT字型断面のゲートは
第1図fatとそのB−B線に沿う断面図である同図f
blに示され、その各部は前記に説明した如くである。
A gate with a T-shaped cross section formed by the method of the present invention is shown in FIG.
bl, and its parts are as described above.

図示の例で、ゲートの下部寸法、すなわちゲートの活性
層3に接する部分の長さLbと上部寸法Luは、Lb=
 0.1〜0.5 /j mに対してLuを1.5〜2
.5μmに形成可能であることが確認された。次に、か
かるゲートを形成する方法を第2図の断面図と線図を参
照して説明する。
In the illustrated example, the lower dimension of the gate, that is, the length Lb of the portion of the gate in contact with the active layer 3 and the upper dimension Lu, are Lb=
0.1-0.5 /j Lu 1.5-2 for m
.. It was confirmed that it could be formed to a thickness of 5 μm. Next, a method for forming such a gate will be explained with reference to the cross-sectional view and line diagram of FIG.

第2図fatに示される如く、半絶縁性GaAs基板1
」―に順にノンドープGaAsバッファ層2、n−Ga
As活性層3 (n = I XIO”〜2 X 10
 ”/ cm3)をエピタキシャル成長し、更に順にレ
ジストCMR(CMRは特開昭54−66829号に開
示のレジスト)の膜厚0.1〜0.6μmの下層レジス
ト膜4、レジストEBl?−9(EBR−9は東し株式
会社製のレジストの商品名)の上層レジスト膜5 (膜
厚0.6〜2.0μm)を塗布形成する。
As shown in FIG. 2, a semi-insulating GaAs substrate 1
” - non-doped GaAs buffer layer 2, n-Ga
As active layer 3 (n = IXIO"~2X10
"/cm3) is epitaxially grown, and then a lower resist film 4 of resist CMR (CMR is the resist disclosed in JP-A-54-66829) with a thickness of 0.1 to 0.6 μm, and resist EBL-9 (EBR) are grown in order. An upper resist film 5 (film thickness: 0.6 to 2.0 μm) (9 is the trade name of a resist manufactured by Toshi Co., Ltd.) is formed by coating.

次に、これらのレジスト膜に第2図fblの線図に示さ
れる照射量の電子ビームを照射する。なお、この線図に
おいて、横軸は上層レジスト膜5上の位置、縦軸は照射
量、強度を示し、7で示される照射量Daは上層レジス
ト膜5のみを露光する補助露光、6で示される照射量D
Oは下層レジスト膜を露光する露光の照射量をそれぞれ
表す。かかる露光は、電子ビームの露光条件を変えるこ
とによってなされ、例えばパターンデータに従って、D
a7の部分はある速度で走査して照射量を数μC/CW
12〜数10μC/Cm2 とし、Do6の部分は前記
速度よりもより遅い速度で走査して照射量を0.5nC
/ cm2〜5 nC/ cm2にすることによってな
しうる。
Next, these resist films are irradiated with an electron beam at a dose shown in the diagram of FIG. 2 fbl. In this diagram, the horizontal axis shows the position on the upper resist film 5, and the vertical axis shows the irradiation amount and intensity. irradiation amount D
O each represents the exposure dose for exposing the lower resist film. Such exposure is performed by changing the exposure conditions of the electron beam, for example, according to the pattern data, D
The part a7 is scanned at a certain speed and the irradiation amount is several μC/CW.
12 to several tens of μC/Cm2, and the Do6 part was scanned at a slower speed than the above speed to reduce the irradiation amount to 0.5 nC.
/ cm2 to 5 nC/cm2.

メチルイソブチルケトン(MIBK)とイソプロピルア
ルコール(IPA)の混合液でレジスト膜を現像すると
第2図(C1に示されるパターンが得られる。
When the resist film is developed with a mixed solution of methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA), a pattern shown in FIG. 2 (C1) is obtained.

同図に符号8で示す範囲はDa7で示した電子ビーム露
光によって得られたレジスト膜5の開口、符号9で示す
範囲はDo6で示した電子ビーム露光によって得られた
レジスト膜4の開口である。なお、第2図(C1以下に
おいてGaAs基板1は省略しである。
In the figure, the range indicated by reference numeral 8 is the opening of the resist film 5 obtained by the electron beam exposure indicated by Da7, and the range indicated by reference numeral 9 is the opening of the resist film 4 obtained by the electron beam exposure indicated by Do6. . Note that the GaAs substrate 1 is omitted from FIG. 2 (C1 and below).

次に、第2図fdlに示される如く、開口9のレジスト
膜をマスクにしてウェットエツチングでゲートリセス1
0を形成する。このゲートリセスは、活性層3を流れる
電流を遮断しうるに適する厚さの活性層を残すように形
成する。次いで、 A7!、Ti。
Next, as shown in FIG.
form 0. This gate recess is formed to leave the active layer with a thickness suitable for blocking the current flowing through the active layer 3. Next, A7! , Ti.

ptまたはAuの如きゲートメタル材料11を蒸着する
A gate metal material 11, such as PT or Au, is deposited.

次に、リフトオフによってレジスト膜4.5を除去しレ
ジスト膜5の上のゲートメタル材料11を除去すると、
第2図fa)に示されるゲート12が得られる。
Next, when the resist film 4.5 is removed by lift-off and the gate metal material 11 on the resist film 5 is removed,
A gate 12 as shown in FIG. 2 fa) is obtained.

最後にソース電極13、ドレイン電極14を通常の技術
で形成して第1図に示されるGaAs MES FET
を完成する。
Finally, a source electrode 13 and a drain electrode 14 are formed using conventional techniques to form the GaAs MES FET shown in FIG.
complete.

T字型断面ゲート12において、前記の如(上部寸法を
Lu、下部寸法(ゲート長)をLbとし、第2図fb)
に示される低照射量部分の一方の長さく照射幅)をla
とし、更に前述の如く6で示すゲート弄光の照射量をD
o、7で示す補助露光の照射量をDaとしたとき、本発
明者の実施した実験の結果を第3図の線図に示す。なお
、第3図において、横軸には照射量をnC7cmで示し
、縦軸にはLb+ Luをμmで示し、実線曲線はゲー
ト12の上部寸法、点線曲線はゲート12の下部寸法を
表示する。
In the T-shaped cross-sectional gate 12, as described above (the upper dimension is Lu and the lower dimension (gate length) is Lb, Fig. 2 fb).
The length and irradiation width of one of the low irradiation portions shown in
Furthermore, as mentioned above, the irradiation amount of the gate light shown by 6 is D.
The results of the experiment carried out by the present inventor are shown in the diagram of FIG. 3, where Da is the irradiation amount of the auxiliary exposure shown by o, 7. In FIG. 3, the horizontal axis shows the irradiation dose in nC7cm, the vertical axis shows Lb+Lu in μm, the solid line curve shows the upper dimension of the gate 12, and the dotted line curve shows the lower dimension of the gate 12.

曲線AはA!a =1.0 ptn % Da=15.
c+c 70m2、曲線BはRa =0.511m 、
、 Da=15μC70m2、曲線Cは1a−0、Da
= Oのときを、また曲線りはl a −1’、Oμm
 、 Da=15μC70m2、曲線Eはj!a =0
.5 μm、Da=、15#’C70m2、曲線Fは1
1a =O1Da=0のときの結果を表す。従来、上部
寸法は0.6μm、下部寸法は0.15μmが限度であ
ったものが、同図の示す如く、上部寸法は1.5〜2.
5μmに、また下部寸法は0.1〜0.5μmの範囲に
形成可能であり、例えばLbを0.1μmにしてLuを
1μm以上にしうろことが確認された。このことは、従
来に比べてゲート長を短かくし、ゲート抵抗をゲート長
が1μm台のときの低い値になしうろこと、例えばゲー
ト抵抗を25倍程度に下げうろことを示すものである。
Curve A is A! a = 1.0 ptn % Da = 15.
c+c 70m2, curve B is Ra = 0.511m,
, Da=15μC70m2, curve C is 1a-0, Da
= O, and the curve is l a -1', Oμm
, Da=15μC70m2, curve E is j! a = 0
.. 5 μm, Da=, 15#'C70m2, curve F is 1
The results are shown when 1a=O1Da=0. Conventionally, the upper dimension was limited to 0.6 μm and the lower dimension to 0.15 μm, but as shown in the figure, the upper dimension was limited to 1.5 to 2.5 μm.
It was confirmed that it is possible to form the lower part with a diameter of 5 μm and a lower dimension in the range of 0.1 to 0.5 μm, for example, Lb can be set to 0.1 μm and Lu can be set to 1 μm or more. This indicates that it is possible to shorten the gate length and reduce the gate resistance to a value as low as when the gate length is on the order of 1 μm, for example, to reduce the gate resistance by about 25 times.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、レジスト膜を2層
構造にし、上層レジスト膜を下層レジスト膜よりも感度
の大なるものとし、パターンデータに従い電子ビーム照
射の照射量を適宜変更することにより、上層レジスト膜
にはゲートの上部寸法に対応する大なる寸法の開口を、
また下層レジスミ−膜にはゲート長(ゲートの下部寸法
)に対応する小なる寸法の開口を形成し、これら開口を
通してゲートメタル材料を蒸着し、不要部分はリフトオ
フにより取り去ることにより、従来例より小なるゲート
長で、従来例より大なる上部寸法(このことはゲート抵
抗の減少につながる)のT字型断面ゲートが形成される
ので、特性に優れたGaAsMES FETなどの製造
に有効である1、
As explained above, according to the present invention, the resist film has a two-layer structure, the upper resist film has higher sensitivity than the lower resist film, and the dose of electron beam irradiation is appropriately changed according to the pattern data. , an opening with large dimensions corresponding to the upper dimension of the gate is formed in the upper resist film.
In addition, by forming an opening with a small size corresponding to the gate length (lower dimension of the gate) in the lower resistive film, depositing the gate metal material through these openings, and removing unnecessary parts by lift-off, the structure is made smaller than the conventional example. With a gate length of

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alと(blは本発明方法によって形成される
GaAs MF、S FETの平面図と断面図、第2図
+al 、 +8) 。 (di 、 (81は本発明の方法を実施する工程にお
ける半導体装置要部の断面図、第2図(blは第2図(
e)のパターンを得る電子ビームの照射量を示す線図、
第3図は本発明の方法における電子ビームの照射量とゲ
〒トの上部寸法および下部寸法との関係を示す線図であ
る。 図中、1は半絶縁性GaAs基板、2はノンドープGa
Asバッファ層、3はn−GaAs活性層、4は下層レ
ジスト膜、5は上層レジスト膜、6はゲートパターン電
子ビーム露光を示す線、7は電子ビーム補助露光を示す
線、8は上層レジスト膜の開口、9は下層レジスト膜の
開口、10はゲートリセス、11はゲートメタル材料、
12はゲート、13はソース電極、14はドレイン電極
、をそれぞれ示す。 第1図 1″) 第2図 第2図 第3図
Figure 1 (al and (bl) are a plan view and cross-sectional view of GaAs MF, S FET formed by the method of the present invention, Figure 2 +al, +8). (di, (81 is a step of carrying out the method of the present invention) A cross-sectional view of the main part of a semiconductor device in FIG. 2 (bl is in FIG. 2 (
A diagram showing the irradiation amount of the electron beam to obtain the pattern e),
FIG. 3 is a diagram showing the relationship between the electron beam irradiation amount and the upper and lower dimensions of the gate in the method of the present invention. In the figure, 1 is a semi-insulating GaAs substrate, 2 is a non-doped Ga
As buffer layer, 3 is n-GaAs active layer, 4 is lower resist film, 5 is upper resist film, 6 is a line indicating gate pattern electron beam exposure, 7 is a line indicating electron beam auxiliary exposure, 8 is upper resist film 9 is an opening in the lower resist film, 10 is a gate recess, 11 is a gate metal material,
12 represents a gate, 13 represents a source electrode, and 14 represents a drain electrode. Figure 1 1'') Figure 2 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  基板上に断面T字型電極を形成する方法にして、前記
基板上に順に下層レジスト膜と該下層レジスト膜よりも
感度の大なる上層レジスト膜を形成し、電子ビームの照
射量を変更することにより、上層レジスト膜と下層レジ
スト膜に前記電極の上部寸法と下部寸法にそれぞれ対応
する開口を形成し、これら開口を通して電極メタル材料
を蒸着し、リフトオフ法により電極以外のメタル材料を
除去することを特徴とするパターン形成方法。
A method of forming a cross-sectional T-shaped electrode on a substrate, forming a lower resist film and an upper resist film having higher sensitivity than the lower resist film in order on the substrate, and changing the amount of electron beam irradiation. By forming openings corresponding to the upper and lower dimensions of the electrode in the upper resist film and the lower resist film, respectively, depositing the electrode metal material through these openings, and removing the metal material other than the electrode by a lift-off method. Characteristic pattern formation method.
JP59198804A 1984-09-21 1984-09-21 Pattern formation method Expired - Lifetime JPH0630361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198804A JPH0630361B2 (en) 1984-09-21 1984-09-21 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198804A JPH0630361B2 (en) 1984-09-21 1984-09-21 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS6177370A true JPS6177370A (en) 1986-04-19
JPH0630361B2 JPH0630361B2 (en) 1994-04-20

Family

ID=16397187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198804A Expired - Lifetime JPH0630361B2 (en) 1984-09-21 1984-09-21 Pattern formation method

Country Status (1)

Country Link
JP (1) JPH0630361B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299245A (en) * 1989-05-15 1990-12-11 Rohm Co Ltd Manufacture of field-effect transistor
JPH03185739A (en) * 1989-12-01 1991-08-13 Hughes Aircraft Co Self-aligning t gate hemt
JPH03283434A (en) * 1990-03-29 1991-12-13 Sharp Corp Formation of electrode
US5391899A (en) * 1991-10-29 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with a particular gate structure
JPH07335671A (en) * 1994-06-13 1995-12-22 Nec Corp Manufacture of t-type gate electrode
JPH08186128A (en) * 1994-12-19 1996-07-16 Korea Electron Telecommun Gate formation of field-effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105326A (en) * 1979-02-07 1980-08-12 Matsushita Electronics Corp Manufacturing method of electrode of semiconductor device
JPS5623783A (en) * 1979-08-01 1981-03-06 Matsushita Electronics Corp Formation of electrode for semiconductor device
JPS57183037A (en) * 1981-05-06 1982-11-11 Nec Corp Formation of pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105326A (en) * 1979-02-07 1980-08-12 Matsushita Electronics Corp Manufacturing method of electrode of semiconductor device
JPS5623783A (en) * 1979-08-01 1981-03-06 Matsushita Electronics Corp Formation of electrode for semiconductor device
JPS57183037A (en) * 1981-05-06 1982-11-11 Nec Corp Formation of pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299245A (en) * 1989-05-15 1990-12-11 Rohm Co Ltd Manufacture of field-effect transistor
JPH03185739A (en) * 1989-12-01 1991-08-13 Hughes Aircraft Co Self-aligning t gate hemt
JPH03283434A (en) * 1990-03-29 1991-12-13 Sharp Corp Formation of electrode
US5391899A (en) * 1991-10-29 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with a particular gate structure
JPH07335671A (en) * 1994-06-13 1995-12-22 Nec Corp Manufacture of t-type gate electrode
JPH08186128A (en) * 1994-12-19 1996-07-16 Korea Electron Telecommun Gate formation of field-effect transistor

Also Published As

Publication number Publication date
JPH0630361B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US4959326A (en) Fabricating T-gate MESFETS employing double exposure, double develop techniques
KR940007074B1 (en) Fabrication of self-alligned t-gate hemt
US5147740A (en) Structure and process for fabricating conductive patterns having sub-half micron dimensions
US5981319A (en) Method of forming a T-shaped gate
JP4838171B2 (en) Method for forming T-gate of high electron mobility transistor
JPS6177370A (en) Pattern formation
Hosogi et al. Photo/EB hybrid exposure process for T-shaped gate superlow-noise HEMTs
JPS61105845A (en) Opening formation
JPH04177738A (en) Manufacture of semiconductor device
Lee et al. Fabrication of ultrasmall devices on thin active GaAs membranes
JPH04186639A (en) Manufacture of semiconductor device
JPH04179128A (en) Manufacture of semiconductor device
US4621415A (en) Method for manufacturing low resistance sub-micron gate Schottky barrier devices
Patrick et al. Optimization of the proximity parameters for the electron beam exposure of nanometer gate‐length GaAs metal–semiconductor field effect transistors
JPH0442940A (en) Manufacture of semiconductor device
JPH03194926A (en) Manufacture of semiconductor device
JPH0371645A (en) Manufacture of semiconductor device
Cheng et al. The fabrication of metallic nanotransistors
JPH02273939A (en) Manufacture of field effect type semiconductor device
JPH03165040A (en) Manufacture of semiconductor device
Chang et al. Fabrication of lateral superlattices using multilayer resist techniques
JPH04167533A (en) Manufacture of semiconductor device
JPH01128431A (en) Manufacture of mask for x-ray exposure
JPS5923565A (en) Manufacture of semiconductor device
JPH02263443A (en) Field effect transistor