JPS6266628A - Forming method for interconnection of semiconductor element - Google Patents

Forming method for interconnection of semiconductor element

Info

Publication number
JPS6266628A
JPS6266628A JP20523085A JP20523085A JPS6266628A JP S6266628 A JPS6266628 A JP S6266628A JP 20523085 A JP20523085 A JP 20523085A JP 20523085 A JP20523085 A JP 20523085A JP S6266628 A JPS6266628 A JP S6266628A
Authority
JP
Japan
Prior art keywords
melting point
high melting
point metal
wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20523085A
Other languages
Japanese (ja)
Inventor
Kimihisa Fushimi
伏見 公久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20523085A priority Critical patent/JPS6266628A/en
Publication of JPS6266628A publication Critical patent/JPS6266628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a hillock from generating from the side of interconnections by coating the side of the interconnections having a layer structure of high melting point metal and aluminum or aluminum alloy with a high melting point metal. CONSTITUTION:Aluminum or aluminum alloy 12 and then W13 as the first high melting point metal are continuously deposited in vacuum on an Si substrate 11. Then, interconnections 14 of a layer structure made of remaining Al-Si film 12 and remaining W film 13 are formed by photolithography and dry etching. Subsequently, a Ti film 15 is deposited in vacuum as the second high melting point metal on the entire substrate 11 including the interconnections 14. Then, when the film 15 is reactive ion etched, the portion on the horizontal surface of the film 15 is eliminated, but the vertical portion of the side of the interconnection 14 remains. Accordingly, interconnections coated with the film 13 on the upper surface and the film 15 on the sides are obtained. According to the interconnection, even if annealed, it can suppress a hillock from generating from the side.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体素子の配線形成方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for forming wiring of a semiconductor element.

(従来の技術) 従来、半導体素子の配線として、IEEE1984V−
MICConf、論文集、ドナルド・ニス−ガードナー
(DonaJ、d S、 Gardner )外、′ア
ルミニクムアロイズ・ウィズ・チタニウム会タングステ
ン番アンド・カバー・フォーΦマルチレイヤー・インタ
ーコネクションズ(ALUMINUM ALLOYS 
WITHTITANIUM、TUNGSTEN、AND
  C0PPERFORMULTILAYERINTE
RCONNECTIONS)”に示されるような、高融
点金属(例えはW、Ti)とA/またはA/  系合金
との層構造をもつ配線が提案されている。
(Prior art) Conventionally, IEEE1984V-
MICConf, Collected Papers, Donald Niss-Gardner et al., 'ALUMINUM ALLOYS WITH TITANIUM TECHNOLOGIES AND COVERS FOR ΦMULTI-LAYER INTERCONNECTIONS
WITHITANIUM, TUNGSTEN, AND
C0PPERFORMULTILAYERINTE
A wiring having a layered structure of a high melting point metal (eg W, Ti) and an A/ or A/ alloy has been proposed, as shown in "RCONNECTIONS".

第2図は、その[1造をもつ従来の配線の形成方法を示
す断面図である。
FIG. 2 is a cross-sectional view showing a conventional method for forming wiring having the [1 structure].

まず、第2図(a)に示すように、シリコン基板l上に
、AlまたはAl系合金2(例えばAl−8t)、続い
て高融点金属3(例えばW、Ti)をスパッタ法などで
連続的に真空蒸着する。次いで、これにホトリソ・エツ
チングを行うことにより、第2図(b)に示すように、
上面が高融点金属3で榎われたAlまたはAl系合金2
からなる配線4を形成する。
First, as shown in FIG. 2(a), Al or an Al-based alloy 2 (e.g. Al-8t) and then a high melting point metal 3 (e.g. W, Ti) are successively deposited on a silicon substrate l by sputtering or the like. vacuum evaporated. Next, by performing photolithography and etching on this, as shown in FIG. 2(b),
Al or Al-based alloy 2 whose upper surface is covered with a high melting point metal 3
A wiring 4 consisting of the following is formed.

ここで、エツチングはドライエツチングで行われ、Wは
CF4. TiはCF4+ BCl3. A/−8iは
CF’4+BCA?3ガヌでエツチングできる。
Here, etching is performed by dry etching, and W is CF4. Ti is CF4+ BCl3. Is A/-8i CF'4+BCA? It can be etched with 3 ganu.

(発明が解決しようとする問題点) しかしながら、上記のような配線4では、配線形成後の
アニール(例えば450℃、H2雰囲気中)を行うと、
上面が高融点金属3で覆われたため、ストレスが、高融
点金属で覆われていない側面に集中する結果、第2図(
c)に示すように、側面からヒロック5が発生してしま
う。そして、側面からヒロック5が発生すると、第3図
((転)に示すよ□うに、隣接した配#J4両刃から発
生したヒロック5が互いに接触して配線4間で短絡が生
じるという問題点があった。また、第3図(b)に示す
ように層間絶縁膜6および上層Al配線7を形成した場
合、層間絶縁@6をヒロック5が突き抜けて、上IAI
配線7との間で短絡が生じるという問題点があった。
(Problems to be Solved by the Invention) However, in the wiring 4 as described above, if annealing (for example, at 450° C. in H2 atmosphere) after wiring formation is performed,
Since the top surface is covered with the high melting point metal 3, stress is concentrated on the side surface not covered with the high melting point metal, as shown in Figure 2 (
As shown in c), hillocks 5 occur from the sides. When hillocks 5 occur from the sides, the hillocks 5 generated from the adjacent two edges of wiring #J4 come into contact with each other, causing a short circuit between the wirings 4, as shown in Fig. 3 ((roll)). Furthermore, when the interlayer insulating film 6 and the upper layer Al wiring 7 are formed as shown in FIG.
There was a problem in that a short circuit occurred with the wiring 7.

(問題点を解決するための手段) この発明は、上記の問題点を解決するため、AIまたは
AI系合金上に高融点金属(第1の高融点金属)を有す
る配線を半導体基板上に形成した後、その配線上を含む
前記基板上の全面に第2の高融点金属を被着し、その後
、第2の高融点金属をリアクティブイオンエツチングす
る。
(Means for Solving the Problems) In order to solve the above problems, the present invention forms a wiring having a high melting point metal (first high melting point metal) on an AI or an AI-based alloy on a semiconductor substrate. After that, a second high melting point metal is deposited on the entire surface of the substrate including the wiring, and then the second high melting point metal is subjected to reactive ion etching.

(作用) すると、第2の高融点金属は、前記配線の側面にのみ残
り、その結果、上面が第1の高融点金属、側面が第2の
高融点金属で横われた配線が形成される。
(Function) Then, the second high melting point metal remains only on the side surfaces of the wiring, and as a result, a wiring is formed in which the top surface is the first high melting point metal and the side surfaces are the second high melting point metal. .

(笑施例) 以下この発明の一実施例を第1図を参照して説明する。(lol example) An embodiment of the present invention will be described below with reference to FIG.

。 まず、第1図(a)に示すように、シリコン基板11上
にA/ またはAJ系合金としてA/−1,51i 1
2を600OA、続いて第1の高融点金属としてW(タ
ングステン)13をLOOOA連続的に真空蒸着する。
. First, as shown in FIG. 1(a), an A/-1,51i 1
Then, W (tungsten) 13 as the first high melting point metal was continuously vacuum-deposited at 600OA.

。 次に、これに通常の方法でホトリソグラフィを行い、ド
ライエツチングすることによって、第1図(b)に示す
ように残存AI!−8t l 2および残存W13から
なるem造の配線14を形成する。ここで、エツチング
条件は、W13HCF4ガス200SCCM 、 20
 Pa 、 1.2KW、 Al −8i l 2はC
FJBC13=)    40/200,25Pa、1
.2KWとTる。
. Next, by photolithography and dry etching in the usual manner, the remaining AI is removed as shown in FIG. 1(b). -8t l 2 and the remaining W13 form the em-structure wiring 14. Here, the etching conditions are W13HCF4 gas 200SCCM, 20
Pa, 1.2KW, Al-8il 2 is C
FJBC13=) 40/200, 25Pa, 1
.. It is 2KW.

1    続いて、上記配置14上を含むシリコン基板
11:′    上の全面に第1図(c)に示すように
、第2の高融点1  金属としてTi (チタン)15
を300OA真空蒸1  着によって被着する。
1 Subsequently, as shown in FIG. 1(c), Ti (titanium) 15 as a second high melting point metal is applied to the entire surface of the silicon substrate 11:' including the above arrangement 14.
Deposited by one layer of 300OA vacuum evaporation.

次に、リアクティブイオンエツチング法にょっ□   
てTi 15を全面エツチングする。ここで、エッチ1
  7′9件叱叩・′。′・=40/200SCCM・
25P゛・□ □   1.2KWとする。この時、Ti15のエラチ
ンブレ1  −トは400X/m、Wは40℃−である
。また、工)  ツテンダ終点は、シリコン基板11上
OTi l 5ス 1  が無く9た時点とする・ 1    このようにして’pi 15のリアクティブ
イオン1  エツチングを行うと、リアクティブイオン
エッチ1  ンダの特性から、Ti t 5のうち、水
平面上の部分(シリコン基板11表面上の部分および配
線14上の部分)はエツチングされて無くなってしまう
が、配線14の側面の垂直な部分は、第1図(d)に示
すように、多少膜厚が薄くなるものの、側面に沿って残
る。
Next, use the reactive ion etching method.
Then, etching the Ti 15 over the entire surface. Here, sex 1
7'9 scoldings/'. '・=40/200SCCM・
25P゛・□ □ 1.2KW. At this time, the Ti15 elachin bullet was 400X/m and W was 40°C. In addition, the end point of the etching process is the point when there is no OTi on the silicon substrate 11. When reactive ion etching of 'pi 15 is performed in this way, the reactive ion etching process is completed. Due to the characteristics, the portions of the Tit 5 on the horizontal plane (the portions on the surface of the silicon substrate 11 and the portions on the wiring 14) are etched away, but the vertical portions on the sides of the wiring 14 are etched away as shown in FIG. As shown in (d), although the film thickness becomes somewhat thinner, it remains along the side surfaces.

したがって、このリアクティブイオンエツチングを経る
ことによシ、上面がWl3(第1の高融点金属)、側面
が’l’i l 5 (第2の高融点金属)で覆われた
配線が得られることになる。そして、この配線によれば
、上面とともに側面が高融点金属で櫟われているため、
アニール(450’C,HJ!囲気中)を行っても、側
面からのヒロックの発生を抑制することができる。
Therefore, by going through this reactive ion etching, a wiring whose top surface is covered with Wl3 (first high melting point metal) and the side surface is covered with 'l'i l5 (second high melting point metal) can be obtained. It turns out. According to this wiring, the sides as well as the top surface are made of high melting point metal, so
Even when annealing (450'C, HJ! in the surrounding air) is performed, the occurrence of hillocks from the sides can be suppressed.

なお、上記リアクティブイオンエツチングにおいて、配
置fiJ14上面のWl 3 (第1の高融点金属)も
オーバーエツチングなどでエツチングを受けるが、この
Wl3のエツチングレートが既に具体的数値を示したよ
うに小さいので、必安な膜厚は残存する。また、第1の
高融点金属を厚く形成すれば、この第1の高融点金属と
第2の高融点金属を同一材料、同一エツチングレートに
して、第1の高融点金属を必安な膜厚だけ残すことがで
きる。
In the above-mentioned reactive ion etching, Wl 3 (first high melting point metal) on the top surface of the arrangement fiJ14 is also etched by over-etching, etc., but the etching rate of this Wl 3 is small as the specific numerical value has already been shown. , the necessary film thickness remains. In addition, if the first high melting point metal is formed thickly, the first high melting point metal and the second high melting point metal can be made of the same material and the same etching rate, and the first high melting point metal can be formed to a desired film thickness. can only be left behind.

(発明の効果) 以上詳細に説明したように、この発明の方法によj−は
、配線の側面にも高融点金属を被着したことにより、従
来法による配線での欠点であった配線の側面からのヒロ
ックの発生を抑制できる。したがって、側面のヒロック
による隣接配線間の短絡および上層配線との短絡を防止
できる。また、この発明によ扛は、全面に第2の高融点
金属を被着した後、リアクティブイオンエンチングによ
り配線の側面に第2の高融点金属を残すようにしたが、
この方法によれば、配線側面の残存第2の高融点金属の
形状は実施例の第1図(d)に示すようにi8+をもっ
たものになり、このことから、配線形成後の絶縁膜の形
成において、その絶縁膜の被覆率全向上させることがで
きる。
(Effects of the Invention) As explained in detail above, by the method of the present invention, the high melting point metal is also deposited on the side of the wiring, so that the wiring, which was a drawback of the conventional method, can be improved. The formation of hillocks from the sides can be suppressed. Therefore, short circuits between adjacent wirings and short circuits with upper layer wirings due to side hillocks can be prevented. Further, according to the present invention, after depositing the second high melting point metal on the entire surface, the second high melting point metal is left on the side surface of the wiring by reactive ion etching.
According to this method, the shape of the second high melting point metal remaining on the side surface of the wiring becomes i8+ as shown in FIG. In the formation of the insulating film, the total coverage of the insulating film can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

(図面) 第1図はこの発明の半導体素子の配線形成方法の一実施
例を示す断面図、第2図は従来の配線形成方法を示す断
面図、第3図は従来のヒロックによる短絡事故を示す断
面図でおる。 11・・・シリコン基板、12・・・A71!−5i1
x3・・・W(タングステン)、14・・・配M、15
・・・Ti(チタン)。 特許出願人 沖電気工業株式会社 14西己酢蚊 ! 第1図 第2図
(Drawings) Fig. 1 is a sectional view showing an embodiment of the wiring formation method for a semiconductor element of the present invention, Fig. 2 is a sectional view showing a conventional wiring formation method, and Fig. 3 is a sectional view showing a conventional short circuit accident due to a hillock. This is a sectional view shown. 11...Silicon substrate, 12...A71! -5i1
x3...W (tungsten), 14...M, 15
...Ti (titanium). Patent applicant: Oki Electric Industry Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (a)AlまたはAl系合金上に第1の高融点金属を有
する配線を半導体基板上に形成する工程と、(b)その
配線上を含む前記基板上の全面に第2の高融点金属を被
着する工程と、 (c)その第2の高融点金属をリアクティブイオンエッ
チングすることにより、前記配線の側面にのみ第2の高
融点金属を残す工程とを具備してなる半導体素子の配線
形成方法。
Scope of Claims: (a) forming a wiring having a first refractory metal on Al or an Al-based alloy on a semiconductor substrate; and (b) forming a wiring on the entire surface of the substrate including the wiring. and (c) leaving the second high melting point metal only on the side surfaces of the wiring by performing reactive ion etching on the second high melting point metal. A wiring formation method for semiconductor devices.
JP20523085A 1985-09-19 1985-09-19 Forming method for interconnection of semiconductor element Pending JPS6266628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20523085A JPS6266628A (en) 1985-09-19 1985-09-19 Forming method for interconnection of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20523085A JPS6266628A (en) 1985-09-19 1985-09-19 Forming method for interconnection of semiconductor element

Publications (1)

Publication Number Publication Date
JPS6266628A true JPS6266628A (en) 1987-03-26

Family

ID=16503559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20523085A Pending JPS6266628A (en) 1985-09-19 1985-09-19 Forming method for interconnection of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6266628A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273629A2 (en) * 1986-12-29 1988-07-06 Inmos Corporation Transition metal clad interconnect for integrated circuits
JPS6482547A (en) * 1987-09-24 1989-03-28 Tadahiro Omi Semiconductor device
US4962060A (en) * 1987-03-10 1990-10-09 Advanced Micro Devices, Inc. Making a high speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
KR100450238B1 (en) * 2001-12-13 2004-09-24 아남반도체 주식회사 Fabrication method of semiconductor device
JP2015012177A (en) * 2013-06-28 2015-01-19 住友電工デバイス・イノベーション株式会社 Semiconductor device and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273629A2 (en) * 1986-12-29 1988-07-06 Inmos Corporation Transition metal clad interconnect for integrated circuits
US4962060A (en) * 1987-03-10 1990-10-09 Advanced Micro Devices, Inc. Making a high speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
JPS6482547A (en) * 1987-09-24 1989-03-28 Tadahiro Omi Semiconductor device
KR100450238B1 (en) * 2001-12-13 2004-09-24 아남반도체 주식회사 Fabrication method of semiconductor device
JP2015012177A (en) * 2013-06-28 2015-01-19 住友電工デバイス・イノベーション株式会社 Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JPH0752733B2 (en) Method of forming wiring structure
JP2951636B2 (en) Method for manufacturing a metallization structure
JPS6343349A (en) Multilayer thin-film interconnection
JPS6266628A (en) Forming method for interconnection of semiconductor element
JPS6043858A (en) Manufacture of semiconductor device
JPH065715A (en) Formation of wiring layer
US7135399B2 (en) Deposition method for wiring thin film
JPH0291940A (en) Manufacture of semiconductor device
JPH0212859A (en) Formation of multilayer interconnection
JPH08274100A (en) Wiring forming method
JPS60193362A (en) Semiconductor device
JPS62154759A (en) Semiconductor device and manufacture thereof
JP4207284B2 (en) Manufacturing method of semiconductor device
JPH02178930A (en) Formation of wiring
JPH02170431A (en) Manufacture of semiconductor device
JPH04234124A (en) Semiconductor device
JP2918915B2 (en) Method for manufacturing semiconductor device
JP2001230255A (en) Method of manufacturing semiconductor device
JPH0621229A (en) Semiconductor device and manufacture thereof
JPH06275617A (en) Oxidation resistant copper thin film, its manufacture, and semiconductor device using the same
JPH09115906A (en) Manufacture of semiconductor device
JPS5951747B2 (en) Micro wiring structure
JPH10308362A (en) Metallization structure
JPH0193146A (en) Formation of multilayer interconnection
JPS62222657A (en) Conductor wiring and forming method thereof