JPS6266264A - Photoconductive body - Google Patents

Photoconductive body

Info

Publication number
JPS6266264A
JPS6266264A JP60205357A JP20535785A JPS6266264A JP S6266264 A JPS6266264 A JP S6266264A JP 60205357 A JP60205357 A JP 60205357A JP 20535785 A JP20535785 A JP 20535785A JP S6266264 A JPS6266264 A JP S6266264A
Authority
JP
Japan
Prior art keywords
layer
gas
thickness
photoconductive
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205357A
Other languages
Japanese (ja)
Inventor
Tatsuya Ikesue
龍哉 池末
Hideji Yoshizawa
吉澤 秀二
Akira Miki
明 三城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Original Assignee
Toshiba Corp
Toshiba Automation Equipment Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Automation Equipment Engineering Ltd filed Critical Toshiba Corp
Priority to JP60205357A priority Critical patent/JPS6266264A/en
Publication of JPS6266264A publication Critical patent/JPS6266264A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/0825Silicon-based comprising five or six silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the titled body having an excellent electrostatic characteristics and a high spectral sensitivity over a broad wavelength range by laminating a microcrystalline silicon (muc-Si) and an (a-Si) layer on the titled body, and by specifying the thicknesses of each of said layers. CONSTITUTION:The inhibiting layer 24a of the electrostatic charge implantation is composed of P-type or N-type semiconductor contg. at least one atom selected among a carbon, a nitrogen and a oxygen atoms. The photoconductive layer 25 is prepared by laminating the 1st layer 25a composed of the microcrystalline silicon, the 2nd layer 25b composed of the amorphous silicon and the 3rd layer 25c composed of the amorphous silicon contg. at least one atom selected among the carbon, the nitrogen and the oxygen atoms on a substrate body 12 in order. The thickness of the 1st layer 25a is 1-10mum, the thickness of the 2nd layer 25b is 0.1-5mum, and the thickness of the 3rd layer 3c is 3-80mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は電子写真装置等画像形成装置において、静電
潜像の形成を行なう光導電体に関する。 〔発明の技術的背景とその問題点〕 近年電子写真装置等画像形成装置にあっては、その機能
や機種の多様化に伴い、光導電材料として、硫化カドミ
ウム(CdS)、酸化亜鉛(ZnO) 、セレン(:S
e)、セレンテルル合金[5e−To)等の無機材料や
、ポリ−N−ビニルカルバゾール(以下PVCz 9称
す)、トリニトロフルオレン(以下τNFと称す)等の
有機材料等積々のものが開発されている。 しかしながら前記光導電材料のうち、セレン(Ss)、
硫化カドミウム[CdS]等にあっては、本質的に人体
に有害な材料である事から、製造時には安全対策上その
製造装置が複雑となり、製造コストが上昇される一方2
使用後には回収する必要があり、更にコストが上昇され
る他、セレン(Ss)。 セレン−テルル合金(Ss−Ta)にあっては結晶化温
度が約65[:’C)と低い特性を有するため、結晶化
し易く、複写を繰り返し行なう間に結晶化された部分に
残留電荷を生じ1画像を汚損する等の問題を生じ易く、
結局は長寿命化を図れないという欠点がある。そして酸
化亜鉛[ZnO] にあってはその物性上、酸化還元を
生じ易く、温度や湿度等の環境雰囲気の影響を著しく受
け、画質が不安定となり、信頼性に劣るという欠点があ
る。又有機材料である(PVCZ)や(TNF)等は熱
安定性及び耐摩耗性に劣る事から長寿命化に難点がある
上、最近では発がん性の疑いがもたれるという欠点を有
している。 このため近年上記欠点を解決するため、無公害である事
から回収処理が不要であり、又、表面硬度が高く耐摩耗
性及び耐wl撃性に優れ、更には従来に比し可視光領域
で高い分光感度を有するアモルファスシリコン(以下a
−5iと称す)が、感光体等の光導電材料への適応を検
討されている。即ち具体的には感光体は、その特性とし
て高抵抗且つ分光感度が高い事が要求される事から、こ
れ等両特性を満たすため、導電性支持体と(a−3i)
光導電性層の間に、感光体に優れた電荷保持能を持たせ
ると共に、光疲労特性や繰返し特性等に優れた効果を有
する電荷注入防止層を設け、更には(a−5i)光導電
性層上に表面電荷保持層を層重させた積層型の(a−3
i)感光体が開発されている。 しかしながら(a−5i)は、シラン(Si3を含有す
るガスを用いたグロー放電分解法による成膜時、(a−
3i)膜中に取り込まれる水素原子(H)の量に応じて
電気的特性及び光学的特性が大きく変動されてしまうと
いう問題を有している。即ち(a−5i)眼中に取り込
まれる水am子(H)の量が多くなると、光学的バンド
ギャップが大きくなり、高抵抗化する反面、これに伴い
近赤外線領域近傍の長波長光領域に対する分光感度が低
下し、半導体レーザーを用いたレーザビームプリンタに
使用した場合カブリや活字のつぶれ、残像、干渉縞によ
る濃度むら等を生じ、その使用が不能になると共に、成
膜条件によっては、((SiHz)n)結合や(SiH
2〕結合のような結合構造を有するものが、(a−5i
)膜中で支配的となり、その結果(SiH)結合が切断
され、ダングリングボンドやボイド等の構造欠陥が増大
し、光導電性が劣下するという問題を有する。一方(a
−5i)膜中に取り込まれる水素原子(H)の量が低下
すると、長波長光に対する分光感度が増加する反面、光
学的バンドギャップが小さくなり、低抵抗化してしまう
と共に、水素原子(H3がダングリングボンドを補償し
なくなるため、発生したキャリアの移動度や寿命が低下
し、やはり光導電性が劣下し、感光体への使用が不能に
なるという問題を有している。 このため長波長光に対する分光感度を増加させる方法と
して、シラン(Si)を含有するガス及びゲルマンガス
[Getl、 ]を混合し、グロー放電分解法により光
学的バンドギャップの狭い膜を成膜する方法が実施され
ているが、一般にグロー放電時の最適支持体温度が、シ
ラン(Si)含有ガスとゲルマン(GeH4)ガスとで
は40〜50〔度〕異る事から、形成された膜に構造欠
陥を生じ易く、光導電性がやはり劣下してしまい、更に
はゲルマンガス(GeH4)が酸化されると、有毒とな
る事から、その廃ガス処理も複雑になるという欠点を生
じている。一方近年、光学的禁止帯幅が約り、7 (e
V)である(a−3i)に比し、光学的禁止帯幅が小さ
く近赤外線領域近傍の長波長光領域にも感度を有すると
共に構造欠陥が少なく、モビリティが大きいマイクロク
リスタリンシリコン(以下μc−5iと称す)が開発さ
れている。 即ちこの(μc−3L)は非単結晶シリコンに屓するも
のであるが、X線回折測定を行うと、第4図点線で示す
ように(a−3i)が無定形であるため、ハローが現わ
れるのみで回折パターンを認められないのに対し、(μ
c−3i)は第4図実線で示すように〔20〕が27〜
28.5 (度〕の付近で結晶回折パターンを示すもの
である。一方ポリクリスタリンシリコンは、暗抵抗が1
06〔Ω・口〕以下であるのに対して(μc−3i)は
1011(Ω・])以上と高抵抗を有している。上述の
様な特性により(μ’c −S i )は他の非単結晶
シリコンである(a−3i)やポリクリスタリンシリコ
ンと区別され、その構造は約数十〔人〕以上の粒径の微
結晶が集合して形成されていると考えられる。そしてこ
のような(μc−3i)を製造するには(a−3L)と
同様スパッタリングやグロー放電分解法等によるが、(
a−3i)mll待時比し、成膜を行なう導電性の支持
体の温度を高めに設定するか、あるいは高周波電力を大
きくすると形成され易くなる。即ち支持体の温度を高く
シ、高周波電力を大きくする事により、原料であるシラ
ン(Sil含有ガスの流量を増大出来、その結果成膜速
度が増大され(μc−5i)が形成され易くなるからで
ある。 更に原料としてシラン〔5IH4〕やジシラン(Siよ
116〕等の高次シランガスも含めて、水素(H)で希
釈したガスを用いると、(μc−5i)がより効果的に
形成され易くなる。 又、成膜される(μc−3i)層にあっては、水素(H
)の含有量が多くなると結晶化度が大きくなり、ポリク
リスタリンシリコンに近付き、暗抵抗が小さくなるのに
対して明抵抗が増大され、ひいては光導電性を示さなく
なってしまうので、暗抵抗と明抵抗の調和がとれた優れ
た光導性を得るためには、(μc−3i)層中に水素(
H)が0.1〜30〔原子%〕含まれている事が望まし
い、この(μc−3i)層への水素(H)のドーピング
は、原料としてシラン(SiH4)やジシラン(sig
ns)等のシラン(Sil含有ガスとキャリアガスとし
ての水素ガス〔H2〕を反応容器に導入し、グロー放電
を行ったり、あるいは4フツ化ケイ素(SiF* )や
トリクロロシラン(SICI24)等のハロゲン化ケイ
素と水素ガス〔H2〕との混合ガスを原料として反応を
行なったり、更にはシラン(Sj、)含有ガスとハロゲ
ン化ケイ素の混合ガスを原料として反応を行なっても良
い。 更に(μc−3i)層にあっては、支持体から光導電性
層への〜電荷の注入を防止したり、あるいは光感度特性
を高めたり、i型にし高抵抗化する等のため、水素原子
(H)の他に不純物をドーピングしたりするが、この不
純物元素としては、p型にするためにはホウ素(B)、
アルミニウム〔Al1等の周期律表第■族の元素が適し
、他方n型にするためには窒素(N)、リン(Pl等の
周期律表第■族の元素が適している。又、(μc−Si
 )の暗抵抗を大きくし、光導電特性を高めるために窒
素〔N〕、炭素〔C〕、及び酸素
[Technical Field of the Invention] The present invention relates to a photoconductor for forming an electrostatic latent image in an image forming apparatus such as an electrophotographic apparatus. [Technical background of the invention and its problems] In recent years, with the diversification of functions and models of image forming devices such as electrophotographic devices, cadmium sulfide (CdS) and zinc oxide (ZnO) are being used as photoconductive materials. , selenium (:S
e), inorganic materials such as selenite alloy [5e-To], and organic materials such as poly-N-vinylcarbazole (hereinafter referred to as PVCz 9) and trinitrofluorene (hereinafter referred to as τNF) have been developed. ing. However, among the photoconductive materials, selenium (Ss),
Since cadmium sulfide [CdS] is a material that is inherently harmful to the human body, the manufacturing equipment becomes complicated due to safety measures and manufacturing costs increase.
Selenium (Ss) must be recovered after use, further increasing costs. Selenium-tellurium alloy (Ss-Ta) has a low crystallization temperature of about 65[:'C], so it easily crystallizes, and during repeated copying, residual charges are generated in the crystallized portion. This tends to cause problems such as staining the image.
In the end, there is a drawback that it is not possible to achieve a long service life. Due to its physical properties, zinc oxide [ZnO] is prone to oxidation-reduction and is significantly affected by environmental conditions such as temperature and humidity, resulting in unstable image quality and poor reliability. In addition, organic materials such as (PVCZ) and (TNF) have poor thermal stability and wear resistance, making it difficult to extend their service life, and recently they have been suspected of being carcinogenic. For this reason, in recent years, in order to solve the above drawbacks, it is non-polluting, does not require recovery treatment, has a high surface hardness, has excellent abrasion resistance and impact resistance, and is even more effective in the visible light range than before. Amorphous silicon (hereinafter referred to as a) has high spectral sensitivity.
-5i) is being studied for application to photoconductive materials such as photoreceptors. Specifically, since the photoreceptor is required to have high resistance and high spectral sensitivity, in order to satisfy both of these characteristics, a conductive support and (a-3i)
A charge injection prevention layer is provided between the photoconductive layers, which provides the photoreceptor with an excellent charge retention ability and has excellent effects on optical fatigue characteristics, cycling characteristics, etc., and (a-5i) photoconductive A laminated type (a-3
i) A photoreceptor has been developed. However, when (a-5i) was formed by glow discharge decomposition using a gas containing silane (Si3), (a-5i)
3i) There is a problem in that the electrical properties and optical properties vary greatly depending on the amount of hydrogen atoms (H) incorporated into the film. That is, (a-5i) As the amount of water atoms (H) taken into the eye increases, the optical bandgap becomes larger and the resistance becomes higher. Sensitivity decreases, and when used in a laser beam printer using a semiconductor laser, fogging, crushed type, afterimages, density unevenness due to interference fringes, etc. may occur, making the printer unusable. SiHz) n) bond and (SiH
2] Those with a bond structure such as a bond (a-5i
) becomes dominant in the film, and as a result, (SiH) bonds are broken, structural defects such as dangling bonds and voids increase, and photoconductivity deteriorates. On the other hand (a
-5i) When the amount of hydrogen atoms (H) incorporated into the film decreases, the spectral sensitivity to long wavelength light increases, but on the other hand, the optical bandgap decreases, resulting in low resistance, and the amount of hydrogen atoms (H3) increases. Since dangling bonds are no longer compensated for, the mobility and lifetime of the generated carriers are reduced, resulting in a decrease in photoconductivity and the problem of being unable to be used as a photoreceptor. As a method to increase the spectral sensitivity to wavelength light, a method has been implemented in which a gas containing silane (Si) and a germane gas [Getl, ] are mixed and a film with a narrow optical band gap is formed by a glow discharge decomposition method. However, since the optimum support temperature during glow discharge generally differs by 40 to 50 degrees between silane (Si)-containing gas and germane (GeH4) gas, structural defects are likely to occur in the formed film. However, the photoconductivity deteriorates, and furthermore, when germane gas (GeH4) is oxidized, it becomes toxic, making the waste gas treatment complicated.On the other hand, in recent years, optical The forbidden band width is about 7 (e
Compared to (a-3i), which is V), microcrystalline silicon (hereinafter referred to as μc- 5i) has been developed. In other words, this (μc-3L) corresponds to non-single crystal silicon, but when X-ray diffraction measurements are performed, as shown by the dotted line in Figure 4, (a-3i) is amorphous, so a halo appears. (μ
c-3i), as shown by the solid line in Figure 4, [20] is 27~
28.5 (degrees).On the other hand, polycrystalline silicon has a dark resistance of 1.
(μc-3i) has a high resistance of 1011 (Ω·]) or more, whereas it is less than 0.06 [Ω·]. Due to the above-mentioned characteristics, (μ'c-S i ) is distinguished from other non-single-crystal silicon (a-3i) and polycrystalline silicon, and its structure has a grain size of about several tens of nanometers or more. It is thought that it is formed by aggregation of microcrystals. In order to manufacture such (μc-3i), sputtering, glow discharge decomposition method, etc. are used like (a-3L), but (
a-3i) If the temperature of the conductive support on which the film is formed is set higher than the waiting time, or if the high frequency power is increased, the formation becomes easier. That is, by raising the temperature of the support and increasing the high-frequency power, the flow rate of the raw material silane (Sil-containing gas) can be increased, and as a result, the film formation rate is increased and (μc-5i) is more likely to be formed. Furthermore, if a gas diluted with hydrogen (H), including higher-order silane gases such as silane [5IH4] and disilane (Si116), is used as a raw material, (μc-5i) can be formed more effectively. In addition, in the (μc-3i) layer to be formed, hydrogen (H
) content increases, the degree of crystallinity increases, approaching polycrystalline silicon, and while the dark resistance decreases, the bright resistance increases, and eventually it no longer exhibits photoconductivity, so the dark resistance and bright In order to obtain excellent light conductivity with well-balanced resistance, hydrogen (
Doping hydrogen (H) into this (μc-3i) layer, which preferably contains 0.1 to 30 [atomic %] of hydrogen (H), is performed using silane (SiH4) or disilane (sig
Silane (Sil containing gas such as ns) and hydrogen gas [H2] as a carrier gas are introduced into the reaction vessel to perform glow discharge, or halogens such as silicon tetrafluoride (SiF*) and trichlorosilane (SICI24) are introduced into the reaction vessel. The reaction may be performed using a mixed gas of silicon oxide and hydrogen gas [H2] as a raw material, or furthermore, a mixed gas of a silane (Sj)-containing gas and a silicon halide may be used as a raw material.Furthermore, (μc- In the 3i) layer, hydrogen atoms (H) are added to prevent charge injection from the support to the photoconductive layer, to improve photosensitivity characteristics, to make it i-type, and to increase resistance. Other impurities are doped, and these impurity elements include boron (B) to make it p-type,
Aluminum [Elements in group Ⅰ of the periodic table such as Al1 are suitable; on the other hand, to make it n-type, elements in group Ⅰ of the periodic table such as nitrogen (N) and phosphorus (Pl) are suitable. μc-Si
) to increase the dark resistance and enhance the photoconductive properties of nitrogen [N], carbon [C], and oxygen.

〔0〕の少なくとも一
種をドーピングする事が望ましい、この様にすれば、こ
れ等の元素は、(μc−5i)の粒界に析出し、又、シ
リコン(Si)のダングリングボンドのターミネータと
して作用し、バンド間の禁制布中に存在する状態密度を
減少させるからである。そして上述のような特性を有す
る事から光導電性層に(μc−3i)を用いる事により
レーザプリンタ等への使用を試みているが、光導電性層
を(μc−3i)のみで形成した場合は。 暗抵抗が低く電荷の保持が難しい上に、光吸収量が少な
い事から、かなりの厚さを必要としなければならず、し
かも(a−3i)に比し成膜時間がかかる事からコスト
の上昇を招くという新たな問題を生じてしまう。 〔発明の目的〕 この発明は上記事情にもとづいてなされたもので、高抵
抗を保持出来る事から帯電特性に優れるにもかかわらず
、広い波長領域にわたり高い分光感度特性を有し、更に
は鮮明で良質な画像を袴られると共に製造も容易でコス
トの低減を図る事が出来る光導電体を提供する事を目的
とする。 〔発明の概要〕 この発明は上記目的を達成するため、導電性の支持体上
に電荷注入防止層を介して層重される光導電性層を、マ
イクロクリスタリンシリコン(以下μc−3iと称す)
及び(a−8L)とを積層したものから形成する作によ
り、帯電特性に優れ、かつ広い波長領域にわたり高い分
光感度特性を有する光導電体を得るものである。 〔発明の実施例〕 先ずこの発明の詳細な説明するにあたり、この発明の原
理について述べる。即ちこの発明は、前述したように、
暗抵抗が高く可視光領域に感度を有する反面近赤外線付
近の感度を有しない(a−3i)と、可視光及び近赤外
線付近に感度を有するが暗抵抗の低い(μc−3L)を
層重した光導電性層により、可視光付近の光は主として
(a−3i)が吸収し、吸収しきれない光を(μc−3
L)が吸収する一方、近赤外線付近の光は主として(μ
c−5i)が吸収する事により、それぞれの欠点を補足
し、光導電体に可視光領域から近赤外線領域迄の広範囲
にわたり高い分光感度特性を持たせようとするものであ
る。 以下この発明の一実施例を第1図ないし第3図を参照し
ながら説明する。グロー放電装置(10)の反応容器(
11)内には、導電性の支持体であり、アルミニウムか
らなるドラム状基体(12)を支持するため、ヒータ(
13)を内蔵し、モータ(14)により回転される支持
棒(16)が設けられている。又、支持体(16)周囲
は、 13.56[MHz]の高周波電源(17)に接
続される円筒状電極(18)で囲繞されると共に、支持
棒(16)上方にはシランガス(SiH4)、ジボラン
ガス(Ba H@ )、水素ガス()!1 ]、メタン
ガス(CH4]等を必要に応じて供給出来るよう多数の
ガスボンベ(19a)・・・(19n)及びガス混合器
(20a)を有するガス供給系(20)にガス導入バル
ブ(21a)を介して接続されるガス導入管(2工)が
設けられている。尚(8a)・・・(8n)は各ガスボ
ンベ(19a)・・・(19n)のバルブ、(9a)・
・・(9n)は圧力調整器である。更に(22)は反応
容器(11)内の排気を行なう排気装置(図示せず)に
接続される排気バルブであり、(23)は反応容器(1
1)内の気圧を測定する真空計である。又(24)は光
導電体である電子写真装置の感光体であり、ドラム状基
体(12)上に順次電荷注入防止層(24a)及び近赤
外光に対する電荷発生層である第1層(25a)と、可
視光に対する電荷発生層である第2層(25b)と、電
荷の保持及び輸送を行なうための第3層(25c)とか
らなる光導電性層(25)、並びに表面層(24b)が
積層されている。 しかしてグロー放電装置(10)で感光体(24)を形
成する場合、支持棒(16)にドラム状基体(12)を
セットした後、反応容器(11)内を所定の気圧にする
よう排気バルブ(22)を開は排気装置(図示せず)に
より排ガス処理を行なうと共にヒータ(13)によりド
ラム状基体(12)を所定温度に加熱する。そしてガス
導入管(21)を介し、ガス供給系(20)より必要と
する所定のガスを反応容器(11)内に導入し。 反応容器(11)内のガス圧を一定に維持しつつ高周波
電源(17)によりドラム状基体(12)及び円筒状電
極(18)間に必要とする電力を所定時間印加し、電荷
注入防止層(24a)の成膜を行なう。続いて、同一反
応容器(11)内でドラム状基体(12)の温度及び導
入ガス、更には電力量及び電力の印加時間等の成膜条件
を順次所定のものに設定し直しながら電荷注入防止層(
24a)上に光導電性層(25)の第1層(25a)な
いし第3層(25c)の成膜を行なう、更に同一反応容
器(11)内で各成膜条件を所定のものに設定し直し、
光導電性層(25)上に表面層(24b)を成膜し、感
光体(24)の形成を終了する。 次にこの実施例の作用について先ず第1の具体例を述べ
る。 〔具体例1〕 先ず、支持体(16)にドラム状基体(12)をセット
し、排気バルブ(22)を開け、排気装置(図示せず)
により反応容器(11)内を0.1(Torrl以下に
排気すると共に、ヒータ(13)によりドラム状基体(
12)を320 (’Clに加熱する1次いでガス供給
系(2G)より、ガス導入管(21)を介し、シランガ
ス(SiH4〕流量に対し、メタンガス[C)1.1を
50〔%〕、ジボランガス〔B□us)を5XIQ’″
3〔%〕水素ガス(11,)を50(%〕の比率で反応
容器(11)内に導入し、排気装置!(図示せず)によ
り反応容器(11)内の圧力を0.5(Torr)に維
持しつつ、モータ(14)によりドラム状基体(12)
を回転させながら高周波電源(17)により150(1
1)の電力をドラム状基体(1z)及び円筒状型ff1
(1B)間に45間印加し、(a−Si)からなる電荷
注入防止層(24a)の成膜を行なう、この後電力及び
各種ガスの供給を止める。続いて電荷注入防止層(24
a)上に光導電性層(25)を成膜するため、反応容器
(11)内にガス供給系(20)よりシランガス(Si
H4)流量に対し、ジボランガス(B2HJを7X10
−”[%〕、水素ガス〔H3〕を700〔%〕の比率で
反応容器(11)内に導入し、排気装置1!(図示せず
)により反応容器(11)内の圧力を1.0 (Tor
r)に維持しつつドラム状基体(12)を回転させなが
ら、高周波電源(17)により500 (W)の電力を
ドラム状基体(12)及び円筒状電極(工8)間に2時
間印加し、(μc−3i)からなる膜厚5〔−〕の第1
層(25a)を成膜し、次いでシランガス[SiH,)
流量に対しジボラガス(B、II、)をlXl0−”(
%〕、水素ガス〔H2〕を100C%〕の比率で反応容
器(II)内に導入し、反応容器(11)内の圧力を0
.5 (Torr)に維持しつつ、120 (W)の電
力をドラム状基体(12)及び円筒状電極(18)間に
1時間印加しく a−5i)からなる膜厚3〔−〕の第
2層(25b)を成膜し。 更にシランガス(SiH,]流量に対し、メタンガス(
C)14 )を20〔%〕、水素ガス〔H2〕を100
〔%〕の比率で反応容器(11)内に導入し、反応容器
(11)内の圧力を0.5 (Torr)に維持しつつ
、120 (W)の電力をドラム状基体(12)及び円
筒状電極(18)間に4時間印加し、(a−5i)から
なり膜厚12〔μs〕の第3層(25c)を成膜した後
、電力及び各種ガスの供給を止める。 次に、反応容器(11)内にガス供給系(20)よりシ
ランガス(SiH4〕流量に対し窒素ガス〔N2〕を6
00〔%〕の比率で反応容器(11)内に導入し、排気
装置(図示せず)により反応容器(11)内の圧力を0
.8(Torr)に維持しつつ、ドラム状基体(12)
を回転させながら、高周波電源(17)により300 
(W)の電力をドラム状基体(12)及び円筒状電極(
18)間に3分間印加し、光導電層(25)上に(a−
3i)からなる表面層(24b)を成膜し、最終に電力
及びガスの供給を止め、感光体(24)の製造を終了す
る。 このようにして得られた全膜厚20〔μs〕の正帯電用
の感光体(24)を(サンプルa)とし、その光導電性
層(25)の第1層(25b)における( μc−5i
)の結晶化度及び結晶粒径をX線回折法により測定した
ところ、結晶化度60〔%〕、結晶粒径約35〔人〕と
いう結果が得られた。 尚、比較のため(サンプルa)の光導電性層(25)を
、第2層(25b)に用いた(a−5L) IIの成膜
条件で5時間成膜した膜厚15 (tna )のホウ素
(B)を含有する(a−Si) Il[のみからなるも
のに替えた(サンプルb)、を製造する一方、(サンプ
ルa)の光導電層(25)を第3層(2Sc)に用いた
(a−5i)膜の成膜条件で5時間成膜した膜厚15(
s)の炭素(C)を含有する(a−3i)膜のみからな
るものに替えた(サンプルC)を製造した。 そしてこのようにして得られた各サンプルの分光感度を
測定したところ第3図に示すように(サンプルb)、(
サンプルC)に比しくサンプルa)は、波長350〜7
50 Cnya3  (可視光領域)においては、はぼ
同等の感度であるものの近赤外線領域にあっては高感度
を有し、レーザビームプリンタ等への適用も可能となる
。又、各サンプルにコロナ放電により6.5 [kv]
の電圧を印加した時の表面電位及び15秒後の電位保持
率並びに10(n Ux−sac)の光により露光した
時の電位半減露光量を測定したところ〔表・1〕のよう
な感光体の特性評価結果が得られた。 〔表・1〕感光体の特性評価 尚、露光後における(サンプルC)の残留電位は200
 (V)であった。 更に各サンプルの感光体を複写機に実際に装着して画像
形成を行ない画質を比較した結果、(サンプルb)では
画像濃度が薄く、かすれたりする一方、(サンプリング
C)ではカブリが顕著であり解像度が低く文字等がつぶ
れ、更には残像を生じるというような欠点を有する反面
、(サンプルa)にあっては(サンプルb)、(サンプ
ルC)で生じるような画像欠陥が無く、鮮明な画像が得
られた。 次に各サンプルの両光体をレーザプリンタに装着し画像
形成を行なったところ(サンプルb)及び(サンプルC
)では層中で吸収し切れずドラム状基体(12)表面で
反射された光と、表面層(24b)での反射光とによる
干渉縞により生じる画像の濃度むらやカブリを生じ、特
に(サンプルC)ではいずれもより顕著であったのに対
し、(サンプルa)では干渉縞による画像欠陥を生ぜず
、高解像度、高コントラストの鮮明な画像が得られた。 次に他の具体例について述べる。 〔具体例2〕 この〔具体例2〕は、前述の〔具体例1〕の第1層(2
5a)の成膜条件のみを変え炭素〔c〕をドーピングす
るものであり、他は〔具体例1〕と全く同様である。即
ちこの具体例にあっては、〔具体例1〕において電荷注
入防止層(24a)を成膜した後、反応容器(11)内
にシランガス[SiH4]流量に対し、メタンガス〔C
H4〕を0.3L%〕、ジボランガス(ozoi)を7
X10−’(%〕水素ガス(US)を700〔%〕の比
率で導入し、第1層(25a)を成膜したものである。 このようにして得られた感光体にコロナ放電により6.
5 [kv]の電圧を印加したところ、(サンプルa)
に比し暗抵抗が大きくなり光導電性特性が向上される事
から1表面型位は20(%〕内向上、実際に複写機やレ
ーザプリンタに装着しても良好な画像が得られた。 〔具体例3〕 この〔具体例3〕は、〔具体例2〕と同様〔具体例1〕
の第1層(25a)の成膜条件のみを変える窒素(N)
をドーピングするものであり、他は〔具体例1〕と同様
である。即ち電荷注入防止層(24a)成膜後シランガ
ス(SiH4)流量に対し、窒素ガス〔N7〕を2〔%
〕、ジボラガy’ (axHs)を7 X 1O−7(
%〕、水素ガス〔N2〕を700〔%〕の比率で反応容
器(11)内に導入し、第1層(25a)を成膜したも
のである。 このようにして得られた感光体にコロナ放電により6.
5[kv]の電圧を印加したところ、(サンプルa)に
比し暗抵抗が大きくなり光導電性特性が向上される事か
ら、表面電位は25〔%〕内向上、実機による画像も〔
具体例2〕と同様良好であった。 このように構成すれば、光導電層(25)中の第1層(
25a)が(μc−5i )で形成されると共に第2層
(25b)が(a−Si)で形成されている事から、(
a−3i)のみから成るものに比し、可視光領域及び近
赤外線領域においてより高感度を有する一方、(μC−
5L)のみから成るものに比し暗抵抗を高く保持出来、
画質の向上を図れると共にレーザプリンタ等への適用も
可能となる。又、暗抵抗が低く、光吸収量の少ない(μ
c−5i)からなる第1層(25a)のみを電荷発生層
として用いる場合には、必要とする暗抵抗及び光吸収量
を得るために膜厚をがなり厚くしなければならず、成膜
速度の遅い(μc−3i )にあってはより長い成膜時
間を必要とし、コストも上昇されてしまうというI’L
[を有するのに比し、(μc−3i)層に加え(a−3
i)からなる第2層(25b)を用いる事により、膜厚
を薄く出来、ひいてはコストの低減も可能となる。更に
この感光体(24)を用いれば、その材質が人体に無害
である事から、製造時に特に安全対策を施す必要が無く
、又その廃ガス処理も不要であり、使用後に感光体を回
収しなくても良く、ひいてはコストの低減を図る事が出
来る。一方、電荷注入防止層(24a)は、n型とする
ためのホウ素CB)をドーピングする以外に炭素(C)
もドーピングされているが、これはホウ素[B]のみの
場合、膜の表面が凹凸状になり、ドラム状基体(12)
との密着性がそこなわれ、はがれやすくなるのに対し、
炭素(C)を加えると、この凹凸をうめるように成膜さ
れる事から、ドラム状基体(12)との密着性が向上さ
れ剥離が防止されると共に、炭素〔C〕自身の絶縁性に
より電荷注入防止層(24a)の絶縁性向上にも寄与す
るものである。 更には、この実施例のように表面Jla(24b)を設
ければ、第3層(25c)の保護も行なえる。 尚この発明は上記実施例に限定されず種々設計変更可能
であり1例えば光導電性層の各層に周期律表第■族な周
期律表第■族の元素等地の不純物を添加し、特性の向上
を図っても良いし、電荷注入防止層の型も任意であり光
導電体表面に正帯電を行なわせるときは、支持体からの
電子の注入を阻止するために周期律表第■族の元素をド
ーピングする事によりp型とし、他方光導電体表面に負
帯電を行なわせるときは支持体からの正孔の注入を阻止
するために周期律表第V族の元素をドーピングする事に
よりn型としても良いし、その構造も(a−Si)であ
っても(μc−3i)であっても良いが。 (μc−3L)で形成した場合はレーザ光等の光吸収が
より優れ、支持体からの反射光を生じる事が無く、ひい
ては表面での反射光とによる干渉縞を確実に防止出来、
温度むらを防止出来、より鮮明な画像を得る事が出来る
。又、支持体との接着性向上あるいは絶縁性向上のため
ドーピングするものとしては炭素〔C〕に限定されず窒
素(N)あるいは酸素
It is desirable to dope at least one kind of [0]. If this is done, these elements will precipitate at the grain boundaries of (μc-5i) and also act as terminators of dangling bonds of silicon (Si). This is because the density of states existing in the forbidden cloth between the bands is reduced. Since it has the above-mentioned characteristics, attempts have been made to use (μc-3i) in the photoconductive layer for laser printers, etc., but the photoconductive layer was formed only with (μc-3i). In case. Because the dark resistance is low, it is difficult to retain charge, and the amount of light absorption is small, a considerable thickness is required, and the film formation time is longer than that of (a-3i), so the cost is low. This creates a new problem, which is that it leads to an increase in the price. [Object of the Invention] This invention was made based on the above circumstances, and although it has excellent charging characteristics due to its ability to maintain high resistance, it also has high spectral sensitivity characteristics over a wide wavelength range, and furthermore, it has clear and sharp characteristics. It is an object of the present invention to provide a photoconductor that can display a high-quality image, is easy to manufacture, and can reduce costs. [Summary of the Invention] In order to achieve the above object, the present invention uses microcrystalline silicon (hereinafter referred to as μc-3i) as a photoconductive layer layered on a conductive support via a charge injection prevention layer.
and (a-8L), it is possible to obtain a photoconductor having excellent charging characteristics and high spectral sensitivity characteristics over a wide wavelength range. [Embodiments of the Invention] First, in giving a detailed explanation of the invention, the principle of the invention will be described. That is, as mentioned above, this invention
A layer with high dark resistance and sensitivity in the visible light region but no sensitivity around near infrared rays (a-3i) and a layer with sensitivity around visible light and near infrared rays but low dark resistance (μc-3L) Due to the photoconductive layer, light in the vicinity of visible light is mainly absorbed by (a-3i), and light that cannot be completely absorbed is absorbed by (μc-3
L) is absorbed, while near-infrared light is mainly absorbed by (μ
By absorbing c-5i), the drawbacks of each are supplemented, and the photoconductor is intended to have high spectral sensitivity characteristics over a wide range from the visible light region to the near-infrared region. An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Reaction vessel of glow discharge device (10) (
Inside 11) is a heater (
13) and is provided with a support rod (16) that is rotated by a motor (14). Further, the support body (16) is surrounded by a cylindrical electrode (18) connected to a high frequency power source (17) of 13.56 [MHz], and silane gas (SiH4) is placed above the support rod (16). , diborane gas (Ba H@), hydrogen gas ()! 1 ], a gas introduction valve (21a) is installed in the gas supply system (20) which has a large number of gas cylinders (19a)...(19n) and a gas mixer (20a) so that methane gas (CH4) etc. can be supplied as needed. Gas inlet pipes (2 pieces) are provided which are connected via the gas cylinders (19a)...(19n).
...(9n) is a pressure regulator. Furthermore, (22) is an exhaust valve connected to an exhaust device (not shown) that exhausts the inside of the reaction vessel (11), and (23) is an exhaust valve that is connected to an exhaust device (not shown) that exhausts the inside of the reaction vessel (11).
1) It is a vacuum gauge that measures the atmospheric pressure inside. Further, (24) is a photoreceptor of an electrophotographic device which is a photoconductor, and a charge injection prevention layer (24a) and a first layer (24a) which is a charge generation layer for near-infrared light are sequentially formed on a drum-shaped substrate (12). 25a), a second layer (25b) which is a charge generation layer for visible light, and a third layer (25c) for holding and transporting charges, and a surface layer (25); 24b) are laminated. When forming the photoreceptor (24) in the glow discharge device (10), the drum-shaped substrate (12) is set on the support rod (16), and then the inside of the reaction vessel (11) is evacuated to a predetermined atmospheric pressure. When the valve (22) is opened, the exhaust gas is treated by an exhaust device (not shown) and the drum-shaped substrate (12) is heated to a predetermined temperature by the heater (13). Then, a required predetermined gas is introduced into the reaction vessel (11) from the gas supply system (20) via the gas introduction pipe (21). While maintaining the gas pressure in the reaction vessel (11) constant, a high-frequency power source (17) applies the necessary power between the drum-shaped substrate (12) and the cylindrical electrode (18) for a predetermined period of time, thereby forming the charge injection prevention layer. A film (24a) is formed. Next, in the same reaction vessel (11), the temperature of the drum-shaped substrate (12) and the introduced gas, as well as the film forming conditions such as the amount of electric power and the time of applying electric power, are sequentially reset to predetermined values to prevent charge injection. layer(
24a) The first layer (25a) to the third layer (25c) of the photoconductive layer (25) are formed on the photoconductive layer (25), and each film forming condition is set to predetermined conditions in the same reaction vessel (11). Redo it,
A surface layer (24b) is formed on the photoconductive layer (25) to complete the formation of the photoreceptor (24). Next, a first concrete example of the operation of this embodiment will be described. [Specific Example 1] First, the drum-shaped base (12) is set on the support (16), the exhaust valve (22) is opened, and the exhaust device (not shown) is turned on.
The interior of the reaction vessel (11) is evacuated to below 0.1 Torrl, and the drum-shaped substrate (
12) to 320% ('Cl). Next, from the gas supply system (2G), 1.1% of methane gas [C] was added to the flow rate of silane gas (SiH4) through the gas introduction pipe (21), Diborane gas [B□us] 5XIQ'''
3 [%] Hydrogen gas (11,) was introduced into the reaction vessel (11) at a ratio of 50 (%), and the pressure inside the reaction vessel (11) was reduced to 0.5 ( Torr), the drum-shaped substrate (12) is rotated by the motor (14).
150 (1) by high frequency power supply (17) while rotating
1) Power is transferred to the drum-shaped base (1z) and the cylindrical mold ff1.
(1B) is applied for 45 minutes to form a charge injection prevention layer (24a) made of (a-Si), after which the supply of electric power and various gases is stopped. Subsequently, a charge injection prevention layer (24
a) In order to form a photoconductive layer (25) thereon, silane gas (Si
H4) For the flow rate, diborane gas (B2HJ is 7X10
-'' [%], hydrogen gas [H3] is introduced into the reaction vessel (11) at a ratio of 700 [%], and the pressure inside the reaction vessel (11) is reduced to 1. 0 (Tor
r) while rotating the drum-shaped substrate (12), 500 (W) power was applied between the drum-shaped substrate (12) and the cylindrical electrode (step 8) for 2 hours using the high-frequency power source (17). , (μc-3i) with a film thickness of 5[-]
A layer (25a) is deposited, and then silane gas [SiH, )
dibora gas (B, II,) with respect to the flow rate lXl0-”(
%], hydrogen gas [H2] was introduced into the reaction vessel (II) at a ratio of 100C%], and the pressure inside the reaction vessel (11) was reduced to 0.
.. 5 (Torr), apply a power of 120 (W) between the drum-shaped substrate (12) and the cylindrical electrode (18) for 1 hour. A layer (25b) is deposited. Furthermore, compared to the flow rate of silane gas (SiH,), the flow rate of methane gas (
C) 20 [%] of 14), 100% of hydrogen gas [H2]
[%] into the reaction vessel (11), and while maintaining the pressure inside the reaction vessel (11) at 0.5 (Torr), a power of 120 (W) was applied to the drum-shaped substrate (12) and After applying power between the cylindrical electrodes (18) for 4 hours to form a third layer (25c) made of (a-5i) and having a film thickness of 12 [μs], the supply of electric power and various gases is stopped. Next, nitrogen gas [N2] was supplied into the reaction vessel (11) from the gas supply system (20) at a rate of 6% relative to the flow rate of silane gas (SiH4).
00%] into the reaction vessel (11), and the pressure inside the reaction vessel (11) is reduced to 0 using an exhaust device (not shown).
.. 8 (Torr) while maintaining the drum-shaped base (12).
While rotating, the high frequency power supply (17)
(W) power is applied to the drum-shaped base (12) and the cylindrical electrode (
18) for 3 minutes, and (a-
A surface layer (24b) consisting of 3i) is formed, and finally the supply of electric power and gas is stopped to complete the production of the photoreceptor (24). The photoreceptor (24) for positive charging with a total film thickness of 20 [μs] obtained in this manner is referred to as (sample a), and the first layer (25b) of the photoconductive layer (25) (μc− 5i
) was measured by X-ray diffraction method, and the results were that the crystallinity was 60% and the grain size was about 35cm. For comparison, the photoconductive layer (25) of (sample a) was used as the second layer (25b).The film thickness was 15 (tna) formed for 5 hours under the film forming conditions of (a-5L) II. The photoconductive layer (25) of (sample a) was replaced with one consisting only of (a-Si) Il[ containing boron (B) (sample b), while the photoconductive layer (25) of (sample a) was replaced with a third layer (2Sc). The film thickness was 15 (
A sample C was produced in which sample s) was replaced with one consisting only of the (a-3i) film containing carbon (C). The spectral sensitivities of each sample obtained in this way were measured, and as shown in Figure 3 (sample b), (
Compared to sample C), sample a) has a wavelength of 350 to 7
50 Cnya3 (visible light region), the sensitivity is about the same as that of 50 Cnya3, but in the near-infrared region it has high sensitivity, making it possible to apply it to laser beam printers and the like. In addition, each sample was given 6.5 [kv] by corona discharge.
The surface potential when applying a voltage of Characteristic evaluation results were obtained. [Table 1] Characteristic evaluation of photoreceptor The residual potential of (sample C) after exposure is 200
(V). Furthermore, as a result of actually installing the photoreceptor of each sample in a copying machine and forming an image, we compared the image quality, and found that (sample B) had a low image density and was blurry, while (sampling C) had noticeable fogging. On the other hand, (sample a) does not have the image defects that occur with (sample b) and (sample C), and provides a clear image. was gotten. Next, both optical bodies of each sample were attached to a laser printer and images were formed (sample B) and (sample C).
), the image density unevenness and fogging occur due to interference fringes caused by the light reflected on the surface of the drum-shaped substrate (12) and the light reflected on the surface layer (24b) because it is not absorbed completely in the layer. In contrast, in (sample a), image defects due to interference fringes did not occur, and a clear image with high resolution and high contrast was obtained. Next, other specific examples will be described. [Specific Example 2] This [Specific Example 2] is based on the first layer (2) of the above-mentioned [Specific Example 1].
Only the film forming conditions of 5a) are changed and carbon [c] is doped, and the rest is exactly the same as [Specific Example 1]. That is, in this specific example, after forming the charge injection prevention layer (24a) in [Specific Example 1], methane gas [C
H4] 0.3L%], diborane gas (ozoi) 7
The first layer (25a) was formed by introducing X10-' (%) hydrogen gas (US) at a ratio of 700 [%]. ..
When a voltage of 5 [kv] was applied, (sample a)
Since the dark resistance is increased and the photoconductive properties are improved compared to the conventional one, the 1-surface type is improved by within 20 (%), and good images can be obtained even when actually installed in a copying machine or a laser printer. [Specific Example 3] This [Specific Example 3] is similar to [Specific Example 2] [Specific Example 1]
Nitrogen (N) which changes only the film forming conditions of the first layer (25a)
The other aspects are the same as in [Specific Example 1]. That is, after forming the charge injection prevention layer (24a), nitrogen gas [N7] was added to 2% of the silane gas (SiH4) flow rate.
], diboragay y' (axHs) is 7 X 1O-7 (
%], hydrogen gas [N2] was introduced into the reaction vessel (11) at a ratio of 700 [%], and the first layer (25a) was formed. 6. Corona discharge was applied to the photoreceptor thus obtained.
When a voltage of 5 [kv] was applied, the dark resistance was larger compared to (sample a) and the photoconductive properties were improved, so the surface potential was improved by within 25 [%], and the image with the actual device was also [
The results were good as in Specific Example 2]. With this configuration, the first layer (
Since 25a) is formed of (μc-5i) and the second layer (25b) is formed of (a-Si), (
a-3i), it has higher sensitivity in the visible light region and near-infrared region;
5L) can maintain a high dark resistance compared to those consisting only of
Not only can image quality be improved, but it can also be applied to laser printers and the like. In addition, dark resistance is low and light absorption is small (μ
When only the first layer (25a) consisting of c-5i) is used as a charge generation layer, the film thickness must be increased considerably in order to obtain the required dark resistance and light absorption amount, and the film formation I'L that slow speed (μc-3i) requires longer film formation time and increases cost.
In addition to the (μc-3i) layer, the (a-3
By using the second layer (25b) consisting of i), the film thickness can be made thinner, and the cost can also be reduced. Furthermore, if this photoreceptor (24) is used, since the material is harmless to the human body, there is no need to take special safety measures during manufacturing, and there is no need to treat waste gas, and the photoreceptor can be collected after use. There is no need for it, and it is possible to reduce costs. On the other hand, the charge injection prevention layer (24a) is doped with carbon (C) in addition to doping with boron (CB) to make it n-type.
Also doped with boron [B], the surface of the film becomes uneven and the drum-shaped substrate (12)
However, the adhesion between the
When carbon (C) is added, a film is formed to fill these irregularities, improving adhesion to the drum-shaped substrate (12) and preventing peeling, and due to the insulating properties of carbon [C] itself. This also contributes to improving the insulation properties of the charge injection prevention layer (24a). Furthermore, if the surface Jla (24b) is provided as in this embodiment, the third layer (25c) can also be protected. Note that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways.1 For example, impurities such as elements in group 1 of the periodic table may be added to each layer of the photoconductive layer to change the characteristics. The charge injection prevention layer may be of any type, and when the photoconductor surface is positively charged, a layer from group Ⅰ of the periodic table may be used to prevent electron injection from the support. On the other hand, when the photoconductor surface is to be negatively charged, it is doped with an element from group V of the periodic table to prevent the injection of holes from the support. It may be n-type, and its structure may be (a-Si) or (μc-3i). (μc-3L) has better absorption of light such as laser light, does not cause reflected light from the support, and can reliably prevent interference fringes caused by reflected light on the surface.
Temperature unevenness can be prevented and clearer images can be obtained. In addition, doping to improve adhesion with the support or insulation is not limited to carbon [C], but also nitrogen (N) or oxygen.

〔0〕であっても良い、そして、
その厚さも任意であるが、好ましくは100〔人〕ない
し10(m)とされる、更には各層の製造方法も光CV
D方法やスパッタリング方法等であっても良く、光導電
体の構造も支持体上に直接電荷輸送層、電荷発生層を順
次層重するもの等であっても良い、尚電荷発生層はその
膜厚が0.1(m)ないし10〔μs〕が好ましいとさ
れる事から、この発明のように(μc−5L)層及び(
a−3L)層の2層からなるものにあっては、各層の比
率に応じて(a−5i)層の膜厚が0.1[m]ないし
5〔即〕程度、(μc−3i)層の膜厚が1〔−〕ない
し10(um)程度の範囲であれば良い、又、電荷輸送
層は電荷発生層で発生したキャリアを効率よく支持体側
へ到達させるものであれば(a−SL)で形成されても
(μc−3i)で形成されても良く、暗抵抗を大きくし
、帯電能を向上させるためには周期律表第■族あるいは
周期律表第■族の元素のいづれか一方がライト・ドーピ
ングされているものが好ましいし、更には帯電能を向上
させ電荷輸送と電位保持の両機能を備えたものとするた
めには、炭素(C)、窒素(N)、酸素〔○〕のうち少
くともいづれか1つ以上を含有させることが望ましい。 又その膜厚は薄すぎても厚すぎてもその機能を充分には
たせず、好ましくは3〜80〔虜〕とされる。 〔発明の効果〕 以上説明したようにこの発明によれば、光導電性層の電
荷発生層を(μc−Si)からなる層と、(a−3i)
からなる層を層重して形成する事により、(μc−5i
)層のみから形成するのに比し、薄い膜厚で必要とする
暗抵抗及び光吸収量を得られその製造コストの低減を図
れる。そして可視光領域及び近赤外線領域の拡い領域に
おいて高い分光感度を得る事が出来、画質向上を図れる
と共にレーザプリンタ等への適用が充分可能となる。又
その製造も、反応容器を用いてクローズドシステムの製
造装置により安全に製造出来、更にはその材質も人体に
無害である事から従来のように特に廃ガス処理設備を設
けなくても良く、使用後感光体の回収も不要であり、ひ
いては経済性向上を図る事が出来る。
It may be [0], and
The thickness is also arbitrary, but preferably 100 [people] to 10 (m).Furthermore, the manufacturing method of each layer is also optical CV.
D method, sputtering method, etc. may be used, and the structure of the photoconductor may be one in which a charge transport layer and a charge generation layer are sequentially layered directly on a support. Since it is said that the thickness is preferably 0.1 (m) to 10 [μs], as in the present invention, the (μc-5L) layer and the (μc-5L) layer and (
In the case of a two-layer a-3L) layer, the thickness of the (a-5i) layer is about 0.1 [m] to 5 [immediate] depending on the ratio of each layer, (μc-3i) The thickness of the layer may be within the range of about 1 [-] to 10 (um), and the charge transport layer may be one that allows carriers generated in the charge generation layer to efficiently reach the support side (a- SL) or (μc-3i), and in order to increase the dark resistance and improve the charging ability, it is necessary to use any of the elements of group Ⅰ of the periodic table or group Ⅰ of the periodic table. It is preferable that one side is lightly doped, and furthermore, in order to improve charging ability and have both charge transport and potential holding functions, carbon (C), nitrogen (N), oxygen [ It is desirable to contain at least one of the following. Moreover, if the film thickness is too thin or too thick, it will not function satisfactorily, and is preferably 3 to 80 mm thick. [Effects of the Invention] As explained above, according to the present invention, the charge generation layer of the photoconductive layer is a layer made of (μc-Si) and (a-3i).
By stacking layers consisting of (μc-5i
) The required dark resistance and light absorption amount can be obtained with a thin film thickness, and the manufacturing cost can be reduced. In addition, high spectral sensitivity can be obtained in the visible light region and the near-infrared region, and image quality can be improved, and application to laser printers and the like is fully possible. In addition, it can be manufactured safely using a closed system manufacturing equipment using a reaction vessel, and since the material is harmless to the human body, there is no need to install waste gas treatment equipment as in the past, making it easy to use. There is no need to collect the photoreceptor afterward, and as a result, economical efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の一実施例を示し、第1
図はその成膜装置を示す概略説明図、第2図はその感光
体を示す一部断面図、第3図はその分光感度特性を示す
グラフ、第4図は(μc−3i)と(a−3L)のX線
回折を示すグラフである。 10・・・グロー放電装置、 11・・・反応容器、1
2・・・ドラム状基体、   13・・・ヒータ、16
・・・支持体、     17・・・高周波電源、18
・・・円筒状電極、   20・・・ガス供給系、24
・・・感光体、     24a・・・電荷注入防止層
、24b・・・表面層、     25・・・光導電性
層、25a・・・第1層、     25b・・・第2
層、25c・・・第3層
Figures 1 to 3 show one embodiment of the present invention.
Figure 2 is a schematic explanatory diagram showing the film forming apparatus, Figure 2 is a partial sectional view showing the photoreceptor, Figure 3 is a graph showing its spectral sensitivity characteristics, and Figure 4 is (μc-3i) and (a -3L) is a graph showing X-ray diffraction. 10...Glow discharge device, 11...Reaction container, 1
2... Drum-shaped base, 13... Heater, 16
...Support, 17...High frequency power supply, 18
... Cylindrical electrode, 20 ... Gas supply system, 24
... Photoreceptor, 24a... Charge injection prevention layer, 24b... Surface layer, 25... Photoconductive layer, 25a... First layer, 25b... Second
Layer, 25c...Third layer

Claims (1)

【特許請求の範囲】 1、導電性の支持体上に電荷注入防止層及び光導電性層
が設けられるものにおいて、前記電荷注入防止層が炭素
、窒素、酸素のうち少なくとも1原子を含有するp型又
は、n型の半導体からなるものであり、前記光導電性層
が、マイクロクリスタリンからなる第1層、及びアモル
ファスシリコンからなる第2層、並びに炭素、窒素、酸
素のうち少なくとも1原子を含有するアモルファスシリ
コンからなる第3層を前記支持体上に順次積層したもの
からなる事を特徴とする光導電体。 2、第1層の膜厚が1〔μm〕ないし10〔μm〕であ
り第2層の膜厚が0.1〔μm〕ないし5〔μm〕であ
り、第3層の膜厚が3〔μm〕ないし80〔μm〕であ
る事を特徴とする特許請求の範囲第1項記載の光導電体
。 3、第1層ないし第3層の各層がそれぞれ周期律表第I
II族の原子又は周期律表第V族の原子を含有する事を特
徴とする特許請求の範囲第1項又は第2項のいずれかに
記載の光導電体。
[Claims] 1. A charge injection prevention layer and a photoconductive layer are provided on a conductive support, in which the charge injection prevention layer contains at least one atom of carbon, nitrogen, and oxygen. or n-type semiconductor, and the photoconductive layer includes a first layer made of microcrystalline, a second layer made of amorphous silicon, and at least one atom of carbon, nitrogen, and oxygen. 1. A photoconductor comprising a third layer made of amorphous silicon that is successively laminated on the support. 2. The thickness of the first layer is 1 [μm] to 10 [μm], the thickness of the second layer is 0.1 [μm] to 5 [μm], and the thickness of the third layer is 3 [μm]. The photoconductor according to claim 1, wherein the photoconductor has a diameter of 80 [μm] to 80 [μm]. 3. Each of the first to third layers corresponds to periodic table I.
3. The photoconductor according to claim 1, which contains an atom of Group II or an atom of Group V of the periodic table.
JP60205357A 1985-09-19 1985-09-19 Photoconductive body Pending JPS6266264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205357A JPS6266264A (en) 1985-09-19 1985-09-19 Photoconductive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205357A JPS6266264A (en) 1985-09-19 1985-09-19 Photoconductive body

Publications (1)

Publication Number Publication Date
JPS6266264A true JPS6266264A (en) 1987-03-25

Family

ID=16505521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205357A Pending JPS6266264A (en) 1985-09-19 1985-09-19 Photoconductive body

Country Status (1)

Country Link
JP (1) JPS6266264A (en)

Similar Documents

Publication Publication Date Title
JPS62115457A (en) Electrophotographic sensitive body
JPS61282847A (en) Photoconductor
JPS6266264A (en) Photoconductive body
JPS6266260A (en) Photoconductive body
JPS6266265A (en) Photoconductive body
JPS6266261A (en) Photoconductive body
JPS62105152A (en) Photoconductor
JPS61282849A (en) Photoconductor
JPS6266262A (en) Photoconductive body
JPS6343157A (en) Electrophotographic sensitive body
JPS6266263A (en) Photoconductive body
JPS61283175A (en) Photoconductor
JPS6280666A (en) Photoconductive body
JPS61282848A (en) Photoconductor
JPS6280667A (en) Photoconductive body
JPS6280665A (en) Photoconductive body
JPH01295264A (en) Photoconductive member
JPS6239871A (en) Electrophotographic sensitive body
JPS61282846A (en) Photoconductor
JPS6239872A (en) Electrophotographic sensitive body
JPS6343160A (en) Electrophotographic sensitive body
JPS61295560A (en) Photoconductive member
JPH01295266A (en) Photoconductive member
JPS6343159A (en) Electrophotographic sensitive body
JPS6258262A (en) Electrophotographic sensitive body