JPS6266262A - Photoconductive body - Google Patents

Photoconductive body

Info

Publication number
JPS6266262A
JPS6266262A JP60205355A JP20535585A JPS6266262A JP S6266262 A JPS6266262 A JP S6266262A JP 60205355 A JP60205355 A JP 60205355A JP 20535585 A JP20535585 A JP 20535585A JP S6266262 A JPS6266262 A JP S6266262A
Authority
JP
Japan
Prior art keywords
layer
gas
thickness
reaction vessel
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205355A
Other languages
Japanese (ja)
Inventor
Tatsuya Ikesue
龍哉 池末
Hideji Yoshizawa
吉澤 秀二
Akira Miki
明 三城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Original Assignee
Toshiba Corp
Toshiba Automation Equipment Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Automation Equipment Engineering Ltd filed Critical Toshiba Corp
Priority to JP60205355A priority Critical patent/JPS6266262A/en
Publication of JPS6266262A publication Critical patent/JPS6266262A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/0825Silicon-based comprising five or six silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the titled body having an excellent electrostatic characteristics and a high spectral sensitivity over a broad wavelength range by laminating a microcrystalline silicon (muc-Si) and a (a-Si) layer on the titled body, and by specifying the thicknesses of each of said layers. CONSTITUTION:The inhibiting layer 24a of the electrostatic charge implantation is composed of P-type or N-type semiconductor contg. at least one atom selected among a carbon, a nitrogen and a oxygen atoms. The photoconductive layer 25 is prepared by laminating the 1st layer 25a composed of an amorphous silicon contg. at least one atom selected among the carbon, the nitrogen and the oxygen atoms, the 2nd layer 25b composed of the amorphous silicon and the 3rd layer 25c composed of the microcrystalline silicon. Thus, the thickness of the 1st layer 25a is 3-80mum, the thickness of the 2nd layer 25b is 0.1-5mum and the thickness of the 3rd layer 25c is 1-10mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、電子写真装置等画像形成装置において、静
電潜像の形成を行なう光導電体に関する。 〔発明の技術的背景とその問題点〕 近年電子写真装置等画像形成装置にあっては、その機能
や機種の多様化に伴い、光導電材料として、硫化カドミ
ウム(CdS) 、酸化亜鉛[Zn0)、セレン(Se
l 、セレンテルル合金(Ss−Te) e等の無機材
料や、ポリ−N−ビニルカルバゾール(以下PVCzと
称す)、トリニトロフルオレン(以下TNFと称す)等
の有機材料等積々のものが開発されている。 しかしながら前記光導電材料のうち、セレン(Se) 
、硫化カドミウム(CdS)等にあっては、本質的に人
体に有害な材料である事から、製造時には安全対策上そ
の製造装置が複雑となり、製造コストが上昇される一方
、使用後には回収する必要があり、更にコストが上昇さ
れる他、セレン(Ss) 。 セレン−テルル合金[5eTa)にあっては、結晶化温
度が約65C℃)と低い特性を有するため、結晶化し易
く、複写を繰り返し行なう間に結晶化された部分に残留
電荷を生じ、画像を汚損する等の問題を生じ易く、結局
は長寿命化を図れないという欠点がある。そして酸化亜
鉛(ZnO)にあってはその物性上、酸化還元を生じ易
く、温度や湿度等の環境雰囲気の影響を著しく受け、画
質が不安定となり、信頼性に劣るという欠点がある。又
有機材料である(PVCz)や(TNF)は熱安定性及
び耐摩耗性に劣る事から長寿命化に難点がある上、最近
では発がん性の疑いがもたれるという欠点を有している
。 このため近年上記欠点を解決するため、無公害である事
から回収処理が不要であり、又、表面硬度が高く耐摩耗
性及び耐衝撃性に優れ、更には従来に比し可視光領域で
高い分光感度を有するアモルファスシリコン(以下a−
3iと称す)が、感光体等の光導電材料への適応を検討
されている。即ち具体的には感光体は、その特性として
高抵抗且つ分光感度が高い事が要求される事から、これ
等両特性を満たすため、導電性支持体と(a−3i)光
導電性層の間に、感光体に優れた電荷保持能を持たせる
と共に、光疲労特性や繰返し特性等に優れた効果を有す
る電荷注入防止層を設け、更には(a−5L)光導電性
層上に表面電荷保持層を層重させた積層型の(a−3i
)感光体が開発されている。 しかしながら(a−5i)は、 シラン(Si)を含有
するガスを用いたグロー放電分解法による成膜時、(a
、−5i)膜中に取り込まれる水素原子(H)の量に応
じて電気的特性及び光学的特性が大きく変動されてしま
うという問題を有している。即ち(a−3i)膜中に取
り込まれる水素原子(H)の量が多くなると、光学的バ
ンドギャップが大きくなり高抵抗化する反面、これに伴
い近赤外線領域近傍の長波長光領域に対する分光感度が
低下し、半導体レーザーを用いたレーザビームプリンタ
に使用した場合カブリや活字のつぶれ、残像、干渉縞に
よる濃度むら等を生じ、その使用が不能になると共に、
成膜条件によっては、((SiH□)、〕結合や(Si
l(s )  結合のような結合構造を有するものが、
(a−5i)膜中で支配的となり、その結果(Si)1
)結合が切断され、ダングリングボンドやボイド等の構
造欠陥が増大し、光導電性が劣下するという問題を有す
る。一方(a−5i)膜中に取り込まれる水素原子〔H
〕の量が低下すると、長波長光に対する分光感度が増加
する反面、光学的バンドギャップが小さくなり、低抵抗
化してしまうと共に、水素原子(H)がダングリングボ
ンドを補償しなくなるため1発生したキャリアの移動度
や寿命が低下し、やはり光導電性が劣下し、感光体への
使用が不能になるという問題を有している。 このため長波長光に対する分光感度を増加させる方法と
して、シラン(SL)を含有するガス及びゲルマンガス
(GeH4)を混合し、グロー放電分解法により光学的
バンドギャップの狭い膜を成膜する方法が実施されてい
るが、一般にグロー放電時の最適支持体温度が、シラン
(Si)含有ガスとゲルマン(GsH,)ガスとでは4
0〜50〔度〕異る事から、形成された膜に構造欠陥を
生じ易く、光導電性がやはり劣下してしまい、更にはゲ
ルマンガス(Ge14)が酸化されると、有毒となる事
から、その廃ガス処理も複雑になるという欠点を生じて
いる。一方近年、光学的禁止帯幅が約1.7(eV3で
ある( a−3i)に比し、光学的禁止帯幅が小さく近
赤外線領域近傍の長波長光領域にも感度を有すると共に
構造欠陥が少なく、モビリティが大きいマイクロクリス
タリンシリコン(以下μC−3iと称す)が開発されて
いる。 即ちこの(μC−5i)は非単結晶シリコンに属するも
のであるが、X線回折測定を行うと、第4図点線で示す
ように(a−3i)が無定形であるため、ハローが現わ
れるのみで回折パターンを認められないのに対し、(μ
C−5L)は第4図実線で示すように〔2θ〕が27〜
28.5 C度〕の付近で結晶回折パターンを示すもの
である。一方ポリクリスタリンシリコンは、暗抵抗が1
0@〔Ω・l〕以下であるのに対して(μC−5i)は
10”[Ω・口3以上と高低抗を有している。上述の様
な特性により(μ(1ニーSi)は他の非単結晶シリコ
ンである(a−5i)やポリクリスタリンシリコンと区
別され、その構造は約数十〔人〕以上の粒径の微結晶が
集合して形成されていると考えられる。 そしてこのよ
うな(μC−5i)を製造するには(a−5i)と同様
スパッタリングやグロー放電分解法等によるが、 (a
−3i) Ill待時比し、成膜を行なう導電性の支持
体の温度を高めに設定するか、あるいは高周波電力を大
きくすると形成され易くなる。即ち支持体の温度を高く
し、高周波電力を大きくする事により、原料であるシラ
ン[Si)含有ガスの流量を増大出来、その結果成膜速
度が増大され(μC−5j、)が形成され易くなるから
である。更に原料としてシラン(SiH4)やジシラン
(Sin He )等の高次シランガスも含めて、水素
(H)で希釈したガスを用いると、(μC−3i)がよ
り効果的に形成され易くなる。 又、成膜される(μC−5L)層にあっては、水素(H
)の含有量が多くなると結晶化度が大きくなり、ポリク
リスタリンシリコンに近付き、暗抵抗が小さくなるのに
対して明抵抗が増大され、ひいては光導電性を示さなく
なってしまうので、暗抵抗と明抵抗の調和がとれた優れ
た光導電性を得るためには、(μC−3L)層中に水素
(H)が0.1〜30 (g子%〕含まれている事が望
ましい、この(μC−5i)層への水素(H)のドーピ
ングは、原料としてシラン(s x H4)やジシラ:
/ (Si、 H,)等ジシラン(SL)含有ガスとキ
ャリアガスとしての水素ガス〔H2〕を反応容器に導入
し、グロー放電を行ったり、あるいは4フツ化ケイ素[
5iFJやトリクロロシラン(SiCL ]等のハロゲ
ン化ケイ素と水素ガス(H2)との混合ガスを原料とし
て反応を行なったり、更にはシラン(Sil含有ガスと
ハロゲン化ケイ素の混合ガスを原料として反応を行なっ
ても良い。 更に(μC−9i)層にあっては、支持体から光導電性
層への電荷の注入を防止したり、あるいは光感度特性を
高めたり、i型にし高抵抗化する等のため、水素原子(
H)の他に不純物をドーピングしたりするが、この不純
物元素としては、p型にするためにはホウ素〔B〕、ア
ルミニウム〔AQ〕等の周期律表第■族の元素が適し、
他方n型にするためには窒素〔N〕、リン(P)等の周
期律表第■族の元素が適している。又、(μC−3i)
の暗抵抗を大きくし、光導電特性を高めるために窒素〔
N〕、炭素〔C〕、及び酸素
[Technical Field of the Invention] The present invention relates to a photoconductor that forms an electrostatic latent image in an image forming apparatus such as an electrophotographic apparatus. [Technical background of the invention and its problems] In recent years, with the diversification of functions and models of image forming devices such as electrophotographic devices, cadmium sulfide (CdS) and zinc oxide [Zn0] have been used as photoconductive materials. , selenium (Se
A wide variety of materials have been developed, including inorganic materials such as l, selenite alloy (Ss-Te), and organic materials such as poly-N-vinylcarbazole (hereinafter referred to as PVCz) and trinitrofluorene (hereinafter referred to as TNF). ing. However, among the photoconductive materials, selenium (Se)
, cadmium sulfide (CdS), etc., are materials that are inherently harmful to the human body, so the manufacturing equipment becomes complicated and the manufacturing cost increases due to safety measures, but they must be recovered after use. Selenium (Ss) is required, which further increases the cost. Selenium-tellurium alloy [5eTa) has a low crystallization temperature of approximately 65°C (65°C), so it easily crystallizes, and during repeated copying, a residual charge is generated in the crystallized portion, causing the image to deteriorate. Problems such as staining are likely to occur, and a long life cannot be achieved after all. Due to its physical properties, zinc oxide (ZnO) is susceptible to oxidation-reduction and is significantly affected by environmental conditions such as temperature and humidity, resulting in unstable image quality and poor reliability. Furthermore, organic materials such as (PVCz) and (TNF) have poor thermal stability and wear resistance, making it difficult to extend their service life, and recently they have also been suspected of being carcinogenic. Therefore, in recent years, in order to solve the above-mentioned drawbacks, it is non-polluting and does not require collection treatment, has a high surface hardness and has excellent abrasion resistance and impact resistance, and is also higher in the visible light range than before. Amorphous silicon with spectral sensitivity (hereinafter a-
3i) is being studied for application to photoconductive materials such as photoreceptors. Specifically, since the photoreceptor is required to have high resistance and high spectral sensitivity, in order to satisfy both of these characteristics, the conductive support and (a-3i) photoconductive layer are In between, a charge injection prevention layer is provided which gives the photoreceptor excellent charge retention ability and has excellent effects on optical fatigue characteristics and cyclic characteristics. Laminated type (a-3i) with layered charge retention layers
) Photoreceptors have been developed. However, when (a-5i) is formed by a glow discharge decomposition method using a gas containing silane (Si), (a
, -5i) There is a problem in that the electrical characteristics and optical characteristics vary greatly depending on the amount of hydrogen atoms (H) incorporated into the film. In other words, (a-3i) As the amount of hydrogen atoms (H) incorporated into the film increases, the optical bandgap becomes larger and the resistance becomes higher. When used in a laser beam printer using a semiconductor laser, fogging, crushed type, afterimages, uneven density due to interference fringes, etc. may occur, making the printer unusable.
Depending on the film formation conditions, ((SiH□),] bond or (Si
Something with a bond structure like l(s) bond is
(a-5i) becomes dominant in the film, resulting in (Si)1
) Bonds are broken, structural defects such as dangling bonds and voids increase, and photoconductivity deteriorates. On the other hand (a-5i) Hydrogen atoms [H
] decreases, the spectral sensitivity to long wavelength light increases, but at the same time the optical bandgap decreases, resulting in lower resistance, and hydrogen atoms (H) no longer compensate for dangling bonds, resulting in 1. There are problems in that the mobility and life of the carrier are reduced, and the photoconductivity is also deteriorated, making it impossible to use it as a photoreceptor. Therefore, as a method to increase the spectral sensitivity to long wavelength light, there is a method of mixing a gas containing silane (SL) and germane gas (GeH4) and forming a film with a narrow optical bandgap by glow discharge decomposition. However, the optimum support temperature during glow discharge is generally 4 for silane (Si)-containing gas and germane (GsH,) gas.
Since the temperature differs by 0 to 50 degrees, structural defects are likely to occur in the formed film, resulting in poor photoconductivity, and furthermore, if germane gas (Ge14) is oxidized, it may become toxic. Therefore, the waste gas treatment becomes complicated. On the other hand, in recent years, the optical bandgap width is approximately 1.7 (eV3) compared to (a-3i), and the optical bandgap width is small, and it is sensitive to long wavelength light near the near-infrared region, and is sensitive to structural defects. Microcrystalline silicon (hereinafter referred to as μC-3i) has been developed, which has a small amount of silicon and high mobility.In other words, this (μC-5i) belongs to non-single-crystal silicon, but when X-ray diffraction measurements are performed, As shown by the dotted line in Figure 4, (a-3i) is amorphous, so only a halo appears and no diffraction pattern is observed, whereas (μ
C-5L) has [2θ] of 27~27 as shown by the solid line in Figure 4.
It shows a crystal diffraction pattern around 28.5 degrees C]. On the other hand, polycrystalline silicon has a dark resistance of 1
0@[Ω・l] or less, whereas (μC-5i) has a height resistance of 10”[Ω・mouth 3 or more. Due to the above-mentioned characteristics, (μ(1 knee Si) It is distinguished from other non-single-crystal silicon (a-5i) and polycrystalline silicon, and its structure is thought to be formed by an aggregation of microcrystals with a grain size of about several dozen or more. In order to manufacture such (μC-5i), sputtering, glow discharge decomposition method, etc. are used as in (a-5i), but (a
-3i) It becomes easier to form if the temperature of the conductive support on which the film is formed is set higher than the waiting time, or if the high frequency power is increased. That is, by raising the temperature of the support and increasing the high-frequency power, the flow rate of the raw material silane [Si]-containing gas can be increased, and as a result, the film formation rate is increased and (μC-5j, ) is more likely to be formed. Because it will be. Furthermore, if a gas diluted with hydrogen (H), including a higher-order silane gas such as silane (SiH4) or disilane (Sin He), is used as a raw material, (μC-3i) can be more effectively formed. In addition, in the (μC-5L) layer to be formed, hydrogen (H
) content increases, the degree of crystallinity increases, approaching polycrystalline silicon, and while the dark resistance decreases, the bright resistance increases, and eventually it no longer exhibits photoconductivity, so the dark resistance and bright In order to obtain excellent photoconductivity with balanced resistance, it is desirable that the (μC-3L) layer contains 0.1 to 30 g% of hydrogen (H). Hydrogen (H) doping to the μC-5i) layer is performed using silane (s x H4) or disilane as a raw material.
/ Disilane (SL) containing gas such as (Si, H,) and hydrogen gas [H2] as a carrier gas are introduced into a reaction vessel to perform glow discharge, or silicon tetrafluoride [
The reaction can be carried out using a mixed gas of silicon halide and hydrogen gas (H2) such as 5iFJ or trichlorosilane (SiCL) as a raw material, or furthermore, the reaction can be carried out using a mixed gas of silane (Sil-containing gas and silicon halide) as a raw material. Furthermore, in the (μC-9i) layer, it is possible to prevent charge injection from the support to the photoconductive layer, or to improve the photosensitivity characteristics, or to make it i-type and increase the resistance. Therefore, the hydrogen atom (
In addition to H), impurities are doped, and in order to make the material p-type, elements from group Ⅰ of the periodic table, such as boron [B] and aluminum [AQ], are suitable.
On the other hand, in order to make the material n-type, elements of group Ⅰ of the periodic table, such as nitrogen [N] and phosphorus (P), are suitable. Also, (μC-3i)
Nitrogen [
N], carbon [C], and oxygen

〔0〕の少なくとも1種を
ドーピングする事が望ましい、この様にすれば、これ等
の元素は、(μC−5i)の粒界に析出し、又、シリコ
ン(Si)のダングリングボンドのターミネータとして
作用し、バンド間の禁制帯中に存在する状態密度を減少
させるからである。そして上述のような特性を有する事
から光導電性層に(μC−3i)を用いる事によりレー
ザプリンタ等への使用を試みているが、光導電性層を(
μC−3i)のみで形成した場合は、暗抵抗が低く電荷
の保持が憇しい上に、光吸収量が少ない事から、かなり
の厚さを必要としなければならず、しかも(a−5L)
に比し成膜時間がかかる事からコストの上昇を招くとい
う新たな問題を生じてしまう。 〔発明の目的〕 この発明は上記事情にもとづいてなされたもので、高抵
抗を保持出来る事から帯電特性に優れるにもかかわらず
、広い波長領域にわたり高い分光感度特性を有し、更に
は鮮明で良質な画像を得られると共に製造も容易でコス
トの低減を図る事が出来る光導電体を提供する事を目的
とする。 〔発明の概要〕 この発明は上記目的を達成するため、導電性の支持体上
に電荷注入防止層を介して層重される光導電性層を、マ
イクロクリスタリンシリコン(以下μC−3Lと称す)
及び(a−3i)とを積層したものから形成する事によ
り、帯電特性に優れ、かつ広い波長領域にわたり高い分
光感度特性を有する光導電体を得るものである。 〔発明の実施例〕 先ずこの発明の詳細な説明するにあたり、この発明の原
理について述べる。即ちこの発明は、前述したように、
暗抵抗が高く可視光領域に感度を有する反面近赤外線付
近の感度を有しない(a−3L)と、可視光及び近赤外
線付近に感度を有するが暗抵抗の低い(μC−3i)を
層重り、た光導電性層により、可視光付近の光は主とし
て(a −5i)が吸収し、吸収しきれない光を(μC
−5i)が吸収する一方、近赤外線付近の光は主として
(μC−3i)が吸収する事により、それぞれの欠点を
補足し。 光導電体に可視光領域から近赤外線領域迄の広範囲にわ
たり高い分光感度特性を持たせようとするものである。 以下この発明の一実施例を第1図ないし第3図を参照し
ながら説明する。グロー放電装置(10)の反応容器(
11)内には、導電性の支持体であり、アルミニウムか
らなるドラム状基体(12)を支持するため、ヒータ(
13)を内蔵し、モータ(14)により回転される支持
体(16)が設けられている。又、支持体(16)周囲
は、13.56 [MHz)の高周波電!(17)に接
続される円筒状電極(18)で囲繞されると共に、支持
棒(16)上方にはシランガス(SiH,)、  ジボ
ランガス(B、 H,) 、水素ガス〔H□〕、メタン
ガス(CH4)等を必要に応じて供給出来るよう多数の
ガスボンベ(19a)・・・(19n)及びガス混合器
(20a)を有するガス供給系(20)にガス導入バル
ブ(21a)を介して接続されるガス導入管(21)が
設けられている。尚、(8a)・・・(8n)は各ガス
ボンベ(19a)・・・(19n)のバルブ、(9a)
・・・(9n)は圧力調整器である。更に(22)は反
応容器(11)内の排気を行なう排気装置I(図示せず
)に接続される排気バルブであり、(23)は反応容器
(11)内の気圧を測定する真空計である。又(24)
は光導電体である電子写真装置の感光体であり、ドラム
基体(12)上に順次電荷注入防止層(24a)、及び
電荷保持あるいは電荷輸送を行なうための第1層(25
a)と、可視光に対する電荷発生層である第2層(25
b)と、近赤外光に対する電荷発生層である第3層(2
5c)とからなる光導電性層(25)、  並びに表面
層(24b)が積層されている。 しかしてグロー放電装W (10)で感光体(24)を
形成する場合、支持体(16)にドラム状基体(12)
をセットした後1反応容器(11)内を所定の気圧にす
るよう排気バルブ(22)を開は排気装置 (図示せず
)により排ガス処理を行なうと共にヒータ(13)によ
りドラム状基体(12)を所定温度に加熱する。そして
ガス導入管(21)を介し、ガス供給系(2o)より必
要とする所定のガスを反応容器(11)内に導入し、反
応容器(11)内のガス圧を一定に維持しつつ高周波電
源(17)によりドラム状基体(12)及び円筒状電極
(18)間に必要とする電力を所定時間印加し、電荷注
入防止1(24a)の成膜を行なう、続いて、同一反応
容器(11)内でドラム状基体(12)の温度及び導入
ガス、更には電力量及び電力の印加時間等の成膜条件を
順次所定のものに設定し直しながら電荷注入防止層(2
4a)上に光導電性層(25)の第1層(25a)ない
し第3層(25e)の成膜を行なう。更に同一反応容器
(11)内で各成膜条件を所定のものに設定し直し、光
導電性層(25)上に表面層(24b)を成膜し、感光
体(24)の形成を終了する。 次にこの実施例の作用について先ず第1の具体例を述べ
る。 〔具体例1〕 先ず、支持棒(16)にドラム状基体(12)をセット
し、排気バルブ(22)を開け、排気装置(図示せず)
により反応容器(11)内を0.1 (Torr)以下
に排気すると共に、ヒータ(13)によりドラム状基体
(12)を320 (”C1に加熱する6次いでガス供
給系(20)より、ガス導入管(21)を介し、シラン
ガス(Si14)流量に対し、メタンガス(CH,)を
20〔%〕、ジボランガス(B1)1.)を1xlO−
3C%〕、水素ガス〔H2〕を等量の比率で反応容器(
11)内に導入し、排気装置(図示せず)により反応容
器(11)内の圧力を0.5(Torr )に維持しつ
つ、モータ(14)によりドラム状基体(12)を回転
させながら高周波電源(17)により150 (W)の
電力をドラム状基体(12)及び円筒状電極(18)間
に45分間印加し、(a−3i)からなる電荷注入防止
ff(24a)の成膜を行なう。この後電力及び各種ガ
スの供給を止める0、続いて電荷注入防止層(24a)
上に光導電性層(25)を成膜するため、反応容器(1
1)内にガス供給系(20)よりシランガス(S、LH
4〕流量に対し、メタンガス(CH4)を10〔%〕。 水素ガス〔H2〕を等量の比率で反応容器(11)内に
導入し、排気装置(図示せず)により反応容器(11)
内の圧力を0.5 (Torr)に維持しつつドラム状
基体(12)を回転させながら、高周波電源(17)に
より200[W)の電力をドラム状基体(12)及び円
筒状電極(18)間に3時間印加し、(a−3i)から
なる膜厚18〔μm〕の第1層(25a)を成膜し、次
いでシランガス[SiH4]流量に対しジボランガス(
B2Ha)を5X10−’[%]、水素ガス(US)を
等量の比率で反応容器(11)内に導入し1反応容器(
11)内の圧力を0.5 (Torr〕に維持しつつ、
200 (W)の電力をドラム状基体(12)及び円筒
状電極(18)間に30時間印加し、(a−5i)から
なる膜厚3〔μm〕の第2層(25b)を成膜し、 更
にシランガス(SillJ流量に対し、水素ガス〔H2
〕を600〔%〕の比率で反応容器(11)内に導入し
、反応容器(11)内の圧力を1.1(Torr)に維
持しつつ、400 (W〕の電力をドラム状基体(12
)及び円筒状電極(18)間に2時間印加し、(μC−
5i)からなり膜厚5(umlの第3層(25c)を成
膜した後、電力及び各種ガスの供給を止める。 次に、反応容器(11)内にガス供給系(20)よりシ
ランガス(SiH4)流量に対し、メタンガス(CH,
)を400〔%〕の比率で反応容器(11)内に導入し
、排気装置(図示せず)により反応容器(11)内の圧
力を0.6 [Torr)に維持しつつ、 ドラム状基
体(12)を回転させながら、高周波電源(17)によ
り150(W)の電力をドラム状基体(12)及び円筒
状電極(18)間に5分間印加し、光導電層(25)上
に(a−3i)からなる表面層(24b)を成膜し、最
後に電力及びガスの供給を止め、感光体(24)の製造
を終了する。 このようにして得られた全膜厚18〔μm〕の正帯電用
の感光体(24)を(サンプルa)とし、その光導電性
層(25)の第3層(25c)における( p C−9
i)の結晶化度及び結晶粒径をX線回折法により測定し
たところ、結晶化度60〔%〕、結晶粒径約40〔人〕
という結果が得られた。 尚、比較のため、(サンプルa)光導電性層(25)を
、第2層(25b)に用いた( a−3i)膜の成膜条
件で2.5時間成膜した。膜厚15〔μm〕のホウ素C
B)を含有する(a−5L)Illのみからなるものに
替えた(サンプルb)を製造する一方、(サンプルa)
の光導電性層(25)を、第1層(25a)に用いた(
 a −3i)膜の成膜条件で2.5時間成膜した。膜
厚15〔μm〕の炭素(C)を含有する( a−5L)
膜のみからなるものに替えた(サンプルC)を製造した
。 そしてこのようにして得られた各サンプルの分光感度を
測定したところ第3図に示すように(サンプルb)、(
サンプルC)に比しくサンプルa)は、波長350〜7
50 (nm) (可視光領域)においてはほぼ同等の
感度であるものの、近赤外線領域にあっては高感度を有
し、レーザビームプリンタ等への適用も可能となる。又
、各サンプルにコロナ放電により6.5(KV)の電圧
を印加した時の表面電位及び15秒後の電位保持率並び
に10(gux−sec)の光により露光した時の電位
半減露光量を測定したところ〔表・1〕のような感光体
の特性評価結果が得られた。 〔表・1〕 感光体の特性評価 尚、露光後における(サンプルC)の残留電位は200
(V)であった。 更に各サンプルの感光体を複写機に実際に装着して画像
形成を行ない画質を比較した結果、(サンプルb)では
画像濃度が薄く、かすれたりする一方、(サンプルC)
ではカブリが顕著であり解像度が低く文字等がつぶれ、
更には残像を生じるというような欠点を有する反面、(
サンプルa)にあっては(サンプルb)、(サンプルC
)で生じるような画像欠陥が無く、鮮明な画像が得られ
た。 次に各サンプルの側光体をレーザプリンタに装着し画像
形成を行なったところ(サンプルb)及び(サンプルC
)では層中で吸収し切れずドラム状基体(12)表面で
反射された光と、表面層(24b)での反射光とによる
干渉縞により生じる画像の濃度むらやカブリを生じ、特
に(サンプルC)ではいずれもより顕著であったのに対
し、(サンプルa)では干渉縞による画像欠陥を生ぜず
、高解像度、高コントラストの鮮明な画像が得られた。 次に他の具体例について述べる。 〔具体例2〕 この〔具体例2〕は、前述の〔具体例1〕の第3層(2
5C)の成膜条件のみを変え炭素〔C〕をドーピングす
るものであり、他は〔具体例1〕と全く同様である。即
ちこの具体例にあっては、[具体例1〕において第2層
(25b)迄成膜した後、反応容器(11)内にシラン
ガス[:SiH4]流量に対し、メタンガス(CH4]
を0.3〔%〕、水素ガス(H,ゴを600〔%〕の比
率で導入し、第3層(25c)を成膜したものである。 このようにして得られた感光体にコロナ放電により6.
5 (KV)の電圧を印加したところ、(サンプルa)
に比し表面電位は20 (%〕内向上、実際に複写機や
レーザプリンタに装着しても良好な画像が得られた。 〔具体例3〕 この〔具体例3〕は、〔具体例2〕と同様〔具体例1〕
の第3層(25c)の成膜条件のみを変え窒素(N)を
ドーピングするものであり、他は〔具体例1〕と同様で
ある。即ち第 層(25)成膜、シランガス〔5iH4
)流量に対し、窒素ガス〔N、〕を2〔%〕、水素ガス
〔H2〕を600〔%〕の比率で反応容器(11)内に
導入し、第3層(25c)を成膜したものである。 このようにして得られた感光体にコロナ放電により6.
5 (KV)の電圧を印加したところ、(サンプルa)
に比し、表面電位は25〔%〕内向上、実機による画像
も〔具体例2〕と同様良好であった。 このように構成すれば、光導電層(25)中の第3M(
25c)が(μC−3i)で形成されると共に第2層(
25b)が(a−5i)で形成されている事がら、  
(a−Si)のみから成るものに比し、可視光領域及び
近赤外線領域においてより高感度を有する一方。 (μC−8i)のみから成るものに比し暗抵抗を高く保
持出来、画質の向上を図れると共にレーザプリンタ等へ
の適用も可能となる。又、暗抵抗が低く。 光吸収量の少ない(μC−5i)からなる第3層(25
c)のみを電荷発生層として用いる場合には、必要とす
る暗抵抗及び光吸収量を得るために膜厚をがなり厚くし
なければならず、成膜速度の遅い(μC−Si)にあっ
てはより長い成膜時間を必要とし、コストも上昇されて
しまうという問題を有するのに比し、(μC−5i)層
に加え(a−SL)からなる第2層(25b)を用いる
事により、膜厚を薄く出来、ひいてはコストの低減も可
能となる。更にこの感光体(24)を用いれば、その材
質が人体に無害である事から、製造時に特に安全対策を
施す必要が無く、又その廃ガス処理も不要であり、使用
後に感光体を回収しなくても良く、ひいてはコストの低
減を図る事が出来る。一方、電荷注入防止層(24a)
は、n型とするためのホウ素CB)をドーピングする以
外に炭素(C)もドーピングされているがこれはホウ素
〔B)のみの場合、膜の表面が凹凸状になり、ドラム状
基体(I2)との密着性がそこなわれはがれやすくなる
のに対し、炭素〔c〕を加えるとこの凹凸をうめるよう
に成膜される事がら、ドラム状基体(12)との密着性
が向上され剥離が防止されると共に炭素(C)自身の絶
縁性により電荷注入防止層(24a)の#!!a性向上
にも寄与するものである。 更には、この実施例のように表面層(24b)を設けれ
ば、光の吸収効率の低下防止を図れると共に第3層(2
5c)の保護も行なえる。即ち(μC−3i)は特性上
屈折率が3〜4と比較的大きく、その表面で光反射を生
じ易いが、表面層(24b)を設ける事によりこの反射
光が防止され、第3層(25c)に吸収される光量が増
大される。 尚この発明は上記実施例に限定されず種々設計変更可能
であり1例えば光導電性層の各層に周期律表第■族や周
期律表第■族の元素等地の不純物を添加し、特性の向上
を図っても良いし、電荷注入防止層の型も任意であり光
導電体表面に正帯電を行なわせるときは、支持体からの
電子の注入を阻止するために周期律表第■族の元素をド
ーピングする事によりn型とし、他方光導電体表面に負
帯電を行なわせるときは支持体からの正孔の注入を阻止
するために周期律表第V族の元素をドーピングする事に
よりn型としても良いし、その構造も(a−3i)であ
っても(μC−5i )あっても良いが、(μC−3i
)で形成した場合はレーザ光等の光吸収がより優れ、支
持体からの反射光を生じる事が無く。 ひいては表面での反射光とによる干渉縞を確実に防止出
来、濃度むらを防止出来、より鮮明な画像を得る事が出
来る。又、支持体との接着性向上あるいは絶縁性向上の
ためドーピングするものとしては炭素(C)に限定され
ず、窒素(N)あるいは酸素〔o〕であっても良い。 そして、その厚さも任意であるが、好ましくは100〔
人〕ないし10〔μm〕とされる。更には各層の製造方
法も光CVD方法やスパッタリング方法等であっても良
く、光導電体の構造も支持体上に直接電荷輸送層、電荷
発生層を順次層重するもの等であっても良い。尚電荷発
生層はその膜厚がO9l〔μm〕ないし10〔μ醜〕が
好ましいとされる事から、この発明のよう((μC−3
i)層及び(a−5i)層の2層からなるものにあって
は、各層の比率に応じて(a−5i)層の膜厚が0.1
 (μm)ないし5(μm3程度、(p C−5L)層
の膜厚が1 (u+s)ないし10〔μm〕程度の範囲
であれば良い。 又、@荷輸送層は電荷発生層で発生したキャリアを効率
よく支持体側へ到達させるものであれば(a−5i)で
形成されてもμC−3L)で形成されても良く、暗抵抗
を大きくし、帯電能を向上させるためには周期律表第■
族あるいは周期律表第■族の元素のいずれか一方がライ
ト・ドーピングされているものが好ましいし、更には帯
電能を向上させ電荷輸送と電位保持の両機能を備えたも
のとするためには、炭素〔C〕、窒素〔N〕、酸素〔○
〕のうち少くともいずれか1つ以上を含有させることが
望ましい、又その膜厚は薄すぎても厚すぎてもその機能
を充分にはたせず、好ましくは3〜80〔μ膳〕 と、
される。 〔発明の効果〕 以上説明したようにこの発明によれば、光導電性層の電
荷発生層を(μC−5i)からなる層と(a−3i )
からなる層を層重して形成する事により、(μC−5i
)層のみから形成するのに比し、薄い膜厚で必要とする
暗抵抗及び光吸収量を得られその製造コストの低減を図
れる。そして可視光領域及び近赤外線領域の拡い領域に
おいて高い分光感度を得る事が出来、画質向上を図れる
と共にレーザプリンタ等への適用が充分可能となる。又
その製造も、反応容器を用いてクローズドシステムの製
造装置により安全に製造出来、更にはその材質も人体に
無害である事から従来のように特に廃ガス処理設備を設
けなくても良く、使用後感光体の回収も不要であり、ひ
いては経済性向上を図る事が出来る。
It is desirable to dope at least one kind of [0]. If this is done, these elements will precipitate at the grain boundaries of (μC-5i) and also act as terminators of dangling bonds of silicon (Si). This is because the density of states existing in the forbidden band between bands is reduced. Since it has the above-mentioned characteristics, attempts have been made to use (μC-3i) in the photoconductive layer for laser printers, etc.;
If it is formed only with μC-3i), it has a low dark resistance and poor charge retention, and also has a small amount of light absorption, so it must be quite thick, and (a-5L)
A new problem arises in that the film formation time is longer than that of the previous method, which leads to an increase in cost. [Object of the Invention] This invention was made based on the above circumstances, and although it has excellent charging characteristics due to its ability to maintain high resistance, it also has high spectral sensitivity characteristics over a wide wavelength range, and furthermore, it has clear and sharp characteristics. The object of the present invention is to provide a photoconductor that can obtain high-quality images, is easy to manufacture, and can reduce costs. [Summary of the Invention] In order to achieve the above object, the present invention uses microcrystalline silicon (hereinafter referred to as μC-3L) as a photoconductive layer layered on a conductive support via a charge injection prevention layer.
and (a-3i), a photoconductor having excellent charging characteristics and high spectral sensitivity over a wide wavelength range can be obtained. [Embodiments of the Invention] First, in giving a detailed explanation of the invention, the principle of the invention will be described. That is, as mentioned above, this invention
A layer with high dark resistance and sensitivity in the visible light region but no sensitivity near the near-infrared region (a-3L) and a layer with sensitivity in the visible and near-infrared region but low dark resistance (μC-3i) , due to the photoconductive layer, light in the vicinity of visible light is mainly absorbed by (a -5i), and the light that cannot be absorbed is absorbed by (μC
-5i) absorbs light, while near-infrared light is mainly absorbed by (μC-3i), thereby compensating for the drawbacks of each. The purpose is to provide a photoconductor with high spectral sensitivity characteristics over a wide range from the visible light region to the near-infrared region. An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Reaction vessel of glow discharge device (10) (
Inside 11) is a heater (
13) and is provided with a support body (16) which is rotated by a motor (14). Also, the area around the support (16) is energized by high frequency electricity of 13.56 [MHz]! It is surrounded by a cylindrical electrode (18) connected to (17), and above the support rod (16) there are silane gas (SiH,), diborane gas (B, H,), hydrogen gas [H□], methane gas ( It is connected via a gas introduction valve (21a) to a gas supply system (20) having a large number of gas cylinders (19a)...(19n) and a gas mixer (20a) so that CH4) etc. can be supplied as necessary. A gas introduction pipe (21) is provided. In addition, (8a)...(8n) are the valves of each gas cylinder (19a)...(19n), (9a)
...(9n) is a pressure regulator. Furthermore, (22) is an exhaust valve connected to an exhaust device I (not shown) that exhausts the inside of the reaction vessel (11), and (23) is a vacuum gauge that measures the atmospheric pressure inside the reaction vessel (11). be. Also (24)
1 is a photoreceptor of an electrophotographic device which is a photoconductor, and includes a charge injection prevention layer (24a) and a first layer (25) for charge retention or charge transport on a drum base (12).
a) and a second layer (25
b) and a third layer (2) which is a charge generation layer for near-infrared light.
A photoconductive layer (25) consisting of 5c) and a surface layer (24b) are laminated. Therefore, when forming the photoreceptor (24) with the glow discharge device W (10), the drum-shaped base (12) is attached to the support (16).
After setting the reaction vessel (11), the exhaust valve (22) is opened to bring the inside of the reaction vessel (11) to a predetermined pressure, and the exhaust gas is treated by the exhaust device (not shown), and the drum-shaped substrate (12) is heated by the heater (13). is heated to a predetermined temperature. Then, a required predetermined gas is introduced into the reaction vessel (11) from the gas supply system (2o) through the gas introduction pipe (21), and while maintaining the gas pressure in the reaction vessel (11) constant, high frequency The power supply (17) applies the necessary power between the drum-shaped substrate (12) and the cylindrical electrode (18) for a predetermined period of time to form a film of charge injection prevention 1 (24a).Subsequently, the same reaction vessel ( The charge injection prevention layer (2) is sequentially reset to predetermined film forming conditions such as the temperature of the drum-shaped substrate (12), the introduced gas, the amount of electric power, and the time of applying electric power in the drum-shaped substrate (11).
4a) The first layer (25a) to the third layer (25e) of the photoconductive layer (25) are formed on the photoconductive layer (25). Furthermore, each film forming condition is reset to the specified one in the same reaction vessel (11), a surface layer (24b) is formed on the photoconductive layer (25), and the formation of the photoreceptor (24) is completed. do. Next, a first concrete example of the operation of this embodiment will be described. [Specific Example 1] First, the drum-shaped base (12) is set on the support rod (16), the exhaust valve (22) is opened, and the exhaust device (not shown) is turned on.
The inside of the reaction vessel (11) is evacuated to 0.1 (Torr) or less, and the drum-shaped substrate (12) is heated to 320℃ (C1) by the heater (13). Via the introduction pipe (21), methane gas (CH,) was added at 20% and diborane gas (B1) was added at 1xlO- with respect to the flow rate of silane gas (Si14).
3C%] and hydrogen gas [H2] in a reaction vessel (
11) while rotating the drum-shaped substrate (12) with the motor (14) while maintaining the pressure inside the reaction vessel (11) at 0.5 (Torr) with an exhaust device (not shown). A power of 150 (W) is applied between the drum-shaped substrate (12) and the cylindrical electrode (18) for 45 minutes by a high-frequency power source (17) to form a film of charge injection prevention ff (24a) consisting of (a-3i). Do the following. After that, the supply of electric power and various gases is stopped, and then the charge injection prevention layer (24a)
A reaction vessel (1) is placed in order to deposit a photoconductive layer (25) thereon.
1) Silane gas (S, LH) is supplied from the gas supply system (20)
4] Methane gas (CH4) at 10% of the flow rate. Hydrogen gas [H2] is introduced into the reaction vessel (11) at an equal ratio, and the reaction vessel (11) is heated by an exhaust device (not shown).
While rotating the drum-shaped substrate (12) while maintaining the internal pressure at 0.5 (Torr), 200 [W] of power is applied to the drum-shaped substrate (12) and the cylindrical electrode (18) by the high-frequency power source (17). ) for 3 hours to form a first layer (25a) consisting of (a-3i) with a film thickness of 18 [μm], and then diborane gas (
5X10-' [%] of B2Ha) and an equal amount of hydrogen gas (US) were introduced into the reaction vessel (11) to form one reaction vessel (11).
11) While maintaining the internal pressure at 0.5 (Torr),
A power of 200 (W) was applied between the drum-shaped substrate (12) and the cylindrical electrode (18) for 30 hours to form a second layer (25b) consisting of (a-5i) with a thickness of 3 [μm]. Furthermore, silane gas (SillJ flow rate, hydrogen gas [H2
] was introduced into the reaction vessel (11) at a ratio of 600 [%], and while maintaining the pressure inside the reaction vessel (11) at 1.1 (Torr), a power of 400 (W) was applied to the drum-shaped substrate ( 12
) and the cylindrical electrode (18) for 2 hours, (μC-
After forming the third layer (25c) with a film thickness of 5 (uml), the supply of electricity and various gases is stopped. Next, silane gas (25c) is supplied from the gas supply system (20) into the reaction vessel (11). methane gas (CH,
) was introduced into the reaction vessel (11) at a ratio of 400 [%], and while the pressure inside the reaction vessel (11) was maintained at 0.6 [Torr] by an exhaust device (not shown), the drum-shaped substrate was While rotating the photoconductive layer (25), a high frequency power source (17) applied a power of 150 (W) for 5 minutes between the drum-shaped substrate (12) and the cylindrical electrode (18), and the photoconductive layer (25) was A surface layer (24b) consisting of a-3i) is formed, and finally the supply of electric power and gas is stopped to complete the production of the photoreceptor (24). The photoreceptor (24) for positive charging with a total film thickness of 18 [μm] obtained in this way is referred to as (sample a), and ( p C ) in the third layer (25c) of the photoconductive layer (25) -9
When the crystallinity and crystal grain size of i) were measured by X-ray diffraction method, the crystallinity was 60 [%] and the crystal grain size was about 40 [people].
The result was obtained. For comparison, the photoconductive layer (25) (sample a) was formed for 2.5 hours under the film forming conditions of the film (a-3i) used for the second layer (25b). Boron C film thickness 15 [μm]
While producing (sample b) containing only (a-5L) Ill containing B), (sample a)
The photoconductive layer (25) was used as the first layer (25a) (
The film was formed for 2.5 hours under the film forming conditions of a-3i). Contains carbon (C) with a film thickness of 15 [μm] (a-5L)
A sample C (sample C) consisting only of a membrane was manufactured. The spectral sensitivities of each sample obtained in this way were measured, and as shown in Figure 3 (sample b), (
Compared to sample C), sample a) has a wavelength of 350 to 7
50 (nm) (visible light region), but has high sensitivity in the near-infrared region, making it possible to apply it to laser beam printers and the like. In addition, the surface potential when a voltage of 6.5 (KV) was applied to each sample by corona discharge, the potential retention rate after 15 seconds, and the exposure amount to half the potential when exposed to light at 10 (gux-sec). As a result of the measurement, the characteristics evaluation results of the photoreceptor were obtained as shown in [Table 1]. [Table 1] Characteristic evaluation of photoconductor The residual potential of (sample C) after exposure is 200
(V). Furthermore, as a result of actually installing the photoreceptor of each sample in a copying machine and forming an image and comparing the image quality, it was found that (Sample B) had a low image density and was blurry, while (Sample C)
The fogging is noticeable, the resolution is low, and the characters etc. are crushed.
Furthermore, while it has the disadvantage of producing an afterimage, (
For sample a), (sample b), (sample C
), clear images were obtained without any image defects that occur with Next, the side light body of each sample was attached to a laser printer and images were formed (sample B) and (sample C).
), the image density unevenness and fogging occur due to interference fringes caused by the light reflected on the surface of the drum-shaped substrate (12) and the light reflected on the surface layer (24b) because it is not absorbed completely in the layer. In contrast, in (sample a), image defects due to interference fringes did not occur, and a clear image with high resolution and high contrast was obtained. Next, other specific examples will be described. [Specific Example 2] This [Specific Example 2] is based on the third layer (2) of the above-mentioned [Specific Example 1].
Only the film forming conditions of 5C) were changed and carbon [C] was doped, and the rest was exactly the same as [Specific Example 1]. That is, in this specific example, after forming a film up to the second layer (25b) in [Specific Example 1], methane gas (CH4) was
The third layer (25c) was formed by introducing hydrogen gas (H, G) at a ratio of 0.3 [%] and 600 [%]. Corona was applied to the photoreceptor thus obtained. 6. Due to discharge.
When a voltage of 5 (KV) was applied, (sample a)
The surface potential was improved by within 20% compared to the above, and good images were obtained even when actually installed in a copying machine or laser printer. [Specific Example 3] This [Specific Example 3] ] Same as [Example 1]
Only the film forming conditions of the third layer (25c) were changed and nitrogen (N) was doped, and the rest was the same as [Specific Example 1]. That is, forming the layer (25), using silane gas [5iH4
) A third layer (25c) was formed by introducing nitrogen gas [N,] into the reaction vessel (11) at a ratio of 2 [%] and hydrogen gas [H2] at a ratio of 600 [%] to the flow rate. It is something. 6. Corona discharge was applied to the photoreceptor thus obtained.
When a voltage of 5 (KV) was applied, (sample a)
Compared to that, the surface potential improved by within 25%, and the image obtained by the actual machine was also good as in [Specific Example 2]. With this configuration, the third M(
25c) is formed of (μC-3i) and the second layer (
25b) is formed by (a-5i),
It has higher sensitivity in the visible light region and near-infrared region than that made only of (a-Si). It is possible to maintain a higher dark resistance than that made only of (μC-8i), improve image quality, and also enable application to laser printers and the like. Also, dark resistance is low. The third layer (25
When only c) is used as a charge generation layer, the film thickness must be increased considerably in order to obtain the required dark resistance and light absorption amount, and the film formation rate is slow (μC-Si). However, using a second layer (25b) consisting of (a-SL) in addition to the (μC-5i) layer has the problem of requiring a longer film formation time and increasing the cost. This makes it possible to reduce the film thickness, which in turn makes it possible to reduce costs. Furthermore, if this photoreceptor (24) is used, since the material is harmless to the human body, there is no need to take special safety measures during manufacturing, and there is no need to treat waste gas, and the photoreceptor can be collected after use. There is no need for it, and it is possible to reduce costs. On the other hand, the charge injection prevention layer (24a)
In addition to doping with boron (CB) to make it n-type, carbon (C) is also doped, but if only boron (B) is used, the surface of the film becomes uneven and the drum-shaped substrate (I2 ), and it becomes easy to peel off. However, when carbon [c] is added, the film is formed to fill in these irregularities, and the adhesion with the drum-shaped substrate (12) is improved, making it easy to peel off. #! of the charge injection prevention layer (24a) is prevented due to the insulating properties of carbon (C) itself. ! It also contributes to improving agility. Furthermore, if the surface layer (24b) is provided as in this embodiment, it is possible to prevent the light absorption efficiency from decreasing and also to form the third layer (24b).
5c) can also be protected. In other words, (μC-3i) has a relatively large refractive index of 3 to 4 due to its characteristics, and is likely to cause light reflection on its surface, but this reflected light is prevented by providing the surface layer (24b), and the third layer ( The amount of light absorbed by 25c) is increased. Note that this invention is not limited to the above-mentioned embodiments, and can be modified in various ways. For example, impurities such as Group Ⅰ of the periodic table or elements of Group Ⅰ of the periodic table may be added to each layer of the photoconductive layer to change the characteristics. The charge injection prevention layer may be of any type, and when the photoconductor surface is positively charged, a layer from group Ⅰ of the periodic table may be used to prevent electron injection from the support. On the other hand, when the photoconductor surface is to be negatively charged, it is doped with an element from group V of the periodic table to prevent the injection of holes from the support. It may be n-type, and its structure may be (a-3i) or (μC-5i), but (μC-3i)
), the absorption of light such as laser light is better, and there is no reflected light from the support. As a result, interference fringes due to reflected light on the surface can be reliably prevented, density unevenness can be prevented, and a clearer image can be obtained. Furthermore, the material to be doped to improve adhesion to the support or insulation is not limited to carbon (C), but may also be nitrogen (N) or oxygen [o]. The thickness is also arbitrary, but is preferably 100 [
[μm] to 10 [μm]. Furthermore, the manufacturing method of each layer may be a photo-CVD method, a sputtering method, etc., and the structure of the photoconductor may be one in which a charge transport layer and a charge generation layer are layered directly on a support in sequence. . Since it is said that the charge generation layer preferably has a film thickness of O9l [μm] to 10 [μm], as in this invention ((μC-3
In the case of a device consisting of two layers, i) layer and (a-5i) layer, the film thickness of the (a-5i) layer is 0.1 depending on the ratio of each layer.
(μm) to 5 (about 3 μm), the film thickness of the (p C-5L) layer should be in the range of about 1 (u+s) to 10 [μm]. It may be formed with (a-5i) or μC-3L) as long as it allows carriers to reach the support side efficiently. Table number ■
It is preferable to use light doping with either one of the elements of group 1 or group Ⅰ of the periodic table, and furthermore, in order to improve the charging ability and have both the functions of charge transport and potential retention. , carbon [C], nitrogen [N], oxygen [○
] It is desirable to contain at least one or more of the following, and if the film thickness is too thin or too thick, it will not function sufficiently, and preferably 3 to 80 μm.
be done. [Effects of the Invention] As explained above, according to the present invention, the charge generation layer of the photoconductive layer is composed of a layer consisting of (μC-5i) and (a-3i).
By stacking layers consisting of (μC-5i
) The required dark resistance and light absorption amount can be obtained with a thin film thickness, and the manufacturing cost can be reduced. In addition, high spectral sensitivity can be obtained in the visible light region and the near-infrared region, and image quality can be improved, and application to laser printers and the like is fully possible. In addition, it can be manufactured safely using a closed system manufacturing equipment using a reaction vessel, and since the material is harmless to the human body, there is no need to install special waste gas treatment equipment as in the past, making it easy to use. There is no need to collect the photoreceptor afterward, and as a result, economical efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はこの発明の一実施例を示し、第1
図はその成膜装置を示す概略説明図、第2図はその感光
体を示す一部断面図、第3図はその分光感度特性を示す
グラフ、第4図は(μC−5i)と(a−3i)のX線
回折を示すグラフである。 10・・・グロー放電装置、 11・・・反応容器、1
2・・・ドラム状基体、  13・・・ヒータ、16・
・・支持棒、     17・・・高周波電源、18・
・・円筒状電極、   20・・・ガス供給系、24・
・・感光体、     24a・・・電荷注入防止層、
24b・・・表面層、     25・・・光導電性層
、25a・・・第1 M      25b・・・第2
層25c・・・第3層 代理人 弁理士  井 上 −男 第1図 令九戚度 手続補正書輸発) 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第205355号 2、発明の名称 光導電体 3、補正をする者 事件との関係  特許出願人 (307)株式会社 東芝 東芝自動機器エンジニアリング株式会社丁 てC ン 5、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 (1)明細書の第2頁第18行目r (cds) jを
r (CdS) Jに訂正する。 (2)明細書の第7頁第19行目「多くなる」を「少な
くなる」に訂正する。 (3)明細書の第15頁第7行目r時間」を「分」に訂
正する。 (4)明細書の第18頁第11行目「画光体」を「感光
体」に訂正する。 (5)明細書の第19頁第20行目「第 層(25)成
膜、」を「第2層(25b)成膜後」に訂正する。 (6)明細書の第21頁第11行目「ドーピング」を「
ドーピング」に訂正する6 (7)明細書の第21頁第12行目「ドーピング」を「
ドーピング」に訂正する。 (8)明細書の第21頁第13行目「表面が凹凸状に」
を「歪みが大きく」に訂正する。 (9)明細書の第21頁第16行目「凹凸をうめる」を
「歪みを緩和する」に訂正する。 (10)明細書の第23頁第15行目「よう(」を「よ
うに」に訂正する。 (11)明細書の第24頁第2行目「もμc−3i) 
Jを「も(μc−3i) Jに訂正する。 (12)明細書の第24頁第20行目「拡い」を「広い
」に訂正する。 以上
Figures 1 to 3 show one embodiment of the present invention.
Figure 2 is a schematic explanatory diagram showing the film forming apparatus, Figure 2 is a partial sectional view showing the photoreceptor, Figure 3 is a graph showing its spectral sensitivity characteristics, and Figure 4 is (μC-5i) and (a -3i) is a graph showing X-ray diffraction. 10...Glow discharge device, 11...Reaction container, 1
2... Drum-shaped base, 13... Heater, 16...
・・Support rod, 17・High frequency power supply, 18・
...Cylindrical electrode, 20...Gas supply system, 24.
...Photoreceptor, 24a...Charge injection prevention layer,
24b...Surface layer, 25...Photoconductive layer, 25a...First M 25b...Second
Layer 25c...Third layer agent Patent attorney Inoue-male (Importation of amendments to procedures relating to the law) Director General of the Patent Office Michibe Uga 1, Indication of the case 1985 Patent Application No. 205355 2. Name of the invention Photoconductor 3. Relationship with the case of the person making the amendment Patent applicant (307) Co., Ltd. Toshiba Toshiba Automatic Equipment Engineering Co., Ltd. 5. "Explanation" column 6, contents of amendment (1) On page 2, line 18 of the specification, r (cds) j is corrected to r (CdS) J. (2) On page 7, line 19 of the specification, "increases" is corrected to "decreases". (3) In the specification, page 15, line 7, "r hours" is corrected to "minutes." (4) In the 11th line of page 18 of the specification, "image photoreceptor" is corrected to "photoreceptor." (5) On page 19, line 20 of the specification, "Layer (25) formed," is corrected to "After formation of second layer (25b)." (6) "Doping" on page 21, line 11 of the specification is replaced with "
6 (7) In the specification, page 21, line 12, “doping” should be corrected to “doping”.
Corrected to "doping." (8) Page 21, line 13 of the specification: “Surface is uneven”
is corrected to "large distortion." (9) On page 21, line 16 of the specification, ``Fill in unevenness'' is corrected to ``Reduce distortion.'' (10) On page 23, line 15 of the specification, "Yo (") is corrected to "yo ni". (11) On page 24, line 2 of the specification, "Moμc-3i"
Correct J to ``Mo(μc-3i) J.'' (12) Correct ``wide'' to ``wide'' on page 24, line 20 of the specification. that's all

Claims (1)

【特許請求の範囲】 1 導電性の支持体上に電荷注入防止層及び光導電性層
が設けられるものにおいて、前記電荷注入防止層が炭素
、窒素、酸素のうち少なくとも1原子を含有するp型又
はn型の半導体からなるものであり、前記光導電性層が
、炭素,窒素,酸素のうち少なくとも1原子を含有する
アモルファスシリコンからなる第1層及び、アモルファ
スシリコンからなる第2層、並びにマイクロクリスタリ
ンシリコンからなる第3層を前記支持体側から順次積層
したものからなる事を特徴とする光導電体。 2 第1層の膜厚が3〔μm〕ないし80〔μm〕であ
り、第2層の膜厚が0.1〔μm〕ないし5〔μm〕で
あり第3層の膜厚が1〔μm〕ないし10〔μm〕であ
る事を特徴とする特許請求の範囲第1項記載の光導電体
。 3 第1層ないし第3層の各層がそれぞれ周期律表第I
II族の原子又は周期律表第V族の原子を含有する事を特
徴とする特許請求の範囲第1項又は第2項のいづれかに
記載の光導電体。
[Scope of Claims] 1. In a device in which a charge injection prevention layer and a photoconductive layer are provided on a conductive support, the charge injection prevention layer is of a p-type containing at least one atom among carbon, nitrogen, and oxygen. or an n-type semiconductor, and the photoconductive layer includes a first layer made of amorphous silicon containing at least one atom of carbon, nitrogen, and oxygen, a second layer made of amorphous silicon, and a A photoconductor characterized in that the third layer made of crystalline silicon is laminated sequentially from the support side. 2 The thickness of the first layer is 3 [μm] to 80 [μm], the thickness of the second layer is 0.1 [μm] to 5 [μm], and the thickness of the third layer is 1 [μm]. ] to 10 [μm]. 3 Each of the first to third layers corresponds to periodic table I.
The photoconductor according to claim 1 or 2, characterized in that it contains an atom of Group II or an atom of Group V of the periodic table.
JP60205355A 1985-09-19 1985-09-19 Photoconductive body Pending JPS6266262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205355A JPS6266262A (en) 1985-09-19 1985-09-19 Photoconductive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205355A JPS6266262A (en) 1985-09-19 1985-09-19 Photoconductive body

Publications (1)

Publication Number Publication Date
JPS6266262A true JPS6266262A (en) 1987-03-25

Family

ID=16505492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205355A Pending JPS6266262A (en) 1985-09-19 1985-09-19 Photoconductive body

Country Status (1)

Country Link
JP (1) JPS6266262A (en)

Similar Documents

Publication Publication Date Title
JPS6266262A (en) Photoconductive body
JPS61282847A (en) Photoconductor
JPS6266260A (en) Photoconductive body
JPS6266261A (en) Photoconductive body
JPS6266263A (en) Photoconductive body
JPS6266265A (en) Photoconductive body
JPS6266264A (en) Photoconductive body
JPS61283175A (en) Photoconductor
JPS61282849A (en) Photoconductor
JPS61282848A (en) Photoconductor
JPS62105152A (en) Photoconductor
JPS6280666A (en) Photoconductive body
JPS6280665A (en) Photoconductive body
JPS6343157A (en) Electrophotographic sensitive body
JPS61282846A (en) Photoconductor
JPH0789232B2 (en) Electrophotographic photoreceptor
JPS6280667A (en) Photoconductive body
JPS6239871A (en) Electrophotographic sensitive body
JPH01295264A (en) Photoconductive member
JPS61295560A (en) Photoconductive member
JPS6239872A (en) Electrophotographic sensitive body
JPS6258265A (en) Electrophotographic sensitive body
JPS62198865A (en) Electrophotographic sensitive body
JPS6382416A (en) Electrophotographic sensitive body
JPH01295266A (en) Photoconductive member