JPS62105152A - Photoconductor - Google Patents

Photoconductor

Info

Publication number
JPS62105152A
JPS62105152A JP60243850A JP24385085A JPS62105152A JP S62105152 A JPS62105152 A JP S62105152A JP 60243850 A JP60243850 A JP 60243850A JP 24385085 A JP24385085 A JP 24385085A JP S62105152 A JPS62105152 A JP S62105152A
Authority
JP
Japan
Prior art keywords
layer
gas
prescribed
reaction vessel
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60243850A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60243850A priority Critical patent/JPS62105152A/en
Publication of JPS62105152A publication Critical patent/JPS62105152A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Abstract

PURPOSE:To obtain a photoconductor having an excellent electrostatic characteristic and high spectral sensitivity characteristic over a wide wavelength region by laminating the 1st layer consisting of muC-Si, the 2nd layer consisting of N-type muC-Si and the 3rd layer consisting of a-Si to form a photoconductive layer to be laminated via an electric charge injection preventive layer. CONSTITUTION:A drum-shaped base body 12 is set to a supporting bar 16 and thereafter a prescribed gaseous pressure is maintained and the base body is heated to a prescribed temp. in the case of forming a photosensitive body 24 with a glow discharger 10. While the specified gaseous pressure is maintained, the necessary electric power is impressed between the base body 12 and a cylindrical electrode 18 by a high-frequency power source 17 for the prescribed time to form the film of the charge injection preventive layer 24a. The 1st layer muC-Si 25a which is the photoconductive layer 25, the 2nd layer of the N-type muC-Si 25b and the 3rd layer of a-Si 25c are formed on the layer 24a in succession thereto while the film forming conditions such as the temp. of the base body 12, the gas to be introduced, electric energy, and the time for impression of the electric power are successively reset to prescribed values in the same reaction vessel 11. The various film forming conditions are further reset to prescribed conditions within the same reaction vessel 11 and a surface layer 24b is formed on the layer 25, by which the formation of the body 24 is completed.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は半導体レーザ装置等画像形成装置において静
電潜像の形成を行なう光導電体に関する。 〔発明の技術的背景とその問題点〕 近年電子写真装置等画像形成装置にあっては、その機能
や機種の多様化に伴い、感光体材料として、硫化カドミ
ウム[CdS] 、酸化亜鉛(ZnO) 、セレン(S
e) 、セレンテルル合金[5e−Te3.等の無機材
料や、ポリ−N−ビニルカルバゾール(以下PVCzと
称す。)、トリニトロフルオレン(以下TNFと称す。 )等の有機材料等種々のものが開発されている。 しかしながら前記感光体材料のうちセレン(Sa)、硫
化カドミニウム(CdS)等にあっては、本質的に人体
に有害な材料である事から、製造時には安全対策上その
製造装置が複雑となり、製造コストが上昇される一方、
使用後には回収する必要があり、これがコストにはね返
えり価格上昇を招く他、セレン(Se) 、セレン−テ
ルル合金(Ss−Te)にあっては結晶化温度が約65
(’C)と、低い特性を有するため、結晶化し易く、複
写を繰り返し行なう間に、結晶化された部分に残留電荷
を生じ、画像を汚損する等の問題を生じ易く、結局は長
寿命化を図れないという欠点がある。そして酸化亜鉛(
ZnO)にあっては、その物性上、l!1化還光還元じ
易く、温度や湿度等の環境雰囲気の影響を著しく受け、
画質が不安定となり、信頼性に劣るという欠点がある。 又、有機材料である(PVCz)や(TNF)等は熱安
定性及び耐摩耗性に劣る事から長寿命化に難点がある丘
、最近では発がん性の疑いがもたれるという欠点を有し
ている。 このため近年上記欠点を解消するために、無公害である
事から回収処理が不要であり、又9表面硬度が高く耐摩
耗性及び耐衝撃性に優れ、更には従来に比し高い分光感
度を有するアモルファスシリコン(以下(a−5i)と
称す。)の、感光体材料への適応が検討されている。即
ち具体的には感光体はその特性として高抵抗かつ分光感
度が高い事が要求される事から、これ等両特性を満たす
ため、導電性支持体と(a−5i)光導電層の間に、感
光体に優れた電荷保持能を持たせると共に、光疲労特性
や繰返し特性等に優れた効果を有する電荷注入防止層を
設けた積層型の(a−5i)感光体が開発されている。 しかしながら(a−5i)はシラン(Si)を含有する
ガスを用いたグロー放電分解法による成膜時、(a−3
i)膜中に取り込まれる水素原子[Hlの量に応じて電
気的特性及び光学的特性が大きく変動されてしまうとい
う問題を有している。即ち(a−5i)膜中に取り込ま
れる水素原子(Hlの量が多くなると、光学的バンドギ
ャップが大きくなり、高抵抗化する反面、これに伴い近
赤外線領域近傍の長波長光領域に対する分光感度が低下
し、半導体レーザを用いたレーザービームプリンタに使
用した場合、かぶりや活字のつぶれ、残像、干渉縞によ
る濃度むら等を生じ、その使用が不能になると共に、成
膜条件によっては、[(Si+!−) n〕結合や(S
iL)結合のような結合構造を有するもので、(a−5
i)膜中で支配的となり、その結果[SiH]結合が切
断され、ダングリングボンドやボイド等の構造欠陥が増
大し、光導電性が劣下するという問題を有する。一方(
a−5i)膜中に取り込まれる水素原子(H)の量が低
下すると、長波長光に対する分光感度が増加する反面、
光学的バンドギャップが小さくなり、低抵抗化してしま
うと共に、水素原子(Hlがダングリングボンドを補償
しなくなるため1発生したキャリアの移動度や寿命が低
下し、やはり光導電性が劣下し、感光体への使用が不能
になるという問題を有している。 このため長波長光に対する分光感度を増加させる方法と
して、シラン(Si)を含有するガス及びゲルマンガス
(Ge14)を混合し、グロー放電分解法により光学的
バンドギャップの狭い膜を成膜する方法が実施されてい
るが、一般にグロー放電時の最適支持体温度がシラン(
Si)含有ガスとゲルマンガス(GeH4)とでは40
〜50〔度〕異る事から、形成された膜に構造欠陥を生
じ易く、光導電性がやはり劣下してしまい、更にはゲル
マンガスCGeH,)が酸化されると、有毒となる事が
ら、その廃ガス処理が複雑になるという欠点を生じてい
る。 〔発明の目的〕 この発明は上記事情にもとづいてなされたもので、高抵
抗を保持出来る事から帯電特性に優れるにもかかわらず
、広い波長領域にわたり高い分光感度特性を有し、ひい
てはレーザプリンタ等においても鮮明で良質な画像を得
られると共に製造も容易でコストの低減を図る事が出来
る光導電体を提供する事を目的とする。 〔発明の概要〕 この発明は上記目的を達成するため、導電性の支持体上
に、電荷注入防止層を介して層重される光導電層を、マ
イクロクリスタリンシリコン(以下(μC−5i)と称
す。)からなる第1層及びn型の(μC−5i)からな
る第2層並びに(a−3i)からなる第3層を積層した
ものから形成する事により、帯電特性に優れ、かつ広い
波長領域にわたり高い分光感度特性を有する光導電体を
得るものである。 〔発明の実施例〕 この発明の詳細な説明するにあたり、光学的バンドギャ
ップが約1.7〔θV〕である(a−5i)に比し、光
学的禁止帯幅が小さく、近赤外線領域近傍の長波長光領
域にも感度を有すると共に構造欠陥が少なく、モビリテ
ィが大きい(μC−5L)の特性について述べる。 即ちこの(μC−3i)は非単結晶シリコンに属するも
のであるが、X線回折測定を行うと、第3図点線で示す
ように(a−3i)が無定形であるため、ハローが現わ
れるのみで回折パターンを認められないのに対し、(μ
C−3i)は第3図実線で示すように[2θ〕が27〜
28.5[度]の付近で結晶回折パターンを示すもので
ある。一方ポリクリスタリンシリコンは、暗抵抗が10
@〔Ω・l〕以下であるのに対して(μC−5i)は1
0″1〔Ω・13以上と高抵抗を有している。上述の様
な特性により(μC−3L)は他の非単結晶シリコンで
ある(a−3i)やポリクリスタリンシリコンと区別さ
れ、その構造は約数十〔人〕以上の粒径の微結晶が集合
して形成されていると考えられる。そしてこのような(
μC−5i)を製造するには、(a−5i)と同様スパ
ッタリングやグロー放電分解法等によるが、(a−3i
)製造時に比し、成膜を行なう導電性の支持体の温度を
高めに設定するかあるいは高周波電力を大きくすると形
成され易くなる。 即ち、支持体の温度を高くし、高周波電力を大きくする
事により、原料であるシラン(SL)含有ガスの流量を
増大出来、その結果成膜速度が増大され(μC−3L)
が形成され易くなるからである。更に原料としてシラン
(Sin、)やジシラン(Si28G3等の高次シラン
ガスも含めて、水素[H]で希釈したガスを用いると、
(μC−3i)がより効果的に形成され易くなる。 又、成膜される(μC−3i)層にあっては、水素〔l
(〕の含有量が多くなると結晶化度が大きくなり、ポリ
クリスタリシリコンに近付き、暗抵抗が小さくなるのに
対して、明抵抗が増大され、ひいては光導電性を示さな
くなってしまうので、暗抵抗と明抵抗の調和がとれた優
れた光導電性を得るためには、(μC−3i)層中に水
素CH)が0.1〜30〔原子%〕含まれている事が望
ましい。この(μC−5i)層への水素のドーピングは
、原料としてシラン(Sil14)やジシランC5xz
 He 3等のシラン含有ガスと、キャリアガスとして
の水素ガス(+1.)を反応容器に導入し、グロー放電
を行ったり、あるいは4フツ化ケイ素[SiF、)やト
リクロロシラン〔5iCQ4〕等のハロゲン化ケイ素と
水素ガス〔H2〕との混合ガスを原料として反応を行な
ったり、更にはシラン(Si)含有ガスとハロゲン化ケ
イ素の混合ガスを原料として反応を行なっても良い。 更に(μC−5i)層にあっては1例えば光導電層への
電荷の注入を防止したり、あるいは光感度特性を高めた
り、高抵抗化量る等のため、水素原子(H〕の他の不純
物をドーピングするが、ホウ素CB)、アルミニウム(
i)等の周期律表第ma族の元素のドーピング量の増大
に伴い、(μC−3i)層の特性はi型からn型に移行
される一方、窒素〔N〕、リンCP)等の周期律表第V
a族の元素をドーピングすると、(μC−5i)層はn
型を示し、そのドーピング量の増大に伴い更にその特性
が顕著となる。 そしてこのn型の(μC−5i)にあっては、例えばジ
シラン(Si、 It、 ]に対するホスフィン(PH
3)のドーピング量を増大するに伴い、暗中の導電率で
ある〔σdark)及び、半導体レーザの発振波長であ
る790 [nm]の波長を照射した場合の導電率であ
る( a photo (at 790nm):lのい
づれもが共に増大されるという特性を有し、ジシラン[
51211G)に対するホスアイン[PH,]のドーピ
ング比である(PH3/512US)が10−6以上で
あれば、ノンドープの場合に比しく a dark)、
[:crphoto(at 790(r+m)))の導
電率はいづれも、少なくとも1桁程度あるいはそれ以上
に高くされる。一方10−≦PHI/5ill、≦10
−5の範囲にあっては(a photo)と(a da
rk)の比であるS/N比は、はぼ3桁を保持出来る。 従ってこのような特性を有するn型の(μC−3i)を
感光体の光導電層に用いる事により、790(nm)近
傍の長波長領域での分光感度を高める事が可能となる。 尚、このn型の(μC−5i)の光学的バンドギャップ
及び活性化エネルギーを測定したところ、(PH3/ 
Si、 He )が増大されても光学的バンドギャップ
が一定に保持されるのに対し、活性化エネルギーは減少
されてしまうという結果が得られた。この事からn型の
(μC−5i)の長波長領域での高感度化は、ドーピン
グ比の増大に伴うフェルミレベルの伝導体側へのシフト
によるものである事が判明される。 更に、上記不純物以外にも、(μC−9i)の暗抵抗を
大きくシ、光導電特性を高めるためには、窒素〔N〕、
炭素〔C〕、及び酸素
[Technical Field of the Invention] The present invention relates to a photoconductor for forming an electrostatic latent image in an image forming apparatus such as a semiconductor laser device. [Technical background of the invention and its problems] In recent years, with the diversification of functions and models of image forming devices such as electrophotographic devices, cadmium sulfide [CdS] and zinc oxide (ZnO) are being used as photoreceptor materials. , selenium (S
e), selenite alloy [5e-Te3. Various materials such as inorganic materials such as poly-N-vinylcarbazole (hereinafter referred to as PVCz) and organic materials such as trinitrofluorene (hereinafter referred to as TNF) have been developed. However, among the photoreceptor materials mentioned above, selenium (Sa), cadmium sulfide (CdS), etc. are inherently harmful to the human body, so the manufacturing equipment becomes complicated due to safety measures and manufacturing costs are high. is raised, while
It must be recovered after use, which not only increases costs but also increases the crystallization temperature of selenium (Se) and selenium-tellurium alloy (Ss-Te), which is approximately 65%
('C), it has low characteristics, so it is easy to crystallize, and during repeated copying, residual charges are generated in the crystallized part, which tends to cause problems such as staining the image, which ultimately leads to a longer life. The disadvantage is that it is not possible to and zinc oxide (
ZnO), due to its physical properties, l! It is easily reduced by light and is significantly affected by the environmental atmosphere such as temperature and humidity.
The drawback is that the image quality is unstable and reliability is poor. In addition, organic materials such as (PVCz) and (TNF) have poor thermal stability and wear resistance, making it difficult to extend their service life, and recently they have been suspected of being carcinogenic. . Therefore, in recent years, in order to eliminate the above-mentioned drawbacks, it is non-polluting, does not require recovery treatment, has a high surface hardness, has excellent abrasion resistance and impact resistance, and has a higher spectral sensitivity than before. Application of amorphous silicon (hereinafter referred to as (a-5i)) to photoreceptor materials is being considered. Specifically, since the photoreceptor is required to have high resistance and high spectral sensitivity as its characteristics, in order to satisfy both of these characteristics, a A laminated type (a-5i) photoreceptor has been developed in which the photoreceptor has an excellent charge retention ability and is provided with a charge injection prevention layer that has excellent effects on optical fatigue characteristics, cycling characteristics, and the like. However, when (a-5i) is formed by a glow discharge decomposition method using a gas containing silane (Si), (a-3
i) There is a problem in that the electrical properties and optical properties vary greatly depending on the amount of hydrogen atoms [Hl] incorporated into the film. That is, (a-5i) As the amount of hydrogen atoms (Hl) incorporated into the film increases, the optical band gap becomes larger and the resistance becomes higher. When used in a laser beam printer using a semiconductor laser, fogging, crushed type, afterimages, uneven density due to interference fringes, etc. may occur, making the printer unusable. Si+!-) n] bond and (S
It has a bond structure like iL) bond, and (a-5
i) It becomes dominant in the film, and as a result, [SiH] bonds are broken, structural defects such as dangling bonds and voids increase, and photoconductivity deteriorates. on the other hand(
a-5i) When the amount of hydrogen atoms (H) incorporated into the film decreases, the spectral sensitivity to long wavelength light increases, but on the other hand,
The optical bandgap becomes smaller and the resistance becomes lower, and since the hydrogen atoms (Hl) no longer compensate for the dangling bonds, the mobility and lifetime of the generated carriers decrease, and the photoconductivity also deteriorates. Therefore, as a method to increase the spectral sensitivity to long wavelength light, a gas containing silane (Si) and a germane gas (Ge14) are mixed to produce a glow. A method of forming a film with a narrow optical bandgap using the discharge decomposition method has been implemented, but in general, the optimal support temperature during glow discharge is silane (
40 for Si) containing gas and germane gas (GeH4)
Since the difference is ~50 degrees, structural defects are likely to occur in the formed film, resulting in a decrease in photoconductivity, and furthermore, if the germane gas (CGeH) is oxidized, it may become toxic. However, the disadvantage is that the waste gas treatment becomes complicated. [Purpose of the Invention] This invention was made based on the above circumstances, and although it has excellent charging characteristics due to its ability to maintain high resistance, it also has high spectral sensitivity characteristics over a wide wavelength range, and is useful for laser printers, etc. It is an object of the present invention to provide a photoconductor that can obtain clear and high-quality images even in the case of a photoconductor, and can be manufactured easily and at reduced cost. [Summary of the Invention] In order to achieve the above object, the present invention uses microcrystalline silicon (hereinafter referred to as (μC-5i)) to form a photoconductive layer layered on a conductive support via a charge injection prevention layer. ), a second layer of n-type (μC-5i), and a third layer of (a-3i), which have excellent charging characteristics and a wide range of A photoconductor having high spectral sensitivity characteristics over a wavelength range is obtained. [Embodiments of the Invention] In explaining the present invention in detail, the optical bandgap is smaller than that of (a-5i), which is approximately 1.7 [θV], and the optical bandgap is small, near the near-infrared region. The characteristics of (μC-5L), which is sensitive to long wavelength light, has few structural defects, and has high mobility, will be described. In other words, this (μC-3i) belongs to non-single-crystal silicon, but when X-ray diffraction measurements are performed, a halo appears because (a-3i) is amorphous, as shown by the dotted line in Figure 3. (μ
C-3i), [2θ] is 27 ~ as shown by the solid line in Figure 3.
It shows a crystal diffraction pattern around 28.5 [degrees]. On the other hand, polycrystalline silicon has a dark resistance of 10
@[Ω・l] or less, whereas (μC-5i) is 1
It has a high resistance of 0"1 [Ω・13 or more. Due to the above-mentioned characteristics, (μC-3L) is distinguished from other non-single crystal silicon (a-3i) and polycrystalline silicon, Its structure is thought to be formed by an aggregation of microcrystals with a particle size of about several tens of microns or more.
μC-5i) can be manufactured using sputtering, glow discharge decomposition method, etc. as in (a-5i), but (a-3i
) Formation becomes easier if the temperature of the conductive support on which the film is formed is set higher or the high frequency power is increased compared to the time of manufacture. That is, by raising the temperature of the support and increasing the high-frequency power, the flow rate of the raw material silane (SL)-containing gas can be increased, and as a result, the film formation rate is increased (μC-3L).
This is because it becomes easier to form. Furthermore, if a gas diluted with hydrogen [H], including silane (Sin) and disilane (including higher-order silane gas such as Si28G3), is used as a raw material,
(μC-3i) is more likely to be formed effectively. In addition, in the (μC-3i) layer to be formed, hydrogen [l
When the content of In order to obtain excellent photoconductivity with a good balance between light resistance and light resistance, it is desirable that the (μC-3i) layer contains 0.1 to 30 [atomic %] of hydrogen (CH). This (μC-5i) layer is doped with hydrogen using silane (Sil14) or disilane C5xz as a raw material.
A silane-containing gas such as He 3 and hydrogen gas (+1.) as a carrier gas are introduced into the reaction vessel to perform glow discharge, or halogens such as silicon tetrafluoride [SiF] or trichlorosilane [5iCQ4] are introduced into the reaction vessel. The reaction may be carried out using a mixed gas of silicon oxide and hydrogen gas [H2] as a raw material, or furthermore, a mixed gas of a silane (Si)-containing gas and a silicon halide may be used as a raw material. Furthermore, in the (μC-5i) layer, hydrogen atoms (H) and other elements may be added, for example, to prevent charge injection into the photoconductive layer, to enhance photosensitivity characteristics, to increase resistance, etc. Doping impurities such as boron (CB), aluminum (
With the increase in the doping amount of elements of group ma of the periodic table, such as i), the characteristics of the (μC-3i) layer shift from i-type to n-type, while periodic table V
When doped with group a elements, the (μC-5i) layer becomes n
The characteristics become more pronounced as the amount of doping increases. In this n-type (μC-5i), for example, phosphine (PH
As the doping amount of 3) increases, the conductivity in the dark [σdark] and the conductivity when irradiated with a wavelength of 790 [nm], which is the oscillation wavelength of a semiconductor laser (a photo (at 790 nm) ):l are both increased together, and disilane [
If the doping ratio (PH3/512US) of phosaine [PH, ] to 51211G) is 10-6 or more, compared to the non-doped case, a dark),
[:crphoto(at 790(r+m)))] is increased by at least one order of magnitude or more. On the other hand, 10-≦PHI/5ill, ≦10
-5 range, (a photo) and (a da
The S/N ratio, which is the ratio of rk), can maintain approximately 3 digits. Therefore, by using n-type (μC-3i) having such characteristics in the photoconductive layer of the photoreceptor, it is possible to increase the spectral sensitivity in the long wavelength region around 790 (nm). In addition, when the optical band gap and activation energy of this n-type (μC-5i) were measured, it was found that (PH3/
The results showed that the optical bandgap was kept constant even when Si, He) was increased, but the activation energy was decreased. This shows that the high sensitivity of n-type (μC-5i) in the long wavelength region is due to the shift of the Fermi level toward the conductor side as the doping ratio increases. Furthermore, in addition to the above impurities, nitrogen [N],
Carbon [C] and oxygen

〔0〕の少なくとも一種をドーピ
ングする事が望ましい。この様にすれば。 これ等の元素は、(μC−5j、)の粒界に析出し、シ
リコン(SL)のグングリングボンドのターミネータと
して作用し、バンド間の禁制体中に存在する状態密度を
減少させるからである。 次に上述のような特性を有する(μC−5i)及びn型
の(μC−3i)を用いるこの発明の一実施例を第1図
及び第2図を参照しながら説明する。グロー放電装[(
10)の反応容器(11)内には、導電性の支持体であ
り、アルミニウムからなるドラム状基体(12)を支持
するため、ヒータ(13)を内蔵し、モータ(14)に
より回転される支持棒(16)が設けられている。又、
支持体(16)周囲は、 13.56[MHz]の高周
波電源(17)に接続される円筒状電Fi(18)で囲
繞されると共に、支持体(]6)上方には、シランガス
[5IH4) lジボランガス[13,H6〕、水素ガ
ス(H2)、等を必要に応じて供給出来るように多数の
ガスボンベ(19a)・・・(19n)及びガス混合器
(20a)を有するガス供給系(20)にガス導入バル
ブ(21a)を介して接続されるガス導入管(21)が
設けられている。 尚(18a) −(18n)は各ガスボンベ(19a)
 −(19n)のバルブ、(9a)・・・(9n)は圧
力調整器である。更に(22)は反応容器(11)内に
排気を行なう排気装置(図示せず)に接続される排気バ
ルブであり、(23)は反応容器(11)内の気圧を測
定する真空計である。 又(24)は光導電体である電子写真装置の感光体であ
り、ドラム状基体(12)上に順次電荷注入防止層(2
4a)及び(p C−3i)からなる第1層(25a)
、 n型の(a C−3L)からなる第2層(25b)
、 (a−5i)からなる第3層(25c)を有する光
導電層(25)並びに表面層(24b)が積層されてい
る。 しかしてグロー放電装置(lO)で感光体(24)を形
成する場合、支持体(16)にドラム状基体(12)を
セットした後1反応容器(11)内を所定の気圧にする
ように排気バルブ(22)を開け、排気装置(図示せず
)により排ガス処理を行なうと共に、ヒータ(13)に
よりドラム状基体(12)を所定温度に加熱する。 そしてガス導入管(21)を介し1反応容器(11)内
のガス圧を一定に保持しつつ、高周波電源(17)によ
り、ドラム状基体(12)及び円筒状電極(18)間に
必要とする電力を所定時間印加し、電荷注入防止層(2
4a)の成膜を行なう。続いて同一反応容器(11)内
でドラム状基体(12)の温度及び導入ガス、更には電
力量及び電力の印加時間等の成膜条件を順次所定の値に
設定し直しなから、電荷注入防止層(24a)上に光導
ffl M (25)の第1Jtl(25a)ないし第
3層(25c)の成膜を行なう。更に同一反応容器(1
1)内で、各成膜条件を所定のものに設定し直し、光導
電M(25)上に表面層(24b)を成膜し、感光体(
24)の形成を終了する。 次に正帯電を行なわせる感光体(24)の作用について
述べる。 先ず、支持体(16)にドラム状基体(12)をセット
し、排気バルブ(22)を開け、排気装置(図示せず)
により反応容器(11)内を0. ]、 CTorr)
以下に排気すると共に、ヒータ(13)によりドラム状
基体(12)を400[’C]に加熱する。次いでガス
供給系(2o)より、ガス導入管(21)を介し、シラ
ンガス(Si11.)を200(SCCM)、 メ9 
:/ガス(CH,〕を10100(SCC、シボ−5ン
ガス[8,11,) ヲ(B2HJSiH,)がI X
 10−’となるよう反応容器(11)内に導入し、排
気装置(図示せず)により反応容器(11)内の圧力を
1 (Torr)に維持しつつ、モータ(15)により
ドラム状基体(12)を回転させながら高周波電源(1
7)により300[W)の電力をドラム状基体(12)
及び円賀状電極(18)間に15分間印加し、非晶質炭
化シリコン(a−si;C)からなる膜厚2〔μm〕の
電荷注入防止層(24a)の成膜を行なった後、電力及
び各種ガスの供給を止める。続いて電荷注入防止JW(
24a)上に光導電性層(25)を成膜するため、反応
容器(11)内にガス供給系よりシランガス(SiHn
 ]を500(SCCM) 、水素ガス〔H2〕を10
100(SCC,ジボランガス(B、Il、)をlX1
0−”(原子%〕導入し、排気装置(図示せず)により
、反応容器(11)内の圧力を2 (Torrlに維持
しつつ、ドラム状基体(12)を回転させながら、高周
波電源(17)により600〔W〕の電力をドラム状基
体(12)及び円筒状電極(18)間に2時間印加し、
i型の(μC−3i)からなる膜厚10〔μm〕の第1
層(25a)を成膜し、次いで反応容器(11)内にシ
ランガス(SiH4)を500(SCCM) 、水素ガ
ス〔H2〕を10100(SCC,ホスフィン(PH,
)をl X 10−”〔原子%〕導入し、反応容器(1
1)内の圧力を2(Torr)とし、600 (W )
の電力を1時間印加し、n型の(μC−3i)からなる
膜厚5〔μm〕の第2層を成膜し、更に反応容器(11
)内にシランガス[SiH,]を500cscc河〕、
ジボランガス(B、 HG)をtxto−’(原子%)
導入し、反応容器(11)内の圧力を1 (Torr)
とし、300〔W〕の電力を20分間印加し、 (a−
3i)からなる膜厚3〔μm〕の第3層を成膜した後電
力及び各種ガスの供給を止める。次に反応容器(11)
内にシランガス(Sil(、(を50 ESCCM)、
窒素ガス〔N2〕を600ESCCM)導入し、反応容
器(11)内の圧力を1 (Torr)とし、400(
Wlの電力を5分間印加し、非晶質窒化シリコン(Q−
5i ; N)からなる膜厚0.5(μm)の表面層(
24b)を成膜し、最後に電力及びガスの供給を止め、
感光体(24)の製造を終了する。 尚このようにして形成された感光体(24)の第2層(
25b)の光学的バンドギャップを測定したところ約1
.5(eV)であった。又、感光体(24)を発振波長
790(nm)の半導体レーザを塔載したレーザプリン
タ装置に実際に装着して画像形成を行なったところ、干
渉縞による濃度むらも無く鮮明で良質な画像が得られた
。 このように構成すれば、光導電層(25)中にi型及び
n型の2種類の(μC−5i)が層重され、i型の(μ
C−5i)からなる第1層(25a)により、近赤外線
光領域での高感度化が図れると共に、n型の(μC−3
i)からなる第2層(25b)により、より長波長光領
域での高感度化も図られ、他方(μC−5i)に比し比
抵抗の高い(a−3L)からなる第3層(25c)によ
り、可視光領域での高感度化と共に、比抵抗の低下によ
る帯電能の低下防止を図る事が出来、790 (nm)
付近に発振波長を有する半導体レーザ光に対しても充分
な感度を得られ、干渉縞による画像の濃度むらを生じる
事無くレーザプリンタ装置等への適用も可能となる。更
にこの感光体(24)を用いれば、その材質が人体に無
害である事から、製造時に特に安全対策を施す必要が無
く、又その廃ガス処理が不要であり、使用後に感光体(
24)を回収する必要も無く、ひいては、コスト低減を
図る事が出来る。一方、電荷注入防止層(24a)には
ホウ素(B)の他に、ホウ素CB)のみの場合、膜の表
面に生じてしまう凹凸をうめるための炭素〔C〕がドー
ピングされている事から、ドラム状基体(12)との密
着性が向上され、剥離しにくくなると共に、炭素〔C〕
自身の絶縁性により、電荷注入防止層(24a)の絶縁
性も向上される。更には、この実施例のように表面層(
24b)を設ければ、光の吸収効率の低下防止を図れる
と共に第3層(25c)の保護も行なえる。 即ち(μC−5L)や(a−5i)は特性上屈折率が3
〜4と比較的大きく、その表面で光反射を生じ易いが、
窒素(N)をドーピングする事により屈折率が低減され
る非晶質窒化シリコン(a−sx;N)を設ける事によ
り、この反射光が減少され、第3Fm(25c)に吸収
される光量が増大される。 尚この発明は上記実施例に限定されず種々設計変更可能
であり1例えば光導電体の層構造は任意であり、耐摩耗
性や光反射を補償出来るものであれば表面層は無くても
良いし、光導電層の各層の積層の順番あるいは膜厚等も
任意であるが、より高感度化を図るには、(a−5i)
からなる第3層を光導電層の最上部に設ける事が好まし
いし、レーザプリンタ装置のように光源に近赤外線光を
用いる装置に適用する場合には、(μC−3i)からな
る第1層が3〜50〔μm〕、n型の(μC−5i)か
らなる第2層が1〜10〔μm〕、(a−Si)からな
る第3層が0.1〜5〔μm〕程度の範囲の厚さを有す
る事が好ましい。 又、第1層の(μC−5i)の型は任意であるがi型で
あれば、その抵抗値が最大となる事から、帯電能をより
向上する事が出来る。更に電荷注入防止層の型も任意で
あり、光導電体表面に正帯電を行なわせるときは、支持
体からの電子の注入を阻止するために周期律表第ma族
の元素をドーピングする事によりp型とし、他方、光導
電体表面に負帯電を行なわせるときは、支持体からの正
孔の注入を阻止するために周期律表第Va族の元素をド
ーピングする事によりn型としても良いし、その構造も
(a −SL)であっても(μC−5i)であっても良
いが、(μC−3i )で形成した場合は、レーザ光等
の光吸収がより優れ、支持体からの反射光を生じる事が
無く、ひいては表面での反射光とにより生じる干渉縞に
よる濃度むらをより確実に防止出来、より鮮明な画像に
得る事が出来る。又、支持体との接着性向上あるいは絶
縁性向上のための電荷注入防止層にドーピングするもの
としては炭素〔C〕に限定されず、窒素(N)あるいは
酸素〔○〕をドーピングし、非晶質炭化シリコン(a−
3i;C)、あるいは非晶質酸化シリコン(a −S 
i; 0 )を電荷注入防止層としても良い。そしてそ
の厚さも任意であるが。 好ましくは100C人〕ないし10[μm〕とされる。 更には各層の製造方法も光CVD方法やスパッタリング
方法等であっても良い。 尚、表面層を設ける場合その材料は、窒素シリコン〔8
13N4〕、アルミナUgzoi)、非晶質酸化シリコ
ン(a −S 1 : O; H)等の無機化合物や、
ポリ塩化ビニル、ポリアミド等の有機材料等任意である
。 〔発明の効果〕 以上説明したようにこの発明によれば、光導電層が、(
μC−5L)、n型の(p C−3i) 、 (a−5
i)の三層からなる事から、必要な帯電能を保持しつつ
可視光領域から近赤外線光領域、更にはより長波長光領
域の拡い領域において高い分光感度を得る事が出来、光
源に長波長の半導体レーザ光を用いるレーザプリンタ等
への適用が充分可能となり、良質な画像を得る事が出来
る。又、その製造も反応容器を用いてクローズドシステ
ムの製造装置により安全に行なう事が出来、更にはその
材質も人体に無害である事から従来のように、特に廃ガ
ス処理設備を設けなくても良く、使用後に感光体を回収
する必要も無く、ひいてはコストの低減を図る事も出来
る。尚実施例のように表面層を設ければ。 光導電体の長寿命化を図れ、更にはその表面層に屈折率
の低い無機化合物等で形成すれば1表面での反射光が減
少される事から光の吸収効率が向上され更に画質の向上
が図られる。
It is desirable to dope at least one type of [0]. If you do it like this. This is because these elements precipitate at the grain boundaries of (μC-5j,), act as terminators of the gungling bonds of silicon (SL), and reduce the density of states existing in the forbidden bodies between bands. . Next, an embodiment of the present invention using (μC-5i) and n-type (μC-3i) having the above-mentioned characteristics will be described with reference to FIGS. 1 and 2. Glow discharge device [(
The reaction vessel (11) of 10) has a built-in heater (13) and is rotated by a motor (14) in order to support the drum-shaped base (12), which is a conductive support and is made of aluminum. A support rod (16) is provided. or,
The support (16) is surrounded by a cylindrical electric Fi (18) connected to a high frequency power source (17) of 13.56 [MHz], and above the support (16), silane gas [5IH4 ) A gas supply system having a large number of gas cylinders (19a)...(19n) and a gas mixer (20a) so that diborane gas [13, H6], hydrogen gas (H2), etc. can be supplied as necessary ( 20) is provided with a gas introduction pipe (21) connected to the gas introduction valve (21a). (18a) - (18n) are each gas cylinder (19a)
- Valve (19n), (9a)...(9n) are pressure regulators. Furthermore, (22) is an exhaust valve connected to an exhaust device (not shown) that exhausts air into the reaction vessel (11), and (23) is a vacuum gauge that measures the atmospheric pressure inside the reaction vessel (11). . Further, (24) is a photoreceptor of an electrophotographic device which is a photoconductor, and a charge injection prevention layer (24) is sequentially formed on a drum-shaped substrate (12).
4a) and the first layer (25a) consisting of (p C-3i)
, a second layer (25b) consisting of n-type (a C-3L)
A photoconductive layer (25) having a third layer (25c) consisting of (a-5i) and a surface layer (24b) are laminated. When forming a photoreceptor (24) using a glow discharge device (lO), after setting a drum-shaped substrate (12) on a support (16), the inside of one reaction vessel (11) is brought to a predetermined atmospheric pressure. The exhaust valve (22) is opened, and the exhaust gas is treated by the exhaust device (not shown), and the drum-shaped substrate (12) is heated to a predetermined temperature by the heater (13). Then, while maintaining the gas pressure in one reaction vessel (11) constant through the gas introduction pipe (21), the high frequency power source (17) is used to generate the necessary air pressure between the drum-shaped substrate (12) and the cylindrical electrode (18). The charge injection prevention layer (2
4a) film formation is performed. Next, in the same reaction vessel (11), the temperature of the drum-shaped substrate (12) and the introduced gas, as well as the film forming conditions such as the amount of electric power and the time of applying electric power, are sequentially reset to predetermined values, and then charge injection is performed. The first Jtl (25a) to the third layer (25c) of the light guide ffl M (25) are formed on the prevention layer (24a). Furthermore, the same reaction vessel (1
In step 1), each film forming condition is reset to the specified one, a surface layer (24b) is formed on the photoconductive M (25), and a surface layer (24b) is formed on the photoconductor (25).
24) is completed. Next, the action of the photoreceptor (24) for positively charging will be described. First, the drum-shaped base (12) is set on the support (16), the exhaust valve (22) is opened, and the exhaust device (not shown) is installed.
The inside of the reaction vessel (11) is reduced to 0. ], CTorr)
The drum-shaped substrate (12) is heated to 400['C] by the heater (13). Next, from the gas supply system (2o), silane gas (Si11.) was supplied at 200 (SCCM) through the gas introduction pipe (21).
:/gas (CH,) is 10100 (SCC, carbon gas [8, 11,) wo (B2HJSiH,) is IX
10-' into the reaction vessel (11), and while maintaining the pressure inside the reaction vessel (11) at 1 (Torr) using an exhaust device (not shown), the drum-shaped substrate is heated by the motor (15). (12) while rotating the high frequency power source (12).
7), a power of 300 [W] is applied to the drum-shaped base (12).
and a circular electrode (18) for 15 minutes to form a charge injection prevention layer (24a) made of amorphous silicon carbide (a-si; C) with a thickness of 2 [μm]. The supply of electricity and various gases will be cut off. Next, charge injection prevention JW (
In order to form a photoconductive layer (25) on 24a), silane gas (SiHn
] to 500 (SCCM), hydrogen gas [H2] to 10
100 (SCC, diborane gas (B, Il,)
0-'' (at. 17), a power of 600 [W] was applied between the drum-shaped substrate (12) and the cylindrical electrode (18) for 2 hours,
The first layer of film thickness 10 [μm] made of i-type (μC-3i)
The layer (25a) was formed, and then 500 (SCCM) of silane gas (SiH4) and 10100 (SCC) of hydrogen gas [H2], phosphine (PH,
) was introduced into the reaction vessel (1
1) The pressure inside is 2 (Torr) and 600 (W)
power was applied for 1 hour to form a second layer of n-type (μC-3i) with a thickness of 5 [μm], and then the reaction vessel (11
500 cscc of silane gas [SiH, ] in ),
Diborane gas (B, HG) as txto-' (atomic%)
the pressure inside the reaction vessel (11) is 1 (Torr).
Then, a power of 300 [W] was applied for 20 minutes, and (a-
3i) After forming the third layer with a thickness of 3 [μm], the supply of electric power and various gases was stopped. Next, the reaction vessel (11)
Silane gas (Sil(, (50 ESCCM),
Nitrogen gas [N2] (600 ESCCM) was introduced, the pressure inside the reaction vessel (11) was set to 1 (Torr), and the pressure was increased to 400 (Torr).
Applying power of Wl for 5 minutes, amorphous silicon nitride (Q-
5i; 0.5 (μm) thick surface layer consisting of N) (
24b), and finally stop the power and gas supply.
The production of the photoreceptor (24) is completed. It should be noted that the second layer (
When the optical bandgap of 25b) was measured, it was approximately 1
.. It was 5 (eV). Furthermore, when the photoreceptor (24) was actually attached to a laser printer equipped with a semiconductor laser with an oscillation wavelength of 790 (nm) and an image was formed, a clear and high-quality image was obtained without density unevenness due to interference fringes. Obtained. With this structure, two types of i-type and n-type (μC-5i) are layered in the photoconductive layer (25), and the i-type (μC-5i) is layered in the photoconductive layer (25).
The first layer (25a) made of n-type (μC-3
The second layer (25b) made of i) also achieves higher sensitivity in the longer wavelength light region, and the third layer (25b) made of (a-3L), which has a higher resistivity than the other (μC-5i), 25c), it is possible to increase the sensitivity in the visible light region and prevent a decrease in charging ability due to a decrease in specific resistance.
Sufficient sensitivity can be obtained even for semiconductor laser light having a nearby oscillation wavelength, and application to laser printers and the like is possible without causing image density unevenness due to interference fringes. Furthermore, if this photoreceptor (24) is used, since the material is harmless to the human body, there is no need to take special safety measures during manufacturing, and there is no need to treat waste gas.
24) is not necessary to be recovered, and as a result, costs can be reduced. On the other hand, in addition to boron (B), the charge injection prevention layer (24a) is doped with carbon [C] to fill in the unevenness that would occur on the surface of the film if only boron CB) was used. Adhesion with the drum-shaped substrate (12) is improved, making it difficult to peel off, and carbon [C]
Due to its own insulating properties, the insulating properties of the charge injection prevention layer (24a) are also improved. Furthermore, as in this example, a surface layer (
By providing 24b), it is possible to prevent a decrease in light absorption efficiency and also protect the third layer (25c). In other words, (μC-5L) and (a-5i) have a refractive index of 3 due to their characteristics.
Although it is relatively large at ~4 and easily causes light reflection on its surface,
By providing amorphous silicon nitride (a-sx; N) whose refractive index is reduced by doping with nitrogen (N), this reflected light is reduced and the amount of light absorbed by the third Fm (25c) is reduced. Increased. Note that this invention is not limited to the above-mentioned embodiments, and various design changes are possible.1 For example, the layer structure of the photoconductor is arbitrary, and the surface layer may not be provided as long as it can compensate for wear resistance and light reflection. However, the lamination order and film thickness of each layer of the photoconductive layer are arbitrary, but in order to achieve higher sensitivity, (a-5i)
It is preferable to provide the third layer made of (μC-3i) on the top of the photoconductive layer, and when applied to a device that uses near-infrared light as a light source such as a laser printer device, the first layer made of (μC-3i) is preferably provided on the top of the photoconductive layer. is 3 to 50 [μm], the second layer made of n-type (μC-5i) is 1 to 10 [μm], and the third layer made of (a-Si) is about 0.1 to 5 [μm]. It is preferable to have a thickness within a range. Further, although the type of (μC-5i) in the first layer is arbitrary, if it is i-type, the resistance value becomes maximum, so that the charging ability can be further improved. Furthermore, the type of the charge injection prevention layer is also arbitrary, and when positively charging the photoconductor surface, doping with an element of Group Ma of the periodic table is used to prevent injection of electrons from the support. On the other hand, when the photoconductor surface is to be negatively charged, it may be made into an n-type by doping with an element of Group Va of the periodic table to prevent injection of holes from the support. However, the structure may be either (a-SL) or (μC-5i), but when it is formed from (μC-3i), it has better light absorption such as laser light and can be easily removed from the support. This eliminates the occurrence of reflected light, and furthermore, it is possible to more reliably prevent density unevenness due to interference fringes caused by reflected light on the surface, and it is possible to obtain a clearer image. In addition, the material to be doped into the charge injection prevention layer to improve adhesion to the support or insulation is not limited to carbon [C], but nitrogen (N) or oxygen [○] can be doped to form an amorphous material. Silicon carbide (a-
3i; C) or amorphous silicon oxide (a-S
i; 0) may be used as a charge injection prevention layer. And its thickness is also arbitrary. Preferably, the thickness is between 100 [μm] and 10 [μm]. Furthermore, the manufacturing method for each layer may also be a photo-CVD method, a sputtering method, or the like. In addition, when providing a surface layer, its material is nitrogen silicon [8
13N4], alumina Ugzoi), amorphous silicon oxide (a-S 1 : O; H),
Organic materials such as polyvinyl chloride and polyamide are optional. [Effects of the Invention] As explained above, according to the present invention, the photoconductive layer (
μC-5L), n-type (pC-3i), (a-5
Since it is composed of the three layers i), it is possible to obtain high spectral sensitivity in the visible light region, near-infrared light region, and even longer wavelength light region while maintaining the necessary charging ability, making it suitable for light sources. Application to laser printers etc. using long wavelength semiconductor laser light is fully possible, and high quality images can be obtained. In addition, its production can be carried out safely using a closed system production equipment using a reaction vessel, and since the material is harmless to the human body, there is no need to install special waste gas treatment equipment as in the past. In addition, there is no need to collect the photoreceptor after use, and it is possible to reduce costs. Incidentally, if a surface layer is provided as in the embodiment. In addition to prolonging the life of the photoconductor, if the surface layer is made of an inorganic compound with a low refractive index, the amount of light reflected from one surface will be reduced, which will improve the light absorption efficiency and further improve the image quality. is planned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の一実施例を示し。 第1図はその成膜装置を示す概略説明図、第2図はその
感光体を示す一部断面図、第3図は(μC−3i)と(
a−Si)のX線回折を示すグラフである。 10・・・グロー放電装[11・・・反応容器12・・
・ドラム状基体   13・・・ヒータ16・・・支持
体      17・・・高周波電源18・・・円筒状
電極    20・・・ガス供給系24・・・感光体 
     24a・・・電荷注入防止層24b・・・表
面層      25・・・光導電層25a・・・第1
層     25b・・・第2層25c・・・第3層
FIGS. 1 and 2 show an embodiment of the present invention. Fig. 1 is a schematic explanatory diagram showing the film forming apparatus, Fig. 2 is a partial sectional view showing the photoreceptor, and Fig. 3 is (μC-3i) and (μC-3i).
It is a graph showing X-ray diffraction of a-Si). 10... Glow discharge device [11... Reaction vessel 12...
- Drum-shaped base 13... Heater 16... Support 17... High frequency power source 18... Cylindrical electrode 20... Gas supply system 24... Photoreceptor
24a... Charge injection prevention layer 24b... Surface layer 25... Photoconductive layer 25a... First
Layer 25b...Second layer 25c...Third layer

Claims (1)

【特許請求の範囲】 1、導電性の支持体上に電荷注入防止層及び光導電層が
設けられるものにおいて、前記光導電層がマイクロクリ
スタリンシリコンからなる第1層及びn型のマイクロク
リスタリンシリコンからなる第2層並びにアモルファス
シリコンからなる第3層からなる事を特徴とする光導電
体。 2、第1層が膜層3〔μm〕ないし50〔μm〕、第2
層が膜厚1〔μm〕ないし10〔μm〕、第3層が膜厚
0.1〔μm〕ないし5〔μm〕である事を特徴とする
特許請求の範囲第1項記載の光導電体。
[Claims] 1. A charge injection prevention layer and a photoconductive layer are provided on a conductive support, wherein the photoconductive layer is a first layer made of microcrystalline silicon and a first layer made of n-type microcrystalline silicon. A photoconductor comprising a second layer made of amorphous silicon and a third layer made of amorphous silicon. 2. The first layer is a film layer 3 [μm] to 50 [μm], the second layer
The photoconductor according to claim 1, wherein the layer has a thickness of 1 [μm] to 10 [μm], and the third layer has a film thickness of 0.1 [μm] to 5 [μm]. .
JP60243850A 1985-11-01 1985-11-01 Photoconductor Pending JPS62105152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243850A JPS62105152A (en) 1985-11-01 1985-11-01 Photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243850A JPS62105152A (en) 1985-11-01 1985-11-01 Photoconductor

Publications (1)

Publication Number Publication Date
JPS62105152A true JPS62105152A (en) 1987-05-15

Family

ID=17109880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243850A Pending JPS62105152A (en) 1985-11-01 1985-11-01 Photoconductor

Country Status (1)

Country Link
JP (1) JPS62105152A (en)

Similar Documents

Publication Publication Date Title
JPS62115457A (en) Electrophotographic sensitive body
JPS62105152A (en) Photoconductor
JPS61282847A (en) Photoconductor
JPS6266264A (en) Photoconductive body
JPS6266260A (en) Photoconductive body
JPS6266261A (en) Photoconductive body
US4762761A (en) Electrophotographic photosensitive member and the method of manufacturing the same comprises micro-crystalline silicon
JPS61282849A (en) Photoconductor
JPS6266265A (en) Photoconductive body
JPS6266263A (en) Photoconductive body
JPS6266262A (en) Photoconductive body
JPS6343157A (en) Electrophotographic sensitive body
JPS6280667A (en) Photoconductive body
JPS6280665A (en) Photoconductive body
JPS61282848A (en) Photoconductor
JPS61282846A (en) Photoconductor
JPS6280666A (en) Photoconductive body
JPS61283175A (en) Photoconductor
JPS6343160A (en) Electrophotographic sensitive body
JPS61295565A (en) Photoconductive member
JPS62115465A (en) Electrophotographic sensitive body
JPS6343159A (en) Electrophotographic sensitive body
JPS6239872A (en) Electrophotographic sensitive body
JPS63165857A (en) Electrophotographic sensitive body
JPS6239870A (en) Electrophotographic sensitive body