JPS6266099A - Graphite heat transfer tube - Google Patents

Graphite heat transfer tube

Info

Publication number
JPS6266099A
JPS6266099A JP18985785A JP18985785A JPS6266099A JP S6266099 A JPS6266099 A JP S6266099A JP 18985785 A JP18985785 A JP 18985785A JP 18985785 A JP18985785 A JP 18985785A JP S6266099 A JPS6266099 A JP S6266099A
Authority
JP
Japan
Prior art keywords
tube
graphite
heat transfer
heat
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18985785A
Other languages
Japanese (ja)
Inventor
Yukihiro Ashino
芦野 幸弘
Shozo Ikuta
生田 正三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Original Assignee
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMURA KAKOKI KK, Kimura Chemical Plants Co Ltd filed Critical KIMURA KAKOKI KK
Priority to JP18985785A priority Critical patent/JPS6266099A/en
Publication of JPS6266099A publication Critical patent/JPS6266099A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To hold the excellent heat transfer property, promote the heat transfer and the thermal efficiency of the heat transfer tube by forming the heat transfer tube into a liquid-tight tube the outer part of which is made of a heat curing resin and graphite, and holding at its inner part a porosity possessed by a graphite tube. CONSTITUTION:The tube wall of a tubular body 6 made of a porous graphite is divided into two, inner and outer, parts. The inner part 3 at least the inner wall surface of the tube, is held by a structure of porous graphite 2, and the outer part 4, at least the outer peripheral surface of the tube, is constituted of a tubular body 6 of a liquid-tight structure. That is, the heat transfer tube is a tubular body having a so-called dual layer structure. A layer 51 of a heat curing synthetic resin is applied to the outer peripheral surface of the graphite pipe 2 and thereafter dried and cured or application, drying and curing are repeated. Alternatively, a heat curing synthetic resin is applied to the outer peripheral surface of the tubular body 6 both ends of which are blocked, and thereafter an atmospheric pressure is applied thereto, and is impregnated in the front surface portion of the tube, and then a heat cured liquid-tight layer 52 is formed via drying means including heating. Accordingly, this tube can be used as a tube for transporting the fluid, and since it has its porous inner part 3, at least inner surface, it has an improved heat transfer function as a heat transfer tube by the promotion of nuclear boiling.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は殻体と伝熱管とからなる熱交換器に用いられる
黒鉛製の伝熱管に関し、とくに伝熱特性を改良した伝熱
管に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger tube made of graphite used in a heat exchanger consisting of a shell and a heat exchanger tube, and particularly to a heat exchanger tube with improved heat transfer characteristics.

従来の技術 黒鉛は各稲の性質において安定した物質であシ、とくに
化学的性質の面から耐食性にすぐれ、熱特性においても
融点が高いばかシでなく熱膨張率が小さくて高温におけ
る変形が小さいなどの利点が着目されている。また黒鉛
は材料としてのM造過程から成型が自由であって管体と
することが容易であり、熱伝導性もすぐれているため伝
熱管として好適である。一方、従来伝熱管として多用さ
れていた金属管にあっては、粉末冶金などの技術によっ
て、金属や合金の焼結Rを形成し、熱伝達係数を格段に
改善する技術が開発されている。
Conventional technology Graphite is a stable substance in terms of its properties, and in terms of chemical properties it has excellent corrosion resistance, and in terms of thermal properties, it does not have a high melting point, but has a small coefficient of thermal expansion and little deformation at high temperatures. Benefits such as: In addition, graphite is suitable for use as a heat exchanger tube because it can be freely molded from the manufacturing process and can be easily formed into a tube body, and has excellent thermal conductivity. On the other hand, regarding metal tubes, which have conventionally been widely used as heat transfer tubes, techniques such as powder metallurgy have been developed to form a sintered radius of metal or alloy to significantly improve the heat transfer coefficient.

黒鉛は5N l生質にすぐれていることが知られている
が、工業的に得られる材料としては、コークスのような
炭素を含む材料から数次の焼成を経て多孔質体として得
られるものであって、管材として成形しても流体に対し
て透過性である。したがって、これを管材として使用す
るためには、フェノール系樹脂、エポキシ糸、フラン系
樹脂などの熱硬化性合成樹脂を含浸させたのち、これを
熱硬化させて不透過黒鉛管とする。しかし、これでは黒
鉛の熱特性をそのまま、あるいは合成樹脂の特性の制約
のもとで利用するにとどまシ、多孔質体としての特性は
失われている。一方、金属などの焼結体のもつ多孔性は
その表面における核沸騰による伝熱促進機構に注目すべ
き効果が知られ、しかも管としたときに不透過性を確保
することができるが、材質そのものの腐食に対する安定
度において側底黒鉛に比すべくもなく、用途に制約を受
ける。
Graphite is known to have excellent 5Nl properties, but as an industrially available material, it is obtained as a porous body from a carbon-containing material such as coke through several rounds of calcination. Therefore, it is permeable to fluids even when formed as a tube material. Therefore, in order to use this as a pipe material, it is impregnated with a thermosetting synthetic resin such as a phenolic resin, epoxy thread, or furan resin, and then thermosetted to form an impermeable graphite pipe. However, this only utilizes the thermal properties of graphite as is or under the constraints of the properties of the synthetic resin, and its properties as a porous body are lost. On the other hand, the porosity of sintered bodies such as metals is known to have a remarkable effect on the heat transfer promotion mechanism due to nucleate boiling on the surface, and can also ensure impermeability when made into a tube. Its stability against corrosion is incomparable to lateral graphite, and its uses are limited.

問題点を解決するための手段 本発明は上記のような事情から、熱交換器の伝熱促進用
として利用できるような黒鉛管を得ることを目的として
開発されたものであって、多孔質の黒鉛製の管体の廿壁
を内方、外方の2部分に分けて考え、内方部、少くとも
管の内壁面は多孔質の黒鉛の構造を保持し、外方部、少
くとも管の外周面ば液密な構造の管体を構成するいわば
2重層構造の管体とすることを要旨とし、実際の管体に
あっては、外方部では熱硬化性樹脂の外面への塗布また
は外方からの含浸、内方部では未含浸のままの索胴部分
または含浸後の8!A械加工手段によって含浸合成樹脂
を含む黒鉛の面に露出して形成される粗面の態様に形成
することを特徴とし、さらにこのような管は熱交換器用
の伝熱管ひいではそれを使用する蒸発装置用の伝熱促進
管とすることができるものである。
Means for Solving the Problems The present invention was developed in view of the above-mentioned circumstances with the aim of obtaining a graphite tube that could be used to promote heat transfer in heat exchangers. The wall of a graphite pipe body is divided into two parts, the inner and outer parts, and the inner part, at least the inner wall surface of the pipe, maintains a porous graphite structure, and the outer part, at least The main idea is to create a pipe with a so-called double-layer structure in which the outer peripheral surface of the pipe is liquid-tight.In actual pipes, thermosetting resin is applied to the outer surface of the pipe. Or impregnation from the outside, inside the cord trunk part left unimpregnated or after impregnation 8! A is characterized in that it is formed into a rough surface that is exposed on the surface of graphite containing impregnated synthetic resin by machining means, and furthermore, such a tube is used as a heat exchanger tube for a heat exchanger, and furthermore, it is used. It can be used as a heat transfer promoting tube for an evaporator.

作用 本発明を図面にもとづいて詳細に説明する。第1図は本
発明の伝熱管を断面で示す模式図である。
Function The present invention will be explained in detail based on the drawings. FIG. 1 is a schematic cross-sectional view of the heat exchanger tube of the present invention.

1は伝熱管の全体を示し、2はその主体65となる黒鉛
の多孔質管であって、切欠図で示すように、内方部3と
外方部4との内外2層部に考え、内方部3は管内面のみ
、外方部4は管の外周面のみを示す場合をも含むものと
する。5は上記の定義に従うときの外方部4に含浸また
は塗布した熱硬化性の合成樹脂層であシ、斜線で示され
ている。6は内方部3、外方部4の両部を一体に見たと
きの全肉厚の管体全体を示している。
1 shows the entire heat exchanger tube, 2 is a porous graphite tube which is the main body 65, and as shown in the cutaway diagram, it is divided into two layers, inner and outer parts, an inner part 3 and an outer part 4, The inner part 3 includes only the inner surface of the tube, and the outer part 4 includes only the outer circumferential surface of the tube. Reference numeral 5 denotes a thermosetting synthetic resin layer impregnated or coated on the outer part 4 according to the above definition, and is shown by hatching. Reference numeral 6 indicates the entire tubular body with its full thickness when both the inner part 3 and outer part 4 are viewed as one body.

第2図の各図は、黒鉛部2に関する合成樹脂5の適用方
法の各種変化を例示するもので、伝熱管の各種の態様を
示している。
Each figure in FIG. 2 illustrates various changes in the method of applying the synthetic resin 5 to the graphite portion 2, and shows various aspects of the heat exchanger tube.

第2図(8)において、51は熱硬化性合成樹脂の層で
あって、黒鉛管2の外周面に塗布したのち乾燥硬化し、
または塗イσ乾燥硬化を繰返して得た液密の層である。
In FIG. 2 (8), 51 is a layer of thermosetting synthetic resin, which is applied to the outer peripheral surface of the graphite tube 2 and then dried and hardened.
Or, it is a liquid-tight layer obtained by repeating coating, drying and curing.

この場合内方部3は全肉厚6に等しく外方部4は肉厚0
であって合成樹脂5は管外方にのみ存在する。この管の
製造は最も簡易であるが、内方部3と外方部4の構成は
極端な例である。
In this case, the inner part 3 has a total wall thickness of 6 and the outer part 4 has a wall thickness of 0.
The synthetic resin 5 exists only on the outside of the tube. This tube is the simplest to manufacture, but the configuration of the inner part 3 and outer part 4 is an extreme example.

第2図ら)においで、52は熱硬化性合成樹脂を、両端
を閉塞した管体6の外周面に塗布したのち、外気圧を加
えて管の表層部に含浸させ、ついで加熱を含む乾燥手段
を経て熱硬化させた液密の層である。このような含浸樹
脂52の層は前例穴における単純な塗イUに伴う表層へ
の自然含浸をも含むものである。
In Fig. 2 et al.), 52 is a method of applying a thermosetting synthetic resin to the outer circumferential surface of the tube body 6 with both ends closed, impregnating it into the surface layer of the tube by applying external pressure, and then drying means including heating. It is a liquid-tight layer that is heat-cured through a process. Such a layer of impregnating resin 52 also includes natural impregnation into the surface layer due to simple coating in the holes.

第2図(Qにおける外方部4の合成樹脂53は内方部3
を黒鉛2の素材のまま残すようにした熱硬化性樹脂の含
浸によって形成した例である。この含浸は前記と同様に
管の両端を閉じ、管を含浸液に浸漬して内空部の減圧、
外周部からの加圧または両者の併用によって行い1.含
浸樹脂の粘性、相対的な圧力差、含浸時間または含浸工
程の繰返し等による含浸条件の変化に応じて外方部4の
厚さ、が変化する。
FIG. 2 (The synthetic resin 53 of the outer part 4 in Q is
This is an example in which graphite 2 is impregnated with a thermosetting resin that remains as a raw material. For this impregnation, both ends of the tube are closed in the same manner as above, and the tube is immersed in the impregnating liquid to reduce the pressure in the inner space.
This is done by applying pressure from the outer periphery or by using a combination of both.1. The thickness of the outer portion 4 changes depending on changes in impregnation conditions such as the viscosity of the impregnating resin, relative pressure difference, impregnation time, or repetition of the impregnation process.

第2図(IIにおいては、熱硬化性樹脂樹脂居54の含
浸は、従来技術で知られた不透過性黒鉛管と同じく全肉
厚6内((打い、従って内方部3の厚さは0であって管
の内面のみとなる。この例では内方部3の黒鉛2の部分
は、管内面からの機械的加工によって露出される黒鉛に
よって形成され、これに含浸樹脂が加工された粗面も加
わることになる0 上記したような管は、その肉厚の内方部3と被覆層を含
む外方部4からなる管体6を外方で液密とし、内方では
多孔質とする2層構成のものとしている。したがって、
この管は流体輸送用の管として用いることができ、その
多孔性の内方部、少くとも内面を有し、核amの促進に
よシ、伝熱管としての改善された伝熱機能を有する。多
孔性の伝熱面における核沸騰の機構そのものは、例えば
中山氏「熱交換技術入門」(オーム社刊)などで知られ
ているが、本発明ではこの原理を応用するもので、範囲
外であるので評論は省略する。
In FIG. 2 (II), the impregnation of the thermosetting resin resin layer 54 is carried out within the total wall thickness 6 ((casting), and thus the thickness of the inner part 3. is 0, which is only the inner surface of the tube.In this example, the graphite 2 portion of the inner part 3 is formed of graphite exposed by mechanical processing from the inner surface of the tube, and the impregnated resin is processed into this. A rough surface will also be added to the tube body 6, which consists of a thick inner part 3 and an outer part 4 including a coating layer, which is liquid-tight on the outside and porous on the inside. It has a two-layer structure.Therefore,
This tube can be used as a tube for fluid transport and has a porous inner part, at least an inner surface, which promotes nuclear AM and has an improved heat transfer function as a heat transfer tube. The mechanism of nucleate boiling on a porous heat transfer surface is known, for example, from Mr. Nakayama's ``Introduction to Heat Exchange Technology'' (published by Ohmsha), but the present invention applies this principle and is outside the scope of this invention. Therefore, I will omit the review.

実施例 (1)熱交換器用にフェノール系樹脂を含浸させ、熱硬
化させた不透過性黒鉛伝熱管であって、外径32鰭、内
径22調、長さ4mの管内にホイール型ワイヤーブラシ
を挿入し、管の軸方向と内周面方向に作動させて管内面
に研削形の機械加工を施こした。これによって管内面の
樹脂層のすべてを削シ取シ、さらに含浸樹脂を含む黒鉛
内面層を削シ、円周方向と軸方向とに格子状の溝を有す
る粗面を形成した。表面の粗面は、黒鉛自体が露出した
多孔質面と、含浸樹脂の研削面とからなる混成面であり
、0.1〜0.51111の四部を形成したものである
Example (1) An impermeable graphite heat transfer tube impregnated with phenolic resin and heat-cured for use in a heat exchanger, with an outer diameter of 32 fins, an inner diameter of 22 fins, and a length of 4 m, with a wheel-shaped wire brush installed inside the tube. It was inserted and operated in the axial direction and the inner circumferential direction of the tube to perform grinding-type machining on the inner surface of the tube. As a result, all of the resin layer on the inner surface of the tube was removed, and the graphite inner layer containing the impregnated resin was also removed to form a rough surface having lattice-like grooves in the circumferential direction and the axial direction. The rough surface is a hybrid surface consisting of a porous surface where the graphite itself is exposed and a ground surface of the impregnated resin, and forms four parts of 0.1 to 0.51111.

(2)外径3211内径22■、長さ4mの未含浸の黒
船管の両端を密封したのちエポキシ樹脂液中に浸漬し、
内部を真空下10 Torrにして相対加圧によって含
浸を行つンbc0約20分後にこの管を取シ出し、80
℃で乾燥させて樹脂を硬化させ、この操作を2回繰返し
た。試料の切断面における外方部の樹脂含浸jけの厚さ
は3〜47りnであった。
(2) After sealing both ends of an unimpregnated black ship tube with an outer diameter of 3211 and an inner diameter of 22 mm and a length of 4 m, it was immersed in an epoxy resin solution,
Impregnation is carried out by relative pressure under a vacuum of 10 Torr. After about 20 minutes, the tube is taken out and the tube is heated to 80 Torr.
The resin was cured by drying at <0>C and this operation was repeated twice. The thickness of the resin impregnation on the outer part of the cut surface of the sample was 3 to 47 mm.

(3)実施例(1)で使用した不透過性黒鉛伝熱管の未
加工のものと、内面に機械加工を施して粗面を形成した
ものとを用いて、液膜降下式熱交換器を製作し、蒸発テ
ストを行い、伝熱効率の比較を行った。伝熱管は外径3
2−×内径22園×長さ4mのもの2本づつであシ、伝
熱面積は−1,36m’ (平均)である。蒸発m度7
0℃、操作圧力205 Thrr 。
(3) A liquid film descending heat exchanger was constructed using the unprocessed impermeable graphite heat exchanger tube used in Example (1) and the one whose inner surface was machined to form a rough surface. We manufactured them, conducted evaporation tests, and compared their heat transfer efficiency. The heat exchanger tube has an outer diameter of 3
There are two pieces each with 2-× inner diameter of 22 mm and length of 4 m, and the heat transfer area is −1.36 m' (average). Evaporation degree 7
0°C, operating pressure 205 Thrr.

加熱缶シェル側温度84℃の条件にて、総括伝熱係数(
UM)を測定し、比較したところ、未加工のものに比し
て内面加工を施こしたものでは、約2倍の値を得ること
ができた。
The overall heat transfer coefficient (
UM) was measured and compared, and it was found that the value of the inner surface treated one was about twice that of the untreated one.

incと1辰 本発明の黒鉛伝熱管はその外方部を熱硬化性樹脂と黒鉛
とによる液密の管とし、内方部は黒鉛管の有する多几質
註を保持しており、内外部で組成を異にする複合層の管
としたから、多孔質の管を流体輸送用に適するものとす
ると同時に、本来のすぐれた伝熱性を保持し、しかも内
面において固有の有孔粗面を有して熱伝達を促進する伝
熱管が得られた。ことに内面での有孔性は核沸騰の機能
を顕著に向上させ、熱交換器、ひいてはこれを組込んだ
蒸発装置の熱効率の改善に寄与するところが極めて大き
く、本発明は画期的なものであるといえる。
Inc and 1. The graphite heat exchanger tube of the present invention has an outer part made of a thermosetting resin and graphite that is liquid-tight, an inner part which retains the porous texture of a graphite pipe, and an inner and outer part. Since the pipe is made of composite layers with different compositions, it is possible to make the porous pipe suitable for fluid transport, while at the same time retaining its original excellent heat conductivity and having a unique perforated rough surface on the inner surface. A heat exchanger tube that promotes heat transfer was obtained. In particular, the porosity on the inner surface significantly improves the nucleate boiling function and greatly contributes to improving the thermal efficiency of the heat exchanger and, by extension, the evaporator incorporating this, and the present invention is groundbreaking. You can say that.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の伝熱、管を説明するだめの概略図であり
、第1図は内方部、外方部の説明模式図、第2図囚〜0
は外方部における合成樹脂の適用の各側を示す断面図で
ある。 1・・・伝熱管、2・・・黒鉛、3・・・内方部、4・
・・外方部、5・・・熱硬化性合成樹脂、6・・・管体
、肉厚代理人 三 宅 正 夫 他1名 第 1 図 第 2 図
The drawings are schematic diagrams for explaining the heat transfer and tube of the present invention, and FIG. 1 is a schematic diagram for explaining the inner and outer parts, and FIG.
2 is a sectional view showing each side of the application of synthetic resin in the outer part; FIG. DESCRIPTION OF SYMBOLS 1... Heat exchanger tube, 2... Graphite, 3... Inner part, 4...
...Outer part, 5...Thermosetting synthetic resin, 6...Pipe body, thick wall agent Masao Miyake and 1 other person Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)炭素質を含む材料から成形して得た多孔質の黒鉛
管体であつて、その内方部は黒鉛の素材であるかまたは
黒鉛の露出面を有し、それに接する外方部は熱硬化性合
成樹脂を内方部に対応して被覆または含浸して硬化させ
た不透過性層であることを特徴とする熱交換器用伝熱管
(1) A porous graphite tube body obtained by molding from a material containing carbonaceous material, the inner part of which is made of graphite material or has an exposed graphite surface, and the outer part in contact with it is made of graphite material or has an exposed graphite surface. 1. A heat exchanger tube for a heat exchanger, characterized in that it is an impermeable layer whose inner part is coated or impregnated with a thermosetting synthetic resin and cured.
(2)黒鉛の露出面は、不透過性黒鉛管の内面を機械加
工によつて、黒鉛自体が露出した多孔質面と含浸樹脂の
研削面とに形成した粗面である特許請求の範囲第1項に
記載の伝熱管。
(2) The exposed surface of graphite is a rough surface formed by machining the inner surface of an impermeable graphite tube to form a porous surface where graphite itself is exposed and a ground surface of the impregnated resin. The heat exchanger tube according to item 1.
JP18985785A 1985-08-30 1985-08-30 Graphite heat transfer tube Pending JPS6266099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18985785A JPS6266099A (en) 1985-08-30 1985-08-30 Graphite heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18985785A JPS6266099A (en) 1985-08-30 1985-08-30 Graphite heat transfer tube

Publications (1)

Publication Number Publication Date
JPS6266099A true JPS6266099A (en) 1987-03-25

Family

ID=16248338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18985785A Pending JPS6266099A (en) 1985-08-30 1985-08-30 Graphite heat transfer tube

Country Status (1)

Country Link
JP (1) JPS6266099A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027494U (en) * 1988-06-23 1990-01-18
EP0435473A2 (en) * 1989-12-29 1991-07-03 Digital Equipment Corporation Evaporator having etched fiber nucleation sites and method of fabricating same
EP0770845A3 (en) * 1995-10-26 1998-12-02 Sgl Technik Gmbh Heat exchanger tube with vortex generating turbulating means
JP2006064296A (en) * 2004-08-27 2006-03-09 Sgl Carbon Ag Heat conductive plate formed of expanded graphite and production method therefor
JP2017044363A (en) * 2015-08-24 2017-03-02 京セラ株式会社 Channel member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320153A (en) * 1976-08-07 1978-02-24 Tomimaru Iida Fluid heat transmission tube
JPS5611878A (en) * 1979-07-10 1981-02-05 Matsushita Electric Works Ltd Heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320153A (en) * 1976-08-07 1978-02-24 Tomimaru Iida Fluid heat transmission tube
JPS5611878A (en) * 1979-07-10 1981-02-05 Matsushita Electric Works Ltd Heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027494U (en) * 1988-06-23 1990-01-18
EP0435473A2 (en) * 1989-12-29 1991-07-03 Digital Equipment Corporation Evaporator having etched fiber nucleation sites and method of fabricating same
EP0770845A3 (en) * 1995-10-26 1998-12-02 Sgl Technik Gmbh Heat exchanger tube with vortex generating turbulating means
JP2006064296A (en) * 2004-08-27 2006-03-09 Sgl Carbon Ag Heat conductive plate formed of expanded graphite and production method therefor
JP2017044363A (en) * 2015-08-24 2017-03-02 京セラ株式会社 Channel member

Similar Documents

Publication Publication Date Title
KR100319720B1 (en) Super conducting heat transfer medium
US4885129A (en) Method of manufacturing heat pipe wicks
US3948316A (en) Process of and device for using the energy given off by a heat source
JPS6266099A (en) Graphite heat transfer tube
JP2012037165A (en) Heat exchange member
CN106604607A (en) No-wick ultrathin heat pipe device
US4633765A (en) Piston for precision dosing instrument
TWI438043B (en) Method for fabricating a heat pipe, and instrument of the method
US4042420A (en) Method of producing manganese oxide solid electrolyte capacitor
KR101486260B1 (en) Metal-ceramic hybrid fuel cladding tubes and method of manufacturing the same
JP2009120426A (en) Long fiber reinforced ceramic composite material and its manufacturing method
CN113720186B (en) Loop heat pipe evaporator based on porous silicon nitride capillary core and manufacturing method thereof
WO2019016873A1 (en) Wick
US4136427A (en) Method for producing improved heat transfer surface
US20110168431A1 (en) Electric conductor and method for manufacturing an electric conductor
JP4309515B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
CN108517484B (en) Ceramic coating with closed pore structure and preparation process thereof
US6670040B1 (en) Carbon fiber-reinforced carbon composite body and method of manufacturing the same
JP4309516B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JP3249141B2 (en) Tubular composite structure
CN115746795B (en) Silicon carbide aerogel-based composite phase change energy storage material and preparation method and application thereof
CN114478056B (en) Integral forming method of porous graphite tube for heat exchanger
JPH02279304A (en) Manufacture of heat exchanger
RU15378U1 (en) PIPE FROM COMPOSITE MATERIAL
SU1064115A1 (en) Capillary structure of heat pipe