JP4309515B2 - Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same - Google Patents

Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same Download PDF

Info

Publication number
JP4309515B2
JP4309515B2 JP20048799A JP20048799A JP4309515B2 JP 4309515 B2 JP4309515 B2 JP 4309515B2 JP 20048799 A JP20048799 A JP 20048799A JP 20048799 A JP20048799 A JP 20048799A JP 4309515 B2 JP4309515 B2 JP 4309515B2
Authority
JP
Japan
Prior art keywords
composite material
fiber reinforced
carbon fiber
carbon composite
reinforced carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20048799A
Other languages
Japanese (ja)
Other versions
JP2001026483A (en
Inventor
純一 松下
佐門 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP20048799A priority Critical patent/JP4309515B2/en
Priority to US09/613,097 priority patent/US6670040B1/en
Publication of JP2001026483A publication Critical patent/JP2001026483A/en
Application granted granted Critical
Publication of JP4309515B2 publication Critical patent/JP4309515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は耐酸化性に優れた炭素繊維強化炭素複合材料及びその製造方法に関する。
【0002】
【従来の技術】
繊維強化複合材料の一種である炭素繊維強化炭素複合材料は、炭素のみで構成されており、複合効果が原因して比強度が高いなどの機械的に優れた性質を持っていることから、他の物質に替え難い材料としていろいろな分野への応用の開発研究がすすめられ、コンコルドの摺動材、スペースシャトルのノーズコーンやリーディングエッジ、燃焼機関の構造材料、人工歯根、骨、関節などの医用材料等様々の分野に用いられている。
【0003】
しかし、炭素繊維強化炭素複合材料は、構成物質がすべて炭素であるが故に500℃以上の酸化雰囲気中で酸化されてしまい、超高温下においてその特性を生かすことができなかった。
【0004】
そのため、従来、気相化学蒸着法(CVD法)により炭素繊維強化炭素複合材料の表面にセラミックスを被着させて耐酸化性を炭素繊維強化炭素複合材料に付与することが行われている。
【0005】
しかし、気相化学蒸着法には一長一短があり、厚い膜を得ることはできるが、複雑な形状をした素材に対してはこの方法の適用は困難である。
【0006】
近年、宇宙空間への進出に対する国際的な取り組みがなされる中、今後ますます耐酸化性の炭素繊維強化炭素複合材料の需要が高まりつつある。
【0007】
【発明が解決しようとする課題】
本発明は、従来の欠点を解消した、500℃以上の高温環境下で酸化を防止できる、耐酸化性に優れ、持久力があり、且つ複雑な形状の素材に対しても適用が可能な炭素繊維強化炭素複合材料及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、上記の材料に関する課題を解決するもので、「炭素繊維強化炭素複合材料内部にホウ化ケイ素をドーピングさせてなる耐酸化性炭素繊維強化炭素複合材料。」を要旨とする。
【0009】
請求項2に記載の発明は、上記の製造方法に関する課題を解決するもので、「炭素繊維強化炭素複合材料の表面にSiB4 あるいはSiB6 のホウ化ケイ素の含浸被覆部を形成し、更にホットプレスにより前記ホウ化ケイ素を炭素繊維強化炭素複合材料内部にドーピングさせることを特徴とする耐酸化性炭素繊維強化炭素複合材料の製造方法。」を要旨とする。
【0010】
【発明の実施の形態】
図1は本発明の炭素繊維強化炭素複合材料を模式的に示すものである。図1に示すように炭素繊維強化炭素複合材料1の内部にホウ化ケイ素2がドーピングされている。
【0011】
炭素繊維強化炭素複合材料1としては、従来の製品、即ち、平織り、朱子織り、綾織り等の二方向織布、一方向配向材、三方向配向材、n方向配向材、フェルト、トウ等の炭素繊維にフェノール樹脂、フラン樹脂等の熱硬化性物質、カーボンブラック、タール、ピッチのような熱可塑性物質からなるバインダーを含浸、塗布する等の方法によりプリプレグを形成し、加熱加圧して成形体とし、この成形体を熱処理によってバインダーを完全に硬化させ、その後常法によって焼成し、さらに必要に応じて黒鉛化してなる炭素繊維強化炭素複合材料を用いることができる。
【0012】
本発明の炭素繊維強化炭素複合材料は、炭素繊維強化炭素複合材料をSiB4 あるいはSiB6 のホウ化ケイ素の粉末を有機液体、例えば液状のポリエチレングリコール中に分散させてなる懸濁液中に浸して炭素繊維強化炭素複合材料に前記ホウ化ケイ素を含浸させ炭素繊維強化炭素複合材料の表面をSiB4 あるいはSiB6 のホウ化ケイ素の粉末で被覆し、その後炭素繊維強化炭素複合材料表面に含まれるポリエチレングリコールが完全に蒸発するように300℃で脱脂処理を行い、更にホットプレスにより前記ホウ化ケイ素を炭素繊維強化炭素複合材料内部にドーピングさせることにより得ることができる。
【0013】
炭素繊維強化炭素複合材料内部にドーピングされたSiB4 あるいはSiB6 のホウ化ケイ素は酸素雰囲気中で、B2O3 およびSi2からなる高温時にはホウケイ酸ガラスの膜を形成する、耐酸化バリアを生成し、それによって炭素繊維強化炭素複合材料の耐酸化性は大幅に向上せしめられ、耐酸化性に優れた炭素繊維強化炭素複合材料が形成される。
【0014】
【実施例】
次に本発明の実施例を挙げて本発明を詳細に説明する。
粘性率6〜9Pa・s のポリエチレングリコールに、粒径約1.0μm のSiB4 あるいはSiB6 のホウ化ケイ素粉末を分散させて懸濁液を作成し、この懸濁液中に最高処理温度2,000℃で焼成した炭素繊維強化炭素複合材料を浸して、炭素繊維強化炭素複合材料に前記ホウ化ケイ素を含んだポリエチレングリコールを含浸させ、前記ホウ化ケイ素を含んだポリエチレングリコールを含浸させた炭素繊維強化炭素複合材料を真空デシケータ中に置いて真空含浸処理を行った。それによって炭素繊維強化炭素複合材料の表面をSiB4 あるいはSiB6 のホウ化ケイ素の粉末で被覆し、その後炭素繊維強化炭素複合材料表面に付着したポリエチレングリコールが完全に蒸発するように300℃で脱脂処理を行い全表面が均一に前記ホウ化ケイ素で被覆された炭素繊維強化炭素複合材料を得た。更にこの炭素繊維強化炭素複合材料に40MPa の真空下で温度1,500℃でホットプレスを施し前記ホウ化ケイ素を炭素繊維強化炭素複合材料内部にドーピングさせることにより前記ホウ化ケイ素を内部に含んだ炭素繊維強化炭素複合材料を作成することができた。
【0015】
(耐酸化能力の評価の方法)
耐酸化性炭素繊維強化炭素複合材料の耐酸化能力の評価は、示差熱分析器を用いての昇温酸化実験、および電気炉を用いての定温酸化実験を行い、加熱温度、加熱時間と質量変化との関係から評価した。昇温酸化実験における昇温速度は、500℃に至るまでは15℃/min、500℃以上の温度では2℃/minとした。定温酸化実験における温度範囲は700〜1500℃で行った。
【0016】
(耐酸化能力の評価の結果)
TG(熱重量測定)を用いた、室温から1000℃までの昇温酸化実験では、質量損失20%時の温度は、未処理の炭素繊維強化炭素複合材料の場合700℃付近であったのに対して、前記ドーピング処理を施した炭素繊維強化炭素複合材料の場合800℃以上まで上昇した。また、定温酸化実験では、質量損失20%までの所要時間は、前記ドーピング処理を施した炭素繊維強化炭素複合材料の場合は未処理の炭素繊維強化炭素複合材料の場合に比べて、3倍以上であり、その差は温度が高くなるにつれて増加した。これらより前記ドーピング処理は炭素繊維強化炭素複合材料に良い耐酸化性を付与させているといえる。
【0017】
【発明の効果】
以上詳細に述べたように本発明の方法によれば、500℃以上の高温環境下で酸化を防止できる、耐酸化性に優れた、持久力のある炭素繊維強化炭素複合材料からなる製品を製造することができる。また、気相化学蒸着法によることなく炭素繊維強化炭素複合材料に耐酸化性を付与することができるので複雑な形状の製品も提供することができる。更にまた、ホウ化ケイ素はドーピングされ炭素繊維強化炭素複合材料内部と一体化した炭素繊維強化炭素複合材料の耐酸化性被覆を形成するので、被膜の割れ、剥離等の発生のない堅牢な製品を提供することができる。
【図面の簡単な説明】
【図1】本発明の耐酸化性炭素繊維強化炭素複合材料の構成を示す模式図である。
【符号の説明】
1 炭素繊維強化強化炭素複合材料
2 ドーピングしたホウ化ケイ素
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber reinforced carbon composite material excellent in oxidation resistance and a method for producing the same.
[0002]
[Prior art]
Carbon fiber reinforced carbon composite material, which is a kind of fiber reinforced composite material, is composed only of carbon and has mechanical properties such as high specific strength due to the composite effect. Research and development of application to various fields is promoted as a material that is difficult to replace with other materials, such as Concorde sliding materials, Space Shuttle nose cone and leading edge, combustion engine structural materials, artificial tooth roots, bones, joints, etc. It is used in various fields such as materials.
[0003]
However, the carbon fiber reinforced carbon composite material is oxidized in an oxidizing atmosphere of 500 ° C. or higher because the constituent material is all carbon, and the characteristics cannot be utilized under an ultra-high temperature.
[0004]
For this reason, conventionally, ceramics is deposited on the surface of a carbon fiber reinforced carbon composite material by vapor phase chemical vapor deposition (CVD) to impart oxidation resistance to the carbon fiber reinforced carbon composite material.
[0005]
However, vapor phase chemical vapor deposition has advantages and disadvantages, and a thick film can be obtained. However, it is difficult to apply this method to a material having a complicated shape.
[0006]
In recent years, with international efforts to advance into outer space, the demand for oxidation-resistant carbon fiber reinforced carbon composite materials is increasing.
[0007]
[Problems to be solved by the invention]
The present invention eliminates the conventional drawbacks, can prevent oxidation in a high temperature environment of 500 ° C. or higher, has excellent oxidation resistance, has endurance, and can be applied to a material having a complicated shape. It aims at providing a fiber reinforced carbon composite material and its manufacturing method.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 solves the above-mentioned problems relating to the material, and is summarized as “an oxidation resistant carbon fiber reinforced carbon composite material obtained by doping silicon boride into the carbon fiber reinforced carbon composite material”. And
[0009]
The invention according to claim 2 solves the above-mentioned problems relating to the manufacturing method. “The silicon boride impregnated coating portion of SiB 4 or SiB 6 is formed on the surface of the carbon fiber reinforced carbon composite material, and further hot The gist is a method for producing an oxidation-resistant carbon fiber reinforced carbon composite material, wherein the silicon boride is doped into the carbon fiber reinforced carbon composite material by pressing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically shows a carbon fiber reinforced carbon composite material of the present invention. As shown in FIG. 1, silicon boride 2 is doped inside the carbon fiber reinforced carbon composite material 1.
[0011]
Examples of the carbon fiber reinforced carbon composite material 1 include conventional products such as plain weave, satin weave, twill weave, etc., unidirectional orientation material, three-direction orientation material, n-direction orientation material, felt, tow, etc. A prepreg is formed by impregnating a carbon fiber with a thermosetting substance such as phenol resin or furan resin, or a binder made of a thermoplastic substance such as carbon black, tar, or pitch, and then heated and pressed to form a molded body. And a carbon fiber reinforced carbon composite material obtained by completely curing the binder by heat treatment, then firing it by a conventional method, and further graphitizing if necessary.
[0012]
The carbon fiber reinforced carbon composite material of the present invention is obtained by immersing a carbon fiber reinforced carbon composite material in a suspension obtained by dispersing a silicon boride powder of SiB 4 or SiB 6 in an organic liquid such as liquid polyethylene glycol. The carbon fiber reinforced carbon composite material is impregnated with the silicon boride, and the surface of the carbon fiber reinforced carbon composite material is coated with SiB 4 or SiB 6 silicon boride powder, and then included in the surface of the carbon fiber reinforced carbon composite material. It can be obtained by performing a degreasing treatment at 300 ° C. so that the polyethylene glycol completely evaporates and further doping the silicon boride inside the carbon fiber reinforced carbon composite material by hot pressing.
[0013]
SiB 4 or SiB 6 silicon borides doped inside carbon fiber reinforced carbon composites form an oxysilicate barrier that forms a borosilicate glass film at high temperatures consisting of B 2 O 3 and Si 2 in an oxygen atmosphere. Thus, the oxidation resistance of the carbon fiber reinforced carbon composite material is greatly improved, and a carbon fiber reinforced carbon composite material excellent in oxidation resistance is formed.
[0014]
【Example】
Next, the present invention will be described in detail with reference to examples of the present invention.
A suspension is prepared by dispersing SiB 4 or SiB 6 silicon boride powder having a particle size of about 1.0 μm in polyethylene glycol having a viscosity of 6 to 9 Pa · s. A carbon fiber reinforced carbon composite material fired at 000 ° C. is impregnated with a carbon fiber reinforced carbon composite material impregnated with polyethylene glycol containing silicon boride, and carbon fiber impregnated with polyethylene glycol containing silicon boride. The reinforced carbon composite material was placed in a vacuum desiccator and subjected to vacuum impregnation treatment. As a result, the surface of the carbon fiber reinforced carbon composite material is coated with a silicon boride powder of SiB 4 or SiB 6 and then degreased at 300 ° C. so that the polyethylene glycol adhering to the surface of the carbon fiber reinforced carbon composite material is completely evaporated. The carbon fiber reinforced carbon composite material in which the entire surface was uniformly coated with the silicon boride was obtained by the treatment. Further, this carbon fiber reinforced carbon composite material was hot-pressed at a temperature of 1,500 ° C. under a vacuum of 40 MPa, and the silicon boride was doped inside the carbon fiber reinforced carbon composite material, thereby containing the silicon boride therein. Carbon fiber reinforced carbon composite material could be made.
[0015]
(Method of evaluating oxidation resistance)
Oxidation resistant carbon fiber reinforced carbon composite materials were evaluated for their oxidation resistance by conducting temperature rising oxidation experiments using a differential thermal analyzer and constant temperature oxidation experiments using an electric furnace, heating temperature, heating time and mass. It was evaluated from the relationship with change. The temperature rising rate in the temperature rising oxidation experiment was 15 ° C./min until reaching 500 ° C., and 2 ° C./min at temperatures of 500 ° C. or higher. The temperature range in the constant temperature oxidation experiment was 700 to 1500 ° C.
[0016]
(Results of evaluation of oxidation resistance)
In a temperature rising oxidation experiment using TG (thermogravimetry) from room temperature to 1000 ° C., the temperature at a mass loss of 20% was around 700 ° C. in the case of an untreated carbon fiber reinforced carbon composite material. In contrast, in the case of the carbon fiber reinforced carbon composite material subjected to the doping treatment, the temperature rose to 800 ° C. or higher. Further, in the constant temperature oxidation experiment, the time required for mass loss of 20% is 3 times or more in the case of the carbon fiber reinforced carbon composite material subjected to the doping treatment as compared with the case of the untreated carbon fiber reinforced carbon composite material. And the difference increased with increasing temperature. From these, it can be said that the doping treatment imparts good oxidation resistance to the carbon fiber reinforced carbon composite material.
[0017]
【The invention's effect】
As described above in detail, according to the method of the present invention, a product made of a carbon fiber reinforced carbon composite material having excellent oxidation resistance and durability and capable of preventing oxidation under a high temperature environment of 500 ° C. or higher is manufactured. can do. Further, since oxidation resistance can be imparted to the carbon fiber reinforced carbon composite material without using a vapor phase chemical vapor deposition method, a product having a complicated shape can also be provided. Furthermore, silicon boride is doped to form an oxidation resistant coating on the carbon fiber reinforced carbon composite material that is integrated with the inside of the carbon fiber reinforced carbon composite material. Can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of an oxidation-resistant carbon fiber reinforced carbon composite material of the present invention.
[Explanation of symbols]
1 Carbon fiber reinforced carbon composite material 2 Doped silicon boride

Claims (3)

炭素繊維強化炭素複合材料内部にホウ化ケイ素をドーピングさせてなる耐酸化性炭素繊維強化炭素複合材料。An oxidation-resistant carbon fiber reinforced carbon composite material obtained by doping silicon boride inside a carbon fiber reinforced carbon composite material. 炭素繊維強化炭素複合材料の表面にSiB4 あるいはSiB6 のホウ化ケイ素の含浸被覆部を形成し、更にホットプレスにより前記ホウ化ケイ素を炭素繊維強化炭素複合材料内部にドーピングさせることを特徴とする耐酸化性炭素繊維強化炭素複合材料の製造方法。A silicon boride-impregnated coating of SiB 4 or SiB 6 is formed on the surface of the carbon fiber-reinforced carbon composite material, and the silicon boride is doped inside the carbon fiber-reinforced carbon composite material by hot pressing. A method for producing an oxidation resistant carbon fiber reinforced carbon composite material. 前記炭素繊維強化炭素複合材料の表面にSiB4 あるいはSiB6 のホウ化ケイ素の含浸被覆部を形成する過程が、炭素繊維強化炭素複合材料をSiB4 あるいはSiB6 のホウ化ケイ素の粉末を有機分散媒中に分散させてなる懸濁液中に浸して炭素繊維強化炭素複合材料に前記ホウ化ケイ素を含浸させ、しかる後前記有機分散媒を蒸発させる過程を含むことを特徴とする請求項2に記載の耐酸化性炭素繊維強化炭素複合材料の製造方法。The process of forming a silicon boride-impregnated coating of SiB 4 or SiB 6 on the surface of the carbon fiber reinforced carbon composite material, the carbon fiber reinforced carbon composite material is organically dispersed with SiB 4 or SiB 6 silicon boride powder 3. The method according to claim 2, comprising a step of impregnating a carbon fiber reinforced carbon composite material with the silicon boride by immersing it in a suspension dispersed in a medium, and then evaporating the organic dispersion medium. The manufacturing method of the oxidation-resistant carbon fiber reinforced carbon composite material of description.
JP20048799A 1999-07-14 1999-07-14 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same Expired - Fee Related JP4309515B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20048799A JP4309515B2 (en) 1999-07-14 1999-07-14 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US09/613,097 US6670040B1 (en) 1999-07-14 2000-07-10 Carbon fiber-reinforced carbon composite body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20048799A JP4309515B2 (en) 1999-07-14 1999-07-14 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001026483A JP2001026483A (en) 2001-01-30
JP4309515B2 true JP4309515B2 (en) 2009-08-05

Family

ID=16425144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20048799A Expired - Fee Related JP4309515B2 (en) 1999-07-14 1999-07-14 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4309515B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079687A1 (en) * 2016-09-16 2018-03-22 General Electric Company Silicon compositions containing boron and methods of forming the same
US10259716B2 (en) 2016-09-16 2019-04-16 General Electric Company Boron doped rare earth metal oxide compound
US10294112B2 (en) 2016-09-16 2019-05-21 General Electric Company Silicon compositions containing boron and methods of forming the same
US10787391B2 (en) 2016-09-16 2020-09-29 General Electric Company Silicon-based materials containing boron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899116B2 (en) * 2000-12-12 2012-03-21 学校法人東海大学 Silicon boride-boron carbide-silicon carbide composite material and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079687A1 (en) * 2016-09-16 2018-03-22 General Electric Company Silicon compositions containing boron and methods of forming the same
US10214456B2 (en) * 2016-09-16 2019-02-26 General Electric Company Silicon compositions containing boron and methods of forming the same
US10259716B2 (en) 2016-09-16 2019-04-16 General Electric Company Boron doped rare earth metal oxide compound
US10294112B2 (en) 2016-09-16 2019-05-21 General Electric Company Silicon compositions containing boron and methods of forming the same
US10787391B2 (en) 2016-09-16 2020-09-29 General Electric Company Silicon-based materials containing boron
US11578008B2 (en) 2016-09-16 2023-02-14 General Electric Company Silicon compositions containing boron and methods of forming the same

Also Published As

Publication number Publication date
JP2001026483A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
EP0072007B1 (en) Method of fabricating carbon composites
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
TW539612B (en) Composite carbonaceous heat insulator
JP2000169249A (en) Ceramic composite material
CN108690322B (en) Preparation method of carbon fiber interface
CN108083832A (en) A kind of high efficiency, low cost near clean shaping preparation method of C/C-HfC composite materials
JP4309515B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JP4309516B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JPH03150266A (en) Production of carbon/carbon composite material
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
GB2112827A (en) Carbon fiber materials
KR102208645B1 (en) Mothod for manufacturing brake discs and brake disc for vehicles
JP4545876B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH03290363A (en) Structural body of high-strength carbon fiber-reinforced carbon composite material provided with rib and production thereof
JPH0524921A (en) Production of oxidation resistance c/c composite
JPH07267764A (en) Oxidation-resisting treatment of carbon fiber reinforced carbon composite material
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JPH03183659A (en) Production of high-strength member having heat and oxidation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees