JPS6265403A - Improving magnetic characteristics of amorphous alloy thin band - Google Patents

Improving magnetic characteristics of amorphous alloy thin band

Info

Publication number
JPS6265403A
JPS6265403A JP20430185A JP20430185A JPS6265403A JP S6265403 A JPS6265403 A JP S6265403A JP 20430185 A JP20430185 A JP 20430185A JP 20430185 A JP20430185 A JP 20430185A JP S6265403 A JPS6265403 A JP S6265403A
Authority
JP
Japan
Prior art keywords
amorphous alloy
thin band
alloy ribbon
ribbon
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20430185A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20430185A priority Critical patent/JPS6265403A/en
Publication of JPS6265403A publication Critical patent/JPS6265403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Abstract

PURPOSE:To realize improvement of magnetic characteristics, particularly of a characteristic in iron loss, as well as improvement of layer resistance, without danger of causing fragility and decrease in space factor, by forming a ceramic thin film by an evaporation method under an external magnetic field applied in the longitudinal direction of an amorphous alloy thin band having a positive constant of magnetic strain. CONSTITUTION:An amorphous alloy thin band is produced from a molten alloy bath by single rolling method. A quenched thin band of such composition, because of its saturated magnetic strain, can be extended with an external magnetic field applied. And, a SiO2 film is formed on this quenched thin band by ion plating method in depressurized argon gas and under the application of the external magnetic field. Such a film-formed treatment enables magnetic domain to be oriented 180 deg. in parallel with the longitudinal direction of the thin band and the thin band to be expanded in the longitudinal direction. Magnetic characteristics can be improved by forming a ceramic thin film on the surface of the thin band and fixing the thin band, under such a condition. Because the thin band is not heated, there is no danger of causing fragility and crystalization in the amorphous alloy. Besides, because of decrease in stress sensitivity of the amorphous alloy thin band, a superior characteristic in iron loss can be maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、非晶質合金薄帯の磁気特性改善方法に関し
、とくに該薄帯表面に被覆する表面被膜の被成処理に工
夫を加えることによって、磁気特性とりわけ鉄損特性の
有利な改善を図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for improving the magnetic properties of an amorphous alloy ribbon, and in particular, to a method for improving the magnetic properties of an amorphous alloy ribbon, and in particular to a method for forming a surface coating on the surface of the ribbon. This is intended to advantageously improve magnetic properties, especially iron loss properties.

(従来の技術) Pa−B−St系などの溶融合金を10S〜10b℃/
秒程度の冷却速度で急冷凝固させると、板厚20〜50
μm程度の非晶質合金薄帯が得られる。このような非晶
質合金薄帯は、軟磁性に優れ、殊に掻めて低い鉄損を呈
することから、現在トランスの鉄心材料として使用され
ている方向性けい素鋼板の有力な競合材料として注目さ
れている。
(Prior art) Molten alloy such as Pa-B-St system is heated at 10S to 10b℃/
When rapidly solidified at a cooling rate of about seconds, the plate thickness is 20 to 50.
An amorphous alloy ribbon of about μm size is obtained. Such amorphous alloy ribbons have excellent soft magnetism and exhibit particularly low core loss, so they are considered to be a powerful competitive material to grain-oriented silicon steel sheets, which are currently used as core materials for transformers. Attention has been paid.

ところでかかる非晶質合金薄帯は、急冷したままの状態
ではまだ十分満足いく程の磁気特性を発揮できないので
、従来は350〜400℃の温度で磁場焼鈍を施し、内
部応力を解放すると共に磁気異方性を誘起させることに
よって磁気特性の改善を図っていた。
By the way, such amorphous alloy ribbons still cannot exhibit sufficiently satisfactory magnetic properties in the rapidly cooled state, so conventionally they are annealed in a magnetic field at a temperature of 350 to 400°C to release internal stress and improve magnetic properties. The aim was to improve magnetic properties by inducing anisotropy.

しかしながら上記の如き磁場焼鈍を施した場合、その焼
鈍過程で薄帯は詭化し、もともと応力感受性が高いこと
と相まって、とくに曲げ応力が加わった場合に鉄損の劣
化を招き易く、それ故、積みコアの作製においてはさほ
ど問題にはならないものの、トロイダルコアの巻回工程
や組立て工程においては極めて注意深い取扱いを必要と
するところに問題あった。
However, when magnetic field annealing is applied as described above, the ribbon becomes thinner during the annealing process, and this, coupled with the fact that the ribbon is already highly sensitive to stress, tends to lead to deterioration of iron loss, especially when bending stress is applied. Although this is not a major problem in the production of the core, there is a problem in that it requires extremely careful handling during the winding and assembly processes of the toroidal core.

一方でかかる非晶質合金薄帯は、従来、眉間絶縁のため
の絶縁被膜を被成することなく裸のままで巻きコアを作
り、変圧器に組立てるのが常であり、それというのは非
晶質合金自身の高い比抵抗と薄帯の表面粗度が大きいこ
とから、積層したときの眉間抵抗が比較的高く、全損失
への影響が小さかったからである。
On the other hand, conventionally, such amorphous alloy ribbons are wound to form a core without being coated with an insulating film for glabellar insulation, and then assembled into a transformer, which is extremely difficult. This is because the crystalline alloy itself has a high specific resistance and the ribbon has a large surface roughness, so when laminated, the resistance between the eyebrows was relatively high and the effect on the total loss was small.

ところが近時、非晶質合金薄帯の製造技術の進歩に伴い
、その表面が平滑になって占積率が向上する一方で、眉
間抵抗の減少を招き、コアに加工した場合に渦流損が増
加する傾向にある。そのため最近では、渦流損ひいては
全損失の低減を図る上から、非晶質合金薄帯についても
絶縁被膜を被成させることが要求されるようになってい
た。
However, with recent advances in manufacturing technology for amorphous alloy ribbons, the surface has become smoother and the space factor has improved, but this has also led to a decrease in glabellar resistance and increased eddy current loss when processed into a core. There is a tendency to increase. Therefore, in recent years, it has become necessary to coat amorphous alloy ribbons with an insulating coating in order to reduce eddy current loss and ultimately total loss.

(発明が解決しようとする問題点) 絶縁被膜被成処理としては、けい素鋼板で用いられてい
るりん酸塩系などの絶縁コーティング処理が考えられる
が、かようなけい素鋼板用の絶縁被膜は、−aに焼付け
に400℃前後を要し、非晶質合金の脆化や結晶化を招
き易いことから、非晶質合金薄帯の絶縁被膜としてその
まま使用するのは好ましくない。
(Problems to be Solved by the Invention) As an insulating coating treatment, a phosphate-based insulating coating treatment used for silicon steel sheets can be considered. -a requires around 400° C. for baking and tends to cause embrittlement and crystallization of the amorphous alloy, so it is not preferable to use it as is as an insulating coating for an amorphous alloy ribbon.

一方特開昭58−109171号公報には、加熱による
非晶質合金薄帯の脆化を避けるため、電子線硬化性樹脂
被覆の使用が提案されている。しかしながらかかる有機
被膜は、眉間抵抗の向上は図り得るとしても、非晶質合
金のもつ磁気特性を十分に発揮させる上では効果がない
、とはいえ磁気特性向上のために350〜400℃で磁
場焼鈍を施した場合は、前述したとおり非晶質合金の脆
化を招くだけでなく、かかる焼鈍中に有機樹脂が炭化し
、所期の目的である眉間抵抗すら維持できな(なる。
On the other hand, JP-A-58-109171 proposes the use of an electron beam curable resin coating in order to avoid embrittlement of the amorphous alloy ribbon due to heating. However, although such an organic film can improve the glabella resistance, it is not effective in fully demonstrating the magnetic properties of the amorphous alloy. If annealing is performed, not only will the amorphous alloy become brittle as described above, but the organic resin will also carbonize during the annealing, making it impossible to maintain even the desired glabellar resistance.

ここに非晶質合金薄帯につき、脆化を招くことなしに本
来の特性を発揮させ、しかも表面に絶縁被膜を被成して
眉間抵抗を高めることができるならば、その工業的意義
は極めて大きい。
If the amorphous alloy ribbon can exhibit its original properties without causing embrittlement, and if it can increase the resistance between the eyebrows by forming an insulating film on its surface, it would be of great industrial significance. big.

この発明は、上記の事情に鑑み開発されたもので、非晶
質合金薄帯を加熱することなしに表面被膜を被成させ、
眉間抵抗の向上はいうまでもなく非晶質合金自身のもつ
優れた磁気特性を十分に発揮させ得る、非晶質合金薄帯
の磁気特性改善方法を提案することを目的とする。
This invention was developed in view of the above circumstances, and it forms a surface coating on an amorphous alloy ribbon without heating it.
The purpose of the present invention is to propose a method for improving the magnetic properties of an amorphous alloy ribbon, which not only improves the glabellar resistance but also allows the amorphous alloy itself to fully demonstrate its excellent magnetic properties.

(問題点を解決するための手段) まずこの発明の解明経緯について説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

第1図に、急冷したままのFe−B−3t系非晶質合金
薄帯の長手方向に引張り力を作用させたときの、引張り
応力と鉄損特性との関係を示す。
FIG. 1 shows the relationship between tensile stress and iron loss characteristics when a tensile force is applied in the longitudinal direction of a rapidly cooled Fe-B-3t amorphous alloy ribbon.

同図より明らかなように、張力付加によって鉄損は著し
く低減する。
As is clear from the figure, the iron loss is significantly reduced by adding tension.

ところで非晶質合金薄帯をその長手方向に伸長させるた
めには、張力を付加することの他、とくに正の磁歪常数
をもつものについては、その長手方向に外部磁場を印加
することによって同様の目的を達成することができる。
By the way, in order to elongate an amorphous alloy ribbon in its longitudinal direction, in addition to applying tension, it is also necessary to apply an external magnetic field in its longitudinal direction, especially for those with a positive magnetostriction constant. Able to achieve purpose.

従って薄帯の長手方向に外部磁場を印加するかまたは張
力を付加して、該薄帯を伸長させた状態で、加熱を施す
ことなしに該薄帯の表面に密着性および剛性が高い表面
被覆を施して薄帯をそのまま固定することができれば、
外部磁場および/または外部張力を解放したとしても薄
帯長手方向に張力が付与されたままの状態を保持するこ
とができ、鉄損特性の改善に極めて有利なわけである。
Therefore, by applying an external magnetic field in the longitudinal direction of the ribbon or applying tension to stretch the ribbon, a surface coating with high adhesion and rigidity can be applied to the surface of the ribbon without heating. If you can fix the thin strip as it is by applying
Even if the external magnetic field and/or external tension is released, the state in which tension is applied in the longitudinal direction of the ribbon can be maintained, which is extremely advantageous for improving iron loss characteristics.

そこでかような要件を満足する表面処理法について研究
を重ねた結果、セラミックスを被覆材料としてイオンブ
レーティングなどによって表面被覆を施すことが、所期
した目的達成に極めて有効であることの知見を得た。
As a result of repeated research on surface treatment methods that satisfy these requirements, we have found that applying a surface coating using ceramics as a coating material by ion blasting, etc. is extremely effective in achieving the desired purpose. Ta.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、正の磁歪常数をもつ非晶質合金薄
帯の長手方向に対し外部磁場印加の下に、該合金薄帯表
面に、蒸着法によってセラミックス薄膜を被成し、とき
にはさらに該セラミックス薄膜上に重ねて電気絶縁被膜
を形成させて成る、非晶質合金薄帯の磁気特性改善方法
である。
That is, this invention forms a ceramic thin film by vapor deposition on the surface of an amorphous alloy ribbon having a positive magnetostriction constant under the application of an external magnetic field in the longitudinal direction of the alloy ribbon, and sometimes further coats the ceramic thin film on the surface of the alloy ribbon. This is a method for improving the magnetic properties of an amorphous alloy ribbon by forming an electrically insulating coating over a thin film.

またこの発明は、正の磁歪常数をもつ非晶質合金薄帯の
長手方向に対し外部磁場印加と共に0.1〜10kg/
mm8の張力付加の下に、該合金薄帯の表面に、蒸着法
によってセラミックス薄膜を被成し、ときにはさらに該
セラミックス薄膜上に重ねて電気絶縁被膜を形成させて
成る、非晶質合金薄帯の磁気特性改善方法である。
In addition, this invention applies an external magnetic field in the longitudinal direction of an amorphous alloy ribbon having a positive magnetostriction constant, and
An amorphous alloy ribbon formed by forming a ceramic thin film on the surface of the alloy ribbon by vapor deposition under a tension of 8 mm, and sometimes further forming an electrically insulating coating on the ceramic thin film. This is a method for improving magnetic properties.

この発明において蒸着法としては、真空蒸着法、イオン
ブレーティング法、スパッタリング法およびCVD法な
どがとりわけ有利に適合する。
As the vapor deposition method in this invention, vacuum vapor deposition method, ion blating method, sputtering method, CVD method, etc. are particularly advantageously suitable.

以下この発明の基礎となった実験結果について説明する
The experimental results that formed the basis of this invention will be explained below.

Fev。B+oSi+z組成の合金溶湯から、単ロール
法によって幅:53.厚み:30μmの非晶質合金薄帯
を製造した。かかる組成の急冷薄帯は、飽和磁歪λ、が
大きいため、第2図に示したように外部磁場を印加する
ことによって、伸長させることができる。
Fev. From a molten alloy of B+oSi+z composition, width: 53. An amorphous alloy ribbon having a thickness of 30 μm was produced. Since a quenched ribbon having such a composition has a large saturation magnetostriction λ, it can be elongated by applying an external magnetic field as shown in FIG.

そこでこの急冷薄帯に、該薄帯の磁化が1.4T(1!
和磁化: 1.54T )になるような外部磁場印加の
下に、約10− ” torrの減圧アルゴンガス中に
おいて Ho1loei Cathode法イオンブレ
ーティングにより、0.4μ−厚のSi0g膜を被成し
た。ここに処理時間はほぼ20秒であり、かかる被成処
理によって非晶質合金が脆化することはなかった。
Therefore, the magnetization of this quenched ribbon is 1.4T (1!
A 0.4 .mu.-thick Si0g film was formed by Holloei cathode ion blating in a reduced pressure argon gas of about 10" torr under the application of an external magnetic field such that the sum magnetization: 1.54 T). The treatment time here was approximately 20 seconds, and the amorphous alloy did not become brittle due to this formation treatment.

この絶縁薄膜付き非晶質合金薄帯を直径6cllのトロ
イダルコアとしてから鉄損を測定したところ、50Hz
、 1.3Tでの鉄損Wll/Allは0.26Wハg
であり、急冷したままの薄帯のそれが0.33W/kg
であったのに比べて格段に優れていた。
When this amorphous alloy ribbon with an insulating thin film was used as a toroidal core with a diameter of 6 cll and the iron loss was measured, it was found to be 50 Hz.
, Iron loss Wll/All at 1.3T is 0.26W Hg
and that of the thin strip as it is quenched is 0.33W/kg.
It was much better than it was.

また上記したSin、膜のイオンブレーティングに際し
、外部磁場だけでなく2kg/m”の張力付加も併用し
て得た非晶質合金薄帯について、同様の測定を試みたと
ころ、鉄損w+szs。は0.19W/に+rまで低減
した。
In addition, when we attempted similar measurements on an amorphous alloy ribbon obtained by applying not only an external magnetic field but also a tension of 2 kg/m'' during the ion blating of the above-mentioned Sin film, we found that the iron loss was w + szs. was reduced to 0.19W/+r.

さらに上記の各薄帯に、りん酸塩系やクロム酸塩系の絶
縁被膜処理を施したところ、鉄損特性を0.01〜0.
03W/kg改善できると共に、耐食性や耐油性の向上
も著しかった。
Furthermore, when each of the above ribbons was treated with a phosphate-based or chromate-based insulating coating, the iron loss characteristics were improved to 0.01 to 0.
0.3 W/kg, and the corrosion resistance and oil resistance were also significantly improved.

この発明においては、正の磁歪常数をもつ非晶質合金薄
帯を対象とする。というのは磁歪常数が0ないし負の薄
帯においては、磁場を印加しても伸長することがなく、
従って表面被膜を被成したとしても薄帯に対する張力付
与効果が期待できないからである。この発明に用いる非
晶質合金としては、たとえば25〜30X10−’のよ
うな大きな飽和磁歪λSをもつFe−B−Si系合金な
どが有利に適合する。
In this invention, an amorphous alloy ribbon having a positive magnetostriction constant is targeted. This is because a thin ribbon with a magnetostriction constant of 0 or negative does not elongate even when a magnetic field is applied.
Therefore, even if a surface coating is formed, the effect of imparting tension to the ribbon cannot be expected. As the amorphous alloy used in this invention, a Fe-B-Si alloy having a large saturation magnetostriction λS such as 25 to 30×10 −′ is advantageously suitable.

なお薄帯に印加する磁場の大きさは、薄帯の磁化が飽和
磁化の80%以上となる大きさにすることが望ましい。
The magnitude of the magnetic field applied to the ribbon is preferably such that the magnetization of the ribbon is 80% or more of the saturation magnetization.

というのは外部磁場がそれよりも小さいと、磁性改善に
有効なほどの伸長を薄帯に付与することが難しいからで
ある。
This is because if the external magnetic field is smaller than this, it is difficult to impart sufficient elongation to the ribbon that is effective for improving magnetism.

セラミックス薄膜の被成処理法としては、薄帯を加熱す
ることなしに該薄膜が被成できればいずれでもよく、上
記したイオンブレーティングの他真空蒸着やスパッタリ
ング、CVD法などが有利に適合することが確められて
いる。とくに電子ビーム加熱を用いた場合に高速度での
薄膜の被成が達成された。
As the method for forming the ceramic thin film, any method may be used as long as the thin film can be formed without heating the ribbon, and in addition to the above-mentioned ion blasting, vacuum evaporation, sputtering, CVD, etc. are advantageously suitable. It's confirmed. Particularly when electron beam heating was used, high-speed thin film deposition was achieved.

次に被覆材料としては、5iop、 A I!03+ 
Ti1tのような無機酸化物、TiN、 ZrN、 5
isN4のような窒化物、TiC,SiCのような炭化
物またはほう化物などのセラミックスを好適に用いるこ
とができる。
Next, as a coating material, 5iop, AI! 03+
Inorganic oxides such as Tilt, TiN, ZrN, 5
Ceramics such as nitrides such as isN4, carbides or borides such as TiC and SiC can be suitably used.

この点有機被膜や半有機被膜は剛性に欠け、薄帯に張力
を付与することができないので適合しない。
In this respect, organic coatings and semi-organic coatings are not suitable because they lack rigidity and cannot apply tension to the ribbon.

また薄帯に付加する張力の大きさは、0.1〜10kg
 / 曹m ”の範囲とする必要がある。というのは付
加張力が0.1kg/m”に満たないと磁気特性の改善
への寄与が極めて小さく、一方10kg/m”を超える
と被膜の連続処理時に破断などのトラブルが発生するお
それが大きいからである。
In addition, the amount of tension applied to the ribbon is 0.1 to 10 kg.
/ Sodium m''. This is because if the added tension is less than 0.1 kg/m, the contribution to improving the magnetic properties is extremely small, while if it exceeds 10 kg/m, the film will not be continuous. This is because there is a high possibility that troubles such as breakage may occur during processing.

さらに表面被膜厚については、セラミックス薄膜のみの
場合およびさらに上塗り絶縁被膜を被成した場合いずれ
においても、膜厚が0.05μ国に満たないと充分な張
力を付与できない他、眉間抵抗が不足する等の不利があ
り、一方2μ−を超えると占積率の低下を招く点で好ま
しくないので、膜厚は0.05〜2μmとするのが望ま
しい。
Furthermore, regarding the surface coating thickness, whether it is a ceramic thin film only or an overcoat insulation coating, if the film thickness is less than 0.05μ, it will not be possible to apply sufficient tension and the resistance between the eyebrows will be insufficient. On the other hand, if it exceeds 2 .mu.m, it is not preferable because it causes a decrease in the space factor, so it is desirable that the film thickness is 0.05 to 2 .mu.m.

なおセラミックス薄膜上への絶縁被膜の形成に際しては
、処理温度が300℃を超えた場合には非晶質合金薄帯
の脆化を招くおそれが大きいので、・300℃以下の低
温焼付けで被膜を形成することが肝要であり、かような
絶縁被膜として好適なものには、たとえばエチルシリケ
ート塗布によるシリカ被膜、アルミナゾル水溶液の塗布
によるアルミナ被膜およびりん酸塩系被膜などがある。
When forming an insulating film on a ceramic thin film, if the processing temperature exceeds 300°C, there is a high risk of embrittlement of the amorphous alloy ribbon. It is important to form such an insulating coating, and suitable examples include a silica coating formed by coating ethyl silicate, an alumina coating formed by coating an aqueous alumina sol solution, and a phosphate coating.

(作 用) 正の磁歪常数をもつ非晶質合金薄帯の長手方向に外部磁
場を印加すると、薄帯の長手方向と平行に180°1i
fi区が揃うと共に、長手方向に薄帯は伸長し、かかる
状態で薄帯表面にセラミックス薄膜を被成して薄帯を固
定することによって磁気特性の向上を図り得る。
(Function) When an external magnetic field is applied in the longitudinal direction of an amorphous alloy ribbon with a positive magnetostriction constant, the magnetic field is
When the fi sections are aligned, the ribbon is elongated in the longitudinal direction, and in this state, a ceramic thin film is formed on the surface of the ribbon to fix the ribbon, thereby improving the magnetic properties.

また上記のセラミックス薄膜の被成に際し、薄帯が加熱
されることはないので、非晶質合金の脆化や結晶化が生
じるおそれはない。
Furthermore, since the ribbon is not heated during the formation of the ceramic thin film, there is no risk of embrittlement or crystallization of the amorphous alloy.

さらにセラミックス薄膜を被成したことによって非晶質
合金薄帯の応力感受性は低下するので、変圧器のコアに
組立てた場合でも優れた鉄損特性が維持される。
Furthermore, by coating the amorphous alloy thin film with a ceramic thin film, the stress sensitivity of the amorphous alloy ribbon is reduced, so that excellent iron loss characteristics are maintained even when assembled into the core of a transformer.

(実施例) 実施例 1 幅:201.厚み:25ttaのFe4tB*Si+4
非晶質合金薄帯の長手方向に、該薄帯の磁化が1.45
T(飽和磁化:1.53T)となる外部磁場印加の下に
、真空蒸着により0.2μm厚のA I 、0.膜を被
成した。
(Example) Example 1 Width: 201. Thickness: 25tta Fe4tB*Si+4
In the longitudinal direction of the amorphous alloy ribbon, the magnetization of the ribbon is 1.45.
T (saturation magnetization: 1.53T) under the application of an external magnetic field, A I with a thickness of 0.2 μm, 0. A film was applied.

得られたAlzCh薄膜付き非晶質合金薄帯の占積率は
81.3%、また鉄損W l 3zs。は0.2Ibg
であった。
The space factor of the obtained amorphous alloy ribbon with the AlzCh thin film was 81.3%, and the iron loss W l 3zs. is 0.2Ibg
Met.

ついでりん酸マグネシウム系の絶縁コーティング処理液
を塗布したのち、250℃で焼付けて0.3μm厚の絶
縁被膜を形成した。
Next, a magnesium phosphate-based insulating coating treatment liquid was applied, and then baked at 250°C to form an insulating coating with a thickness of 0.3 μm.

かかる絶縁被膜の形成により、占積率は 81.1%に
なったが、鉄損W 、 、、、。は0.17W/kgま
で低減でき、しかもかような低温焼付けによって非晶質
合金薄帯が脆化することはなかった。
By forming such an insulating film, the space factor became 81.1%, but the iron loss W. could be reduced to 0.17 W/kg, and the amorphous alloy ribbon did not become brittle due to such low temperature baking.

なお急冷凝固後の裸のままの上記薄帯の占積率は81.
5%+ W+315゜は0.34紳ハgであった。
The space factor of the above-mentioned bare ribbon after rapid solidification is 81.
5%+W+315° was 0.34 cm.

実施例 2 実施例1と同じ非晶質合金薄帯に、薄帯の磁化が1.4
57となる外部磁場を印加すると共に3kg/nl”の
張力付加の下に、イオンブレーティングにより、0.3
μ■厚のTic + TiN膜を被成した。
Example 2 The same amorphous alloy ribbon as in Example 1 was used, but the magnetization of the ribbon was 1.4.
By applying an external magnetic field of 57 and applying a tension of 3 kg/nl, 0.3
A Tic + TiN film of μ■ thickness was deposited.

得られたセラミックス薄膜付き非晶質合金薄帯の占積率
は81.4%、また鉄損W、、、、。は0.16讐ハg
であった。
The space factor of the obtained amorphous alloy ribbon with a ceramic thin film was 81.4%, and the iron loss was W. is 0.16 hag
Met.

ついでアルミナゾルのコーティング処理液を塗布したの
ち、200℃で焼付けて0.15μ−厚の絶縁被膜を形
成した。
Next, an alumina sol coating solution was applied and baked at 200°C to form an insulating film with a thickness of 0.15 μm.

かかる絶縁被膜の形成により、W+3/80は0.14
W/kgまで低減された。
By forming such an insulating film, W+3/80 becomes 0.14.
W/kg.

(発明の効果) かくしてこの発明によれば、非晶質合金薄帯の脆化や占
積率の低下を招くことなしに、磁気特性とくに鉄損特性
の大幅な改善を眉間抵抗の向上に併せて実現することが
できる。
(Effects of the Invention) Thus, according to the present invention, it is possible to significantly improve the magnetic properties, especially the iron loss properties, and improve the glabella resistance without causing embrittlement or a decrease in the space factor of the amorphous alloy ribbon. It can be realized by

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、非晶質合金薄帯に引張り力を作用させた場合
の、付加張力と鉄損W 、 !、、。との関係を示した
グラフ、 第2図は、磁歪の磁化特性を示したグラフである。
Figure 1 shows the additional tension and iron loss W, ! when a tensile force is applied to an amorphous alloy ribbon. ,,. Figure 2 is a graph showing the magnetization characteristics of magnetostriction.

Claims (1)

【特許請求の範囲】 1、正の磁歪常数をもつ非晶質合金薄帯の長手方向に対
し外部磁場印加の下に、該合金薄帯表面に、蒸着法によ
つてセラミックス薄膜を破戒することを特徴とする非晶
質合金薄帯の磁気特性改善方法。 2、正の磁歪常数をもつ非晶質合金薄帯の長手方向に対
し外部磁場印加の下に、該合金薄帯表面に、蒸着法によ
ってセラミックス薄膜を被成し、ついで該セラミックス
薄膜上に重ねて電気絶縁被膜を形成させることを特徴と
する非晶質合金薄帯の磁気特性改善方法。 3、正の磁歪常数をもつ非晶質合金薄帯の長手方向に対
し外部磁場印加と共に0.1〜10kg/mm^2の張
力付加の下に、該合金薄帯表面に、蒸着法によってセラ
ミックス薄膜を被成することを特徴とする非晶質合金薄
帯の磁気特性改善方法。 4、正の磁歪常数をもつ非晶質合金薄帯の長手方向に対
し外部磁場印加と共に0.1〜10kg/mm^2の張
力付加の下に、該合金薄帯表面に、蒸着法によってセラ
ミックス薄膜を被成し、ついで該セラミックス薄膜上に
重ねて電気絶縁被膜を形成させることを特徴とする非晶
質合金薄帯の磁気特性改善方法。
[Claims] 1. A ceramic thin film is deposited on the surface of an amorphous alloy ribbon having a positive magnetostriction constant by vapor deposition under the application of an external magnetic field in the longitudinal direction of the alloy ribbon. A method for improving the magnetic properties of an amorphous alloy ribbon. 2. Applying an external magnetic field in the longitudinal direction of an amorphous alloy ribbon having a positive magnetostriction constant, deposit a ceramic thin film on the surface of the alloy ribbon by vapor deposition, and then overlay it on the ceramic thin film. A method for improving the magnetic properties of an amorphous alloy ribbon, the method comprising forming an electrically insulating film on the amorphous alloy ribbon. 3. Applying an external magnetic field to the longitudinal direction of an amorphous alloy ribbon with a positive magnetostriction constant and applying a tension of 0.1 to 10 kg/mm^2, ceramics are deposited on the surface of the alloy ribbon by vapor deposition. A method for improving the magnetic properties of an amorphous alloy ribbon characterized by forming a thin film thereon. 4. Applying an external magnetic field to the longitudinal direction of an amorphous alloy ribbon with a positive magnetostriction constant and applying a tension of 0.1 to 10 kg/mm^2, ceramics are deposited on the surface of the alloy ribbon by vapor deposition. A method for improving the magnetic properties of an amorphous alloy ribbon, comprising forming a thin film thereon and then forming an electrically insulating film over the ceramic thin film.
JP20430185A 1985-09-18 1985-09-18 Improving magnetic characteristics of amorphous alloy thin band Pending JPS6265403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20430185A JPS6265403A (en) 1985-09-18 1985-09-18 Improving magnetic characteristics of amorphous alloy thin band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20430185A JPS6265403A (en) 1985-09-18 1985-09-18 Improving magnetic characteristics of amorphous alloy thin band

Publications (1)

Publication Number Publication Date
JPS6265403A true JPS6265403A (en) 1987-03-24

Family

ID=16488212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20430185A Pending JPS6265403A (en) 1985-09-18 1985-09-18 Improving magnetic characteristics of amorphous alloy thin band

Country Status (1)

Country Link
JP (1) JPS6265403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259510A (en) * 1988-04-11 1989-10-17 Mitsui Petrochem Ind Ltd Magnetic ribbon and magnetic core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259510A (en) * 1988-04-11 1989-10-17 Mitsui Petrochem Ind Ltd Magnetic ribbon and magnetic core

Similar Documents

Publication Publication Date Title
FI57976C (en) FOERFARANDE FOER BILDANDE AV ETT ISOLERINGSSKIKT FOER DAEMPANDE AV MAGNETOSTRIKTION PAO EN ORIENTERAD KISELSTAOLSKIVA
JP2698369B2 (en) Low frequency transformer alloy and low frequency transformer using the same
JP2009018573A (en) Grain-oriented electromagnetic steel sheet including electrically insulating coating
KR102483593B1 (en) Electrical steel sheet with insulation coating and manufacturing method thereof
PL118192B1 (en) Method of manufacture of magnetic thin steel sheet of textured graining orientirovannojj zernistost'ju
JP7163976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6265403A (en) Improving magnetic characteristics of amorphous alloy thin band
JP2001247944A (en) Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
JPS6265404A (en) Improving magnetic characteristics of amorphous alloy thin band
US3705826A (en) Insulating coating and method of making the same
JP2019137874A (en) Oriented electrical steel sheet and manufacturing method thereof
JPH0151043B2 (en)
KR20120073650A (en) Oriented electrical steel sheet and method for manufacturing thereof
JP2000051933A (en) Production of magnetic thin band
JPS6387716A (en) Surface treatment of amorphous alloy material
JP7356017B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JPH11300450A (en) Fe base amorphous alloy thin band having extremely thin oxidized layer
JPS6110212A (en) Characteristic improvement of amorphous alloy thin band
JP2000323318A (en) Directional silicon steel lamination with low core-loss value
KR100900660B1 (en) Coating composition with superior powder coating and surface properties
JPH11181576A (en) Rain oriented silicon steel sheet good in film adhesion and extremely low in core loss value
JPS6293909A (en) Amorphous alloy thin strip of excellent magnetic characteristics and manufacture thereof
JPH06306628A (en) Low core loss grain-oriented silicon steel sheet