JPH0151043B2 - - Google Patents

Info

Publication number
JPH0151043B2
JPH0151043B2 JP17020480A JP17020480A JPH0151043B2 JP H0151043 B2 JPH0151043 B2 JP H0151043B2 JP 17020480 A JP17020480 A JP 17020480A JP 17020480 A JP17020480 A JP 17020480A JP H0151043 B2 JPH0151043 B2 JP H0151043B2
Authority
JP
Japan
Prior art keywords
ribbon
thin film
properties
tension
ceramic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17020480A
Other languages
Japanese (ja)
Other versions
JPS5795608A (en
Inventor
Takahiro Suga
Isao Ito
Hiroshi Shimanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17020480A priority Critical patent/JPS5795608A/en
Publication of JPS5795608A publication Critical patent/JPS5795608A/en
Publication of JPH0151043B2 publication Critical patent/JPH0151043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は、電気機器の積層鉄芯材料として用
いられる電磁薄帯に良好な絶縁性、耐食性、張力
付与性および曲げ密着性を有する被膜を形成する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a coating having good insulation properties, corrosion resistance, tension imparting properties, and bending adhesion properties on electromagnetic ribbons used as laminated iron core materials for electrical equipment. .

最近のエネルギーコストの高騰のために電気機
器の鉄芯で消費されるエネルギー、鉄損をさらに
大きく切り下げることが要請されている。このた
めに鉄系の非晶質合金薄帯が軟磁性材料として注
目を集めている。とくに、Feを70at%以上含有
し、B、Si、P、Cなどのガラス化元素あるいは
Ti、ZrやときにNbなどのa、Va族元素とCo
を含む非晶質合金は、鉄損が従来の材料に比べて
格段に低く、しかも飽和磁束密度が約1.5T以上
と、それ程低くはないので、電気機器の鉄芯、特
に配電トランスの巻きコアー材料として応用が考
えられている。また、最近、非晶質合金薄帯と同
様に、液体からの超急冷法によつて2〜8wt%の
Siを含む高けい素鋼薄板が作成されるようになり
新しい軟磁性材料として脚光を浴びている。特に
6.5wt%Si−Feあたりの組成では、磁歪がほぼ消
失するので、高温焼鈍によつて(100)面立方組
織などの適当な集合組織を形成させると、従来の
材料に比べて格段に低い鉄損特性が得られるよう
になる。このような新しい材料は実際に積層鉄芯
材料として応用されるためには、薄帯自身の透磁
率、鉄損などの特性が優れている他に、薄帯表面
に良好な被膜が形成されている必要がある。この
被膜に要求される性質は、使用される機器の種類
によつて異なるが、一般に、絶縁性(層間短絡お
よび層間渦電流損を防ぐために電気抵抗が高いの
が望ましい。特に大型変圧器、大型回転機の積層
鉄芯ならびに巻鉄芯は必須である。)曲げ密着性
(曲げた時に被膜が鉄表面から剥離を生じないこ
と、つまり剥離しない最小曲げ半径がより小さい
のが望ましく、とくに、巻いて用いられる巻鉄芯
には重要である。)耐食性(電磁材料においても
錆びの発生は好ましくない。)さらには耐熱性
(打抜きや剪断加工後あるいは巻き成形後に歪取
り焼鈍を行なう場合に、被膜の変質劣化や剥離が
焼鈍によつて生じないことが肝要である。とく
に、配電用トランスの巻きコアーに使われる場合
には重要である。)などが挙げられる。
Due to the recent rise in energy costs, there is a need to further reduce the energy and iron loss consumed by the iron core of electrical equipment. For this reason, iron-based amorphous alloy ribbons are attracting attention as soft magnetic materials. In particular, it contains 70at% or more of Fe, and contains vitrifying elements such as B, Si, P, and C, or
A, Va group elements such as Ti, Zr and sometimes Nb and Co
Amorphous alloys containing iron have much lower iron loss than conventional materials, and their saturation magnetic flux density is about 1.5T or higher, which is not that low. It is being considered for application as a material. In addition, recently, similar to amorphous alloy ribbons, 2 to 8 wt%
High-silicon steel sheets containing Si have been created and are attracting attention as new soft magnetic materials. especially
At a composition around 6.5wt%Si-Fe, magnetostriction almost disappears, so if a suitable texture such as a (100) cubic structure is formed by high-temperature annealing, the iron content is significantly lower than that of conventional materials. Loss characteristics can now be obtained. In order for such a new material to be actually applied as a laminated iron core material, the ribbon itself must have excellent properties such as magnetic permeability and iron loss, and a good film must be formed on the surface of the ribbon. I need to be there. The properties required for this coating vary depending on the type of equipment used, but in general, it is desirable to have insulation properties (high electrical resistance to prevent interlayer short circuits and interlayer eddy current losses. Especially for large transformers, large Laminated iron cores and wound iron cores are essential for rotating machines.) Bending adhesion (It is desirable that the coating does not peel off from the iron surface when bent, that is, the minimum bending radius without peeling is smaller. Corrosion resistance (Rust is not desirable even in electromagnetic materials.) Furthermore, heat resistance (when performing strain relief annealing after punching, shearing, or winding) It is important that annealing does not cause deterioration or peeling of the material.This is especially important when used in the wound core of a power distribution transformer.

このほか張力付与性(被膜と地鉄の熱膨脹差に
より、地鉄に張力がかかるようにすること。鉄芯
成形時に鋼板面に締めつけ圧力や、長手方向に圧
縮力がかかり、一般にλ100が正で大きな値をも
つている時には、これによつて特性の劣化(鉄損
と磁歪振動)を生じるのに対し、あらかじめ被膜
によつて張力をかけておくと、この圧力による特
性劣化が減少防止できる。)も、磁歪が無視でき
ない材料においては望まれる。
In addition, tension imparting properties (applying tension to the base steel due to the difference in thermal expansion between the coating and the base steel. During core forming, tightening pressure and compressive force are applied to the steel plate surface in the longitudinal direction, and λ100 is generally positive. When it has a large value, this causes property deterioration (iron loss and magnetostrictive vibration), but if tension is applied in advance by the coating, property deterioration due to this pressure can be reduced and prevented. ) is also desirable for materials where magnetostriction cannot be ignored.

電気機器の積層鉄芯材料として今日約3wt%ま
でのSiを含有するけい素鋼板が大量に用いられて
いる。この内、(110)<001>方位に集積した集合
組織をもつ方向性けい素鋼板は、磁束が一方向の
みにかかる変圧器の鉄芯などに用いられ、必らず
しも特定の集合組織をもたず、あらゆる方向に相
応の特性を示す無方向性けい素鋼板は、回転機器
の鉄芯などに用いられる。方向性けい素鋼板にお
いては、MgOを主成分とする剥離剤を塗布した
あとの1000℃以上の高温焼鈍によつて生じる表面
酸化膜・フオルステライト(2MgO・SiO2)によ
つて、基本的な絶縁被膜を形成し、さらに、張力
付加性、耐食性を付け加えるために耐熱性のある
リン酸塩を主成分とするコーチング液を焼付けて
いる。これによつて層間絶縁抵抗は(例えば
JISC2550で規定される方法で測定すると)50〜
200(Ω−cm2/枚)になる。また、850℃程度の歪
取り焼鈍を行なつても密着性は劣化しない。
Today, silicon steel sheets containing up to about 3 wt% Si are used in large quantities as laminated iron core materials for electrical equipment. Among these, grain-oriented silicon steel sheets, which have a texture accumulated in the (110) <001> direction, are used for the iron core of transformers, etc., where magnetic flux is applied only in one direction, and they do not necessarily have a specific texture. Non-oriented silicon steel sheets, which exhibit suitable properties in all directions, are used for iron cores of rotating equipment, etc. In grain-oriented silicon steel sheets, the surface oxide film and forsterite (2MgO・SiO 2 ) produced by high-temperature annealing at 1000°C or higher after applying a release agent containing MgO as the main component causes basic damage. In order to form an insulating film and add tensile strength and corrosion resistance, a heat-resistant phosphate-based coating liquid is baked on. As a result, the interlayer insulation resistance (e.g.
When measured by the method specified in JISC2550) 50 ~
200 (Ω-cm 2 / sheet). Furthermore, even if strain relief annealing is performed at approximately 850°C, the adhesion does not deteriorate.

一方、無方向けい素鋼板には、地鉄面に直接リ
ン酸塩系無機質コーチングを、あるいはそれに樹
脂成分を加えたコーチング液を焼付けている。こ
の場合には一般に耐熱性は劣る。
On the other hand, for non-directional steel sheets, a phosphate-based inorganic coating or a coating liquid containing a resin component is baked directly onto the base steel surface. In this case, heat resistance is generally inferior.

以上に述べたような従来技術として公知である
被膜の形成方法は、この発明の対象である非晶質
合金薄帯あるいは高けい素鋼急冷薄帯には不向き
であるのみならず、実施困難な点も少なくない。
すなわち、下地被膜としてのフオルステライトを
形成させるためには、1000℃以上の高温焼鈍を必
要とするが非晶質合金は結晶化のためにこの焼鈍
ができない。また、高けい素鋼急冷薄帯において
は、特願昭54−164693号で示されているように、
(100)面内立方組織が高度に発達し、優れた磁気
特性を有するようにするためには、表面の地鉄面
を雰囲気に裸出して10-2〜10-7Torrの真空下で
焼鈍しなければならないが、このような焼鈍にお
いては先述したフオルステライトを形成させるこ
とは困難である。また、この真空焼鈍のあとに、
表面を酸化させてMgOを塗布したあと、さらに、
高温焼鈍を施す方法をとればフオルステライトを
形成させることができるが製造コストが高くなる
ので実用的ではない。
The coating formation methods known as prior art described above are not only unsuitable for the amorphous alloy ribbon or rapidly solidified high-silicon steel ribbon that is the object of the present invention, but also difficult to implement. There are quite a few points.
That is, in order to form forsterite as a base film, high-temperature annealing of 1000° C. or higher is required, but this annealing is not possible for amorphous alloys due to crystallization. In addition, as shown in Japanese Patent Application No. 164693-1987, for high-silicon steel quenched ribbon,
(100) In order to have a highly developed in-plane cubic structure and excellent magnetic properties, the bare iron surface of the surface is exposed to the atmosphere and annealed under a vacuum of 10 -2 to 10 -7 Torr. However, it is difficult to form the above-mentioned forsterite in such annealing. Also, after this vacuum annealing,
After oxidizing the surface and applying MgO,
Forsterite can be formed by high-temperature annealing, but this is not practical because the manufacturing cost increases.

発明者らは、非晶質合金薄帯および高けい素鋼
急冷薄帯に良好な特性を有する被膜を形成させる
べく、種々の実験を行なつたが、これらの薄帯の
表面に真空蒸着、化学蒸着あるいはスパツタリン
グによつて、セラミツクス薄膜を施こすと良好な
特性を有する被膜が形成されることを見出し、こ
の発明を完成させたものである。
The inventors conducted various experiments in order to form coatings with good properties on amorphous alloy ribbons and high-silicon steel quenched ribbons. The present invention was completed based on the discovery that a thin ceramic film having good properties could be formed by applying a ceramic thin film by chemical vapor deposition or sputtering.

この発明においては、被膜を形成させる対象の
電磁材料として、Feを70at%以上含有する非晶
質合金薄帯と液体からの超急冷法によつて作成さ
れた2〜8wt%のSiを含有する高けい素鋼急冷薄
帯を用いることとする。Feを70at%以上含有す
る非晶質合金薄帯は通常、室温での飽和磁束密度
が約1.5T以上の値をもつので電力用トランスな
どのコアー材料として用いることができる。これ
らは、FeaXbYc(添字は原子%)であらわされる
組成から成ることが知られ、ここで、a75、b
+c25、X=Co、Ni、Mn、Cu、Crの内の一
種以上、Y=B、Si、C、P、Geの内の一種以
上である。代表的には、Fe81B13Si4C2
Fe78B20P1Ge1、Fe78Co3Si5B14などが、比較的に
飽和磁束密度が大きく、かつ熱的に安定で磁気特
性が優れていることが知られている。また、この
発明では上記のような非晶質合金薄帯のほかに
も、FeaCob(Ti、Zr)c(但し、a>70、b<15、
5<c<20)であらわされる非晶質合金薄帯を用
いることができる。
In this invention, the electromagnetic material on which the film is formed is an amorphous alloy ribbon containing 70 at% or more of Fe and 2 to 8 wt% of Si produced by ultra-quenching from a liquid. High-silicon steel quenched ribbon will be used. Amorphous alloy ribbons containing 70 at% or more Fe usually have a saturation magnetic flux density of about 1.5 T or more at room temperature, so they can be used as core materials for power transformers and the like. These are known to have a composition expressed as Fe a X b Y c (subscripts are atomic %), where a75, b
+c25, X=one or more of Co, Ni, Mn, Cu, and Cr; Y=one or more of B, Si, C, P, and Ge. Typically , Fe81B13Si4C2 ,
It is known that Fe 78 B 20 P 1 Ge 1 , Fe 78 Co 3 Si 5 B 14 , and the like have a relatively large saturation magnetic flux density, are thermally stable, and have excellent magnetic properties. In addition to the above-mentioned amorphous alloy ribbon, this invention also uses Fe a Co b (Ti, Zr) c (where a>70, b<15,
An amorphous alloy ribbon having the formula 5<c<20) can be used.

一方、Siを2〜8wt%含有する高けい素鋼急冷
薄帯、なかでも(100)〔OKl〕方位に集積した面
内無方向組織を有する急冷薄帯においては、優れ
た励磁、鉄損特性を有し、電力用トランスのみな
らず回転機などのコアー材料として用いることが
できる。
On the other hand, high-silicon steel quenched ribbons containing 2 to 8 wt% Si, especially quenched ribbons with in-plane non-directional structures accumulated in the (100) [OKl] orientation, have excellent excitation and iron loss characteristics. It can be used as a core material not only for power transformers but also for rotating machines.

この発明においては薄帯の表面に、SiO2
MgO、Al2O3、TiO2、Ce2O3、SrO2、Ta2O5
ThO2およびZrO2などの耐食性セラミツクスを真
空蒸着、化学蒸着あるいはスパツタリングによつ
て薄膜被覆を形成する。
In this invention, SiO 2 ,
MgO , Al2O3 , TiO2 , Ce2O3 , SrO2 , Ta2O5 ,
Thin film coatings of corrosion-resistant ceramics such as ThO 2 and ZrO 2 are formed by vacuum deposition, chemical vapor deposition or sputtering.

真空蒸着においては、通常10-2程度のあるいは
さらに高度の真空下で、前記のセラミツクスを電
子線照射などによつて加熱し、基盤(薄帯)の表
面にセラミツクス薄膜を形成させる。基盤(薄
帯)は、特に加熱しなくても良好な薄膜が形成さ
れるが、一般に200〜400℃に加熱しておくと、よ
り高密度で密着性の優れた薄膜が形成される。こ
の場合、結晶質である高けい素鋼薄帯においては
任意の温度に加熱してセラミツクスを蒸着させ得
るが、非晶質合金薄帯の場合には加熱温度をその
合金の結晶化温度以下にすることが必要とされ
る。Fe7585(B、Si、C、P)2515の非晶質合
金はその結晶化温度が300〜500℃にわたつてい
る。一般に非晶質合金薄帯は液体から急冷して作
成したままの状態では磁気特性が悪いので、キユ
リー点以上結晶化温度で焼鈍して特性を向上させ
る。この際、薄帯の長手方向に磁場をかけて冷却
すると長手方向に一軸異方性が生じ、特に長手方
向に優れた磁気特性が得られる。
In vacuum evaporation, the ceramic is heated by electron beam irradiation or the like under a vacuum of about 10 -2 or higher to form a ceramic thin film on the surface of the substrate (thin ribbon). A good thin film can be formed on the substrate (thin ribbon) without particular heating, but generally, if it is heated to 200 to 400°C, a thin film with higher density and better adhesion will be formed. In this case, a crystalline high-silicon steel ribbon can be heated to any temperature to deposit ceramics, but in the case of an amorphous alloy ribbon, the heating temperature is lower than the crystallization temperature of the alloy. It is necessary to do so. The amorphous alloy of Fe75-85 (B, Si, C, P) 25-15 has a crystallization temperature ranging from 300 to 500 °C. In general, amorphous alloy ribbons have poor magnetic properties when they are produced by quenching from a liquid, so they are annealed at a crystallization temperature above the Curie point to improve their properties. At this time, when a magnetic field is applied in the longitudinal direction of the ribbon to cool it, uniaxial anisotropy occurs in the longitudinal direction, and particularly excellent magnetic properties can be obtained in the longitudinal direction.

この発明においては、非晶質合金薄帯の場合
に、この磁気向上のための熱処理とセラミツクス
薄膜形成を同時に同一工程で行なうのが望まし
い。
In the present invention, in the case of an amorphous alloy ribbon, it is desirable that the heat treatment for improving magnetism and the formation of the ceramic thin film be performed simultaneously in the same process.

また、発明者らは真空蒸着において連続的にセ
ラミツクス蒸着を施す際に、薄帯の長手方向に張
力をかけると、最終成品での薄帯の磁気特性は向
上し、特に湾曲などによる圧縮応力がかかつた場
合にも磁気特性の劣化が少なくなることを見出し
た。
In addition, the inventors found that when applying tension in the longitudinal direction of the ribbon during continuous ceramic deposition in vacuum evaporation, the magnetic properties of the ribbon in the final product improve, especially compressive stress due to curvature etc. It has been found that even in such cases, deterioration of magnetic properties is reduced.

第1図に特性の一例を示す。単ロール法で作成
した25μm厚のFe80B20非晶質薄帯を10-2Torrの
真空槽内で電子線照射加熱によるSiO2とMgOの
蒸着を行なつた。この際、薄帯を290℃に加熱し
た。このあと、さらに325℃で50Oeの磁場中焼鈍
を施したあと、平板状で、又、種々の曲率のトロ
イダル状でHc値(直流、Bm=1.2T)を測定し
た。第1図に示すようにトロイダルの径を小さく
してゆくとHc値は劣化し、軟磁性材料としての
メリツトは失なわれてゆく。これは湾曲によつて
板に部分的に圧縮力が生じたためと考えられる。
特にこの実施例のようにFe含有量の高く、磁歪
λ100が正の大きな値をもつ材料では著しい。し
かし、第1図に示すようにSiO2やMgOを約1μm
蒸着すると、湾曲によるHcの劣化は、はるかに
小さくなる。Fe80B20非晶質薄帯の熱膨脹率は約
10×10-6K-1であるのに対して、SiO2とMgOのそ
れは、1×10-6K-1程度あるいはそれ以下である
ので、蒸着時に加熱したあとの冷却で熱膨脹率の
差によつて薄帯に張力が働らく。このために湾曲
による圧縮力が緩和され第1図のようなHc値の
劣化の抑制が生じたと考えられる。
Figure 1 shows an example of the characteristics. SiO 2 and MgO were deposited on a 25 μm thick Fe 80 B 20 amorphous ribbon prepared by a single roll method in a vacuum chamber at 10 −2 Torr by electron beam irradiation heating. At this time, the ribbon was heated to 290°C. After this, after further annealing in a magnetic field of 50 Oe at 325° C., the Hc value (DC, Bm = 1.2 T) was measured in a flat plate shape and in a toroidal shape with various curvatures. As shown in Figure 1, as the diameter of the toroid is reduced, the Hc value deteriorates and the merits of the material as a soft magnetic material are lost. This is thought to be due to compressive force being generated locally on the plate due to the curvature.
This is particularly noticeable in materials like this example, which have a high Fe content and a large positive value of magnetostriction λ100. However, as shown in Figure 1, SiO 2 or MgO is
When deposited, the degradation of Hc due to curvature is much smaller. The coefficient of thermal expansion of Fe 80 B 20 amorphous ribbon is approximately
10 × 10 -6 K -1 , whereas that of SiO 2 and MgO is about 1 × 10 -6 K -1 or less, so the difference in thermal expansion coefficient is caused by cooling after heating during vapor deposition. tension is exerted on the ribbon. This is thought to have alleviated the compressive force caused by the curvature and suppressed the deterioration of the Hc value as shown in Figure 1.

さらに4.5wt%珪素鋼における同様な例を第2
図に示す。双ロール法で作成した4.5wt%Siを含
む珪素鋼薄帯を1000℃で連続焼鈍した。この薄帯
の表面粗度は平均粗さRa=1.0μmであつた。こ
の薄膜には第1図の場合と同様にしてSiO2
MgOの蒸着を行い、種々の曲率によるトロイダ
ル状でHc値(直流、Bm=1.2T)を測定した。
第2図に示すように彎曲によりHc値は劣化する
が、SiO2やMgOを蒸着したものは、その劣化が
小さくなる。
Furthermore, a similar example of 4.5wt% silicon steel is shown in the second example.
As shown in the figure. A silicon steel ribbon containing 4.5wt%Si prepared by the twin roll method was continuously annealed at 1000℃. The surface roughness of this ribbon was an average roughness Ra=1.0 μm. This thin film is coated with SiO 2 in the same way as in Figure 1.
MgO was deposited, and the Hc value (DC, Bm=1.2T) was measured in a toroidal shape with various curvatures.
As shown in FIG. 2, the Hc value deteriorates due to curvature, but this deterioration is reduced in the case of SiO 2 or MgO deposited.

以上のようなセラミツクス薄膜形成による磁器
特性劣化の抑制は実用的には大きな効果をもつ。
Suppressing the deterioration of ceramic properties by forming a ceramic thin film as described above has a great practical effect.

この発明で対象とするアモルフアス合金や高珪
素鋼急冷薄帯は、通常、トロイダル状に巻いて鉄
芯とし、電力変圧器や電子機器に用いられるの
で、彎曲による磁気特性の劣化が大きい場合に
は、平板状で、優れた特性を示しても実用に耐え
られない。この発明は彎曲による劣化を抑える効
果を有するので特に実機における特性を充分に改
良するものである。
The amorphous alloys and high-silicon steel quenched ribbons that are the subject of this invention are usually wound into a toroidal shape to form an iron core and used in power transformers and electronic devices, so if the magnetic properties are significantly degraded due to curvature, , it is flat and has excellent properties, but cannot be put to practical use. This invention has the effect of suppressing deterioration due to curvature, and therefore sufficiently improves the characteristics particularly in actual machines.

次に、第3図に同じ非晶質薄帯サンプルを用い
て、SiO2を0.8μmの厚さに真空蒸着したあとの平
板状および35mmφのトロイダル状で測定した鉄損
W12/50(1.2T励磁で50Hzでの鉄損)を示す。真空
蒸着においては、薄帯の加熱を行なわない場合と
350℃に加熱した場合のそれぞれで張力を付加し
ながら、SiO2の蒸着を施し、このあと350℃で
50Oeの磁場中焼鈍を施した。張力を付加して蒸
着を行なうと鉄損は低くなる。特にこの傾向は薄
帯を湾曲して測定する場合に著しい。このような
付加張力の影響は、約0.5Kg/mm2の張力からあら
われてくる。したがつて、この発明においては蒸
着時に付加する張力は0.5Kg/mm2以上とする。
Next, Figure 3 shows the iron loss measured using the same amorphous ribbon sample in a flat plate shape and a 35 mmφ toroidal shape after vacuum-depositing SiO 2 to a thickness of 0.8 μm.
W 12/50 (Iron loss at 50Hz with 1.2T excitation) is shown. In vacuum evaporation, there are cases where the ribbon is not heated and cases where the ribbon is not heated.
SiO 2 was vapor-deposited while applying tension in each case of heating to 350°C, and then at 350°C.
Annealing was performed in a magnetic field of 50 Oe. If the deposition is performed under tension, the iron loss will be lowered. This tendency is particularly noticeable when measuring a curved ribbon. The effect of such additional tension becomes apparent from a tension of approximately 0.5 Kg/mm 2 . Therefore, in the present invention, the tension applied during vapor deposition is set to 0.5 Kg/mm 2 or more.

次に、双ロール法で溶鋼から直接製板した
120μm厚のけい素鋼薄帯を、1140℃で約
10-2Torrの真空中で20分間焼鈍したあと、同じ
真空槽内でMgOの蒸着を行なつた。この蒸着の
期間中に、薄帯の長手方向に張力をかけた。これ
らの薄帯の平板状と35mmφのトロイダル状での鉄
損値を第4図に示す。トロイダルにすると鉄損値
は劣化する。この傾向は磁歪が大きい低Si材料ほ
ど著しいが、蒸着時に張力をかけておくとこの劣
化は緩和される。この張力は0.5Kg/mm2以上で有
効になる。
Next, the plate was made directly from molten steel using the twin roll method.
A silicon steel ribbon with a thickness of 120 μm is heated at 1140℃ to approx.
After annealing for 20 minutes in a vacuum of 10 -2 Torr, MgO was deposited in the same vacuum chamber. During this deposition, tension was applied in the longitudinal direction of the ribbon. Figure 4 shows the iron loss values of these thin strips in a flat plate shape and a 35 mmφ toroidal shape. When made toroidal, the iron loss value deteriorates. This tendency is more pronounced for low-Si materials with higher magnetostriction, but this deterioration can be alleviated by applying tension during deposition. This tension becomes effective at 0.5Kg/mm 2 or more.

以上の試験例の結果から判るように、真空蒸着
によつてセラミツクスの薄膜被覆を薄帯表面に施
すことは、応用における磁性劣化を緩和するので
より好ましい。
As can be seen from the results of the above test examples, it is more preferable to apply a ceramic thin film coating to the surface of the ribbon by vacuum deposition because it alleviates magnetic deterioration during application.

セラミツクスは高絶縁性と高耐食性を有してい
るので、薄帯表面が充分に厚みのあるセラミツク
ス薄膜におおわれていると絶縁性と耐食性は必然
的に充たされることとなる。
Ceramics have high insulation properties and high corrosion resistance, so if the surface of the ribbon is covered with a sufficiently thick ceramic thin film, insulation and corrosion resistance will inevitably be satisfied.

この発明においては、セラミツクスを0.1μm以
上の厚みで薄膜としてコーチングすると、約10
(Ω−cm2/枚)以上の層間電気絶縁抵抗が得られ
た。また、0.1μm以上の厚みがあると電気機器の
コアー材料として充分な耐食性が得られる。した
がつて、この発明においてはセラミツクス薄膜の
厚みを0.1μm以上とする。しかし、一方、セラミ
ツクス薄膜の厚みが3μm以上になると、磁性上
や絶縁・耐食上はむしろ好ましくなるが、成品薄
帯としての非磁性部分が増大して占積率が劣化し
応用上は不都合になると同時に曲げ密着性が劣化
して、例えば20mmφ曲率程度の湾曲で剥離するよ
うになる。また、当然ながら3μm以上の蒸着は
長時間を要するので工業的にも好ましくない。し
たがつてこの発明においては、セラミツクス薄膜
の厚みを3μm以下とする。
In this invention, when ceramics are coated as a thin film with a thickness of 0.1 μm or more, approximately 10
An interlayer electrical insulation resistance of (Ω-cm 2 /sheet) or more was obtained. Further, if the thickness is 0.1 μm or more, sufficient corrosion resistance can be obtained as a core material for electrical equipment. Therefore, in this invention, the thickness of the ceramic thin film is set to 0.1 μm or more. However, on the other hand, if the thickness of the ceramic thin film becomes 3 μm or more, it is preferable in terms of magnetism, insulation, and corrosion resistance, but the non-magnetic portion of the finished product ribbon increases and the space factor deteriorates, which is disadvantageous in terms of application. At the same time, the bending adhesion deteriorates, and peeling occurs, for example, at a curvature of about 20 mmφ. Further, as a matter of course, vapor deposition of 3 μm or more requires a long time and is not preferred from an industrial perspective. Therefore, in this invention, the thickness of the ceramic thin film is set to 3 μm or less.

次に、この発明においては、セラミツクス薄膜
を化学蒸着によつて施しても良い。代表的には
AlCl3、SiCl4、ZrCl4などの金属塩化物の蒸気を
H2、Co2などのガスをキヤリヤーとして薄帯にあ
て、その表面にAl2O3、SiO2、ZrO2などのセラミ
ツクス薄膜を形成させる。この場合は通常薄帯を
700〜1050℃に加熱しておくのが、より密度の高
く、密着性の良い薄膜が形成される。高温加熱が
できない非晶質合金薄帯にはこの方法は適してい
ない。高けい素鋼薄帯にはこの方法を適用するこ
とができ前述したように、薄膜形成時に張力を付
加しておくと磁性の湾曲にともなう劣化が緩和さ
れる。
Next, in the present invention, the ceramic thin film may be applied by chemical vapor deposition. Typically
Vapors of metal chlorides such as AlCl 3 , SiCl 4 , ZrCl 4
A gas such as H 2 or Co 2 is applied to the ribbon as a carrier to form a ceramic thin film of Al 2 O 3 , SiO 2 , ZrO 2 or the like on its surface. In this case, a thin strip is usually used.
Heating to 700-1050°C will form a thin film with higher density and better adhesion. This method is not suitable for amorphous alloy ribbons that cannot be heated at high temperatures. This method can be applied to high-silicon steel ribbons, and as described above, if tension is applied during thin film formation, deterioration due to magnetic curvature is alleviated.

また、この発明においては薄膜形成にスパツタ
リングを用いても良い結果が得られる。この方法
では通常、真空下においてSiO2などのセラミツ
クスをアルゴンなどでスパツターして薄帯表面に
薄膜を形成させる。この場合においても真空蒸着
の場合と全く同様にスパツタリングの期間中に薄
帯を加熱しておくと同時に0.5Kg/mm2以上の張力
を付加しておくのが良い。
Further, in the present invention, good results can be obtained even when sputtering is used to form a thin film. In this method, ceramics such as SiO 2 are usually sputtered with argon or the like under vacuum to form a thin film on the surface of the ribbon. In this case, as in the case of vacuum deposition, it is preferable to heat the ribbon during sputtering and at the same time apply a tension of 0.5 kg/mm 2 or more.

以上に述べた真空蒸着、化学蒸着およびスパツ
タリング法によつて表面に耐食性、絶縁性および
張力付与性さらに曲げ密着性の良好なセラミツク
ス薄膜から成る被膜を形成させた非晶質合金薄帯
および高けい素鋼薄帯は、このままの状態で、電
気機器のコアー材料として応用できる。特に、張
力付与性の優れたこの発明の成品は、巻きコアー
鉄芯材料などに応用するとその特性が発揮され
る。
Amorphous alloy ribbons and high silicone alloys are produced using the vacuum deposition, chemical vapor deposition, and sputtering methods described above to form coatings consisting of ceramic thin films with corrosion resistance, insulation properties, tension imparting properties, and good bending adhesion. Raw steel ribbon can be used as a core material for electrical equipment in its original state. In particular, the product of the present invention, which has excellent tension imparting properties, exhibits its properties when applied to wound core iron core materials.

また、応用によつてはさらに高度の絶縁性や耐
食性あるいは張力付与性を要求される場合があ
る。このような場合には、セラミツクス薄膜を形
成させたあと、引続いてリン酸塩を主成分とする
コーチング液を塗布し、800℃程度の温度で焼付
けて張力付与型の上塗り被膜を形成させるのが良
い。この張力付与型の被膜は従来公知のように薄
帯の磁歪−圧縮特性を一層改良する。
Furthermore, depending on the application, even higher levels of insulation, corrosion resistance, or tension imparting properties may be required. In such cases, after forming a ceramic thin film, a coating liquid containing phosphate as the main component is applied and baked at a temperature of about 800°C to form a tension-applied top coat. is good. This tensioning coating further improves the magnetostrictive-compressive properties of the ribbon, as is known in the art.

このようにして被膜をコーチングした薄帯は剪
断・打抜きされコアーに組み立てられる。この発
明の被膜は800℃程度の歪取り焼鈍に充分に耐え
ることができる。
The thus coated ribbon is sheared and punched and assembled into a core. The coating of this invention can sufficiently withstand strain relief annealing at about 800°C.

以下実施例について述べる。 Examples will be described below.

実施例 1 85μm厚の6.4wt%Si−Fe急冷薄帯と、25μm厚
の非晶質急冷薄帯(Fe81B13.5Si3.5C2)を、表面酸
化物除去のためにそれぞれ軽度のH2SO4酸洗に
供したあと、それらの薄帯面上にSiO2とAl2O3
混合薄膜2μmをスパツタリングで形成させた。
スパツタリングはアルゴンイオンで行ない圧力を
3×10-4Torrにした。
Example 1 An 85 μm thick 6.4wt% Si-Fe quenched ribbon and a 25 μm thick amorphous quenched ribbon (Fe 81 B 13.5 Si 3.5 C 2 ) were each treated with mild H 2 to remove surface oxides. After being subjected to SO 4 pickling, a mixed thin film of 2 μm of SiO 2 and Al 2 O 3 was formed on the ribbon surface by sputtering.
Sputtering was performed using argon ions at a pressure of 3×10 −4 Torr.

この薄膜は10mmφの湾曲をおこなつても剥離し
なかつた。また層間絶縁抵抗は70〜100Ω・cm2
枚であつた。さらに、この薄帯を湿度80%、35℃
の空気中に30日間暴露したが腐食の発生は認めら
れなかつた。
This thin film did not peel off even after being bent to a diameter of 10 mm. Also, the interlayer insulation resistance is 70 to 100Ω・cm 2 /
It was hot. Furthermore, this thin strip was heated at 80% humidity and 35°C.
No corrosion was observed after exposure to the air for 30 days.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は種々な曲率下でHcの劣化の
ありさまを示す図表、第3図、第4図は蒸着時の
付加張力と鉄損の関係グラフである。
Figures 1 and 2 are graphs showing how Hc deteriorates under various curvatures, and Figures 3 and 4 are graphs of the relationship between added tension during vapor deposition and iron loss.

Claims (1)

【特許請求の範囲】 1 Feを70at%以上含有する非晶質合金急冷薄
帯あるいは溶鋼からの直接製板法によつて作られ
たSi2〜8wt%を含有する高珪素鋼急冷薄帯の表
面に真空蒸着、化学蒸着あるいはスパツタリング
によつて0.1μm以上3μm以下の厚みのセラミツク
ス薄膜を施こすことを特徴とする電磁薄帯に良好
な絶縁性、張力付与性、耐食性および曲げ密着性
を有する被膜を形成する方法。 2 特許請求の範囲第1項記載の方法において、
セラミツクス薄膜を施こす工程が、薄帯の加熱と
0.5Kg/mm2以上の張力付与とのうち少なくとも一
方の条件下であること。 3 Feを70at%以上含有する非晶質合金急冷薄
帯あるいは溶鋼からの直接製板法によつて作られ
たSi2〜8wt%を含有する高珪素鋼急冷薄帯の表
面に真空蒸着、化学蒸着あるいはスパツタリング
によつて0.1μm以上3μm以下の厚みのセラミツク
ス薄膜を施こすこととこのセラミツクス薄膜を施
こした後、リン酸塩を主成分とする張力付与形低
熱膨張絶縁被膜を施こすこととの結合を特徴とす
る電磁薄帯に良好な絶縁性、張力付与性、耐食性
および曲げ密着性を有する被膜を形成する方法。
[Scope of Claims] 1. The surface of a quenched amorphous alloy ribbon containing 70 at% or more Fe or a quenched high silicon steel ribbon containing 2 to 8 wt% Si made by direct plate manufacturing from molten steel. A coating having good insulation properties, tension imparting properties, corrosion resistance and bending adhesion for electromagnetic thin strips, characterized in that a ceramic thin film with a thickness of 0.1 μm or more and 3 μm or less is applied to the electromagnetic ribbon by vacuum deposition, chemical vapor deposition or sputtering. How to form. 2. In the method described in claim 1,
The process of applying a ceramic thin film involves heating the ribbon and
Must be under at least one of the following conditions: applying a tension of 0.5Kg/mm 2 or more. 3. Vacuum deposition or chemical vapor deposition on the surface of an amorphous alloy quenched ribbon containing 70at% or more of Fe or a quenched high silicon steel ribbon containing 2 to 8wt% Si made by direct plate manufacturing from molten steel. Alternatively, a ceramic thin film with a thickness of 0.1 μm or more and 3 μm or less is applied by sputtering, and after this ceramic thin film is applied, a tension-applied low thermal expansion insulation coating containing phosphate as a main component is applied. A method for forming a coating having good insulation properties, tension imparting properties, corrosion resistance, and bending adhesion properties on an electromagnetic ribbon characterized by bonding.
JP17020480A 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band Granted JPS5795608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17020480A JPS5795608A (en) 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17020480A JPS5795608A (en) 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band

Publications (2)

Publication Number Publication Date
JPS5795608A JPS5795608A (en) 1982-06-14
JPH0151043B2 true JPH0151043B2 (en) 1989-11-01

Family

ID=15900589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17020480A Granted JPS5795608A (en) 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band

Country Status (1)

Country Link
JP (1) JPS5795608A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296703A (en) * 1985-06-26 1986-12-27 Kawasaki Steel Corp Iron loss reduction method for single directional grain oriented silicon steel plate
WO1999066624A1 (en) * 1998-06-18 1999-12-23 Alliedsignal Inc. Amorphous metal stator for a radial-flux electric motor
JP6033834B2 (en) * 2014-12-25 2016-11-30 東芝三菱電機産業システム株式会社 Cage rotor manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss

Also Published As

Publication number Publication date
JPS5795608A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US5069731A (en) Low-frequency transformer
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
US6562473B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
EP0695812B1 (en) Nanocrystalline alloy with insulating coating, magnetic core made thereof, and process for forming insulating coating on a nanocrystalline alloy
JP7016358B2 (en) Electrical steel sheet with insulating film and its manufacturing method
JPS63302504A (en) Magnetic core and manufacture thereof
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JP2001247944A (en) Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JPH0151043B2 (en)
WO2019106976A1 (en) Oriented electrical steel sheet and method for producing same
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
CN114106593B (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP6645632B1 (en) Electromagnetic steel sheet with insulating coating, method of manufacturing the same, iron core of transformer using the above-mentioned electromagnetic steel sheet, transformer, and method of reducing dielectric loss of transformer
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
US3160509A (en) High temperature coating for silicon steel
WO2023139847A1 (en) Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
CN114381584A (en) Insulating coating liquid for oriented silicon steel surface, oriented silicon steel plate and manufacturing method thereof
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS60262978A (en) Surface treatment of amorphous magnetic steel strip
JP2002115035A (en) Nonoriented silicon steel sheet