JPH0151043B2 - - Google Patents

Info

Publication number
JPH0151043B2
JPH0151043B2 JP17020480A JP17020480A JPH0151043B2 JP H0151043 B2 JPH0151043 B2 JP H0151043B2 JP 17020480 A JP17020480 A JP 17020480A JP 17020480 A JP17020480 A JP 17020480A JP H0151043 B2 JPH0151043 B2 JP H0151043B2
Authority
JP
Japan
Prior art keywords
ribbon
thin film
properties
tension
ceramic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17020480A
Other languages
Japanese (ja)
Other versions
JPS5795608A (en
Inventor
Takahiro Suga
Isao Ito
Hiroshi Shimanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17020480A priority Critical patent/JPS5795608A/en
Publication of JPS5795608A publication Critical patent/JPS5795608A/en
Publication of JPH0151043B2 publication Critical patent/JPH0151043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【発明の詳现な説明】 この発明は、電気機噚の積局鉄芯材料ずしお甚
いられる電磁薄垯に良奜な絶瞁性、耐食性、匵力
付䞎性および曲げ密着性を有する被膜を圢成する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a coating having good insulation properties, corrosion resistance, tension imparting properties, and bending adhesion properties on electromagnetic ribbons used as laminated iron core materials for electrical equipment. .

最近の゚ネルギヌコストの高隰のために電気機
噚の鉄芯で消費される゚ネルギヌ、鉄損をさらに
倧きく切り䞋げるこずが芁請されおいる。このた
めに鉄系の非晶質合金薄垯が軟磁性材料ずしお泚
目を集めおいる。ずくに、Feを70at以䞊含有
し、、Si、、などのガラス化元玠あるいは
Ti、ZrやずきにNbなどの、Va族元玠ずCo
を含む非晶質合金は、鉄損が埓来の材料に比べお
栌段に䜎く、しかも飜和磁束密床が玄1.5T以䞊
ず、それ皋䜎くはないので、電気機噚の鉄芯、特
に配電トランスの巻きコアヌ材料ずしお応甚が考
えられおいる。たた、最近、非晶質合金薄垯ず同
様に、液䜓からの超急冷法によ぀お〜8wtの
Siを含む高けい玠鋌薄板が䜜成されるようになり
新しい軟磁性材料ずしお脚光を济びおいる。特に
6.5wtSi−Feあたりの組成では、磁歪がほが消
倱するので、高枩焌鈍によ぀お100面立方組
織などの適圓な集合組織を圢成させるず、埓来の
材料に比べお栌段に䜎い鉄損特性が埗られるよう
になる。このような新しい材料は実際に積局鉄芯
材料ずしお応甚されるためには、薄垯自身の透磁
率、鉄損などの特性が優れおいる他に、薄垯衚面
に良奜な被膜が圢成されおいる必芁がある。この
被膜に芁求される性質は、䜿甚される機噚の皮類
によ぀お異なるが、䞀般に、絶瞁性局間短絡お
よび局間枊電流損を防ぐために電気抵抗が高いの
が望たしい。特に倧型倉圧噚、倧型回転機の積局
鉄芯ならびに巻鉄芯は必須である。曲げ密着性
曲げた時に被膜が鉄衚面から剥離を生じないこ
ず、぀たり剥離しない最小曲げ半埄がより小さい
のが望たしく、ずくに、巻いお甚いられる巻鉄芯
には重芁である。耐食性電磁材料においおも
錆びの発生は奜たしくない。さらには耐熱性
打抜きや剪断加工埌あるいは巻き成圢埌に歪取
り焌鈍を行なう堎合に、被膜の倉質劣化や剥離が
焌鈍によ぀お生じないこずが肝芁である。ずく
に、配電甚トランスの巻きコアヌに䜿われる堎合
には重芁である。などが挙げられる。
Due to the recent rise in energy costs, there is a need to further reduce the energy and iron loss consumed by the iron core of electrical equipment. For this reason, iron-based amorphous alloy ribbons are attracting attention as soft magnetic materials. In particular, it contains 70at% or more of Fe, and contains vitrifying elements such as B, Si, P, and C, or
A, Va group elements such as Ti, Zr and sometimes Nb and Co
Amorphous alloys containing iron have much lower iron loss than conventional materials, and their saturation magnetic flux density is about 1.5T or higher, which is not that low. It is being considered for application as a material. In addition, recently, similar to amorphous alloy ribbons, 2 to 8 wt%
High-silicon steel sheets containing Si have been created and are attracting attention as new soft magnetic materials. especially
At a composition around 6.5wt%Si-Fe, magnetostriction almost disappears, so if a suitable texture such as a (100) cubic structure is formed by high-temperature annealing, the iron content is significantly lower than that of conventional materials. Loss characteristics can now be obtained. In order for such a new material to be actually applied as a laminated iron core material, the ribbon itself must have excellent properties such as magnetic permeability and iron loss, and a good film must be formed on the surface of the ribbon. I need to be there. The properties required for this coating vary depending on the type of equipment used, but in general, it is desirable to have insulation properties (high electrical resistance to prevent interlayer short circuits and interlayer eddy current losses. Especially for large transformers, large Laminated iron cores and wound iron cores are essential for rotating machines.) Bending adhesion (It is desirable that the coating does not peel off from the iron surface when bent, that is, the minimum bending radius without peeling is smaller. Corrosion resistance (Rust is not desirable even in electromagnetic materials.) Furthermore, heat resistance (when performing strain relief annealing after punching, shearing, or winding) It is important that annealing does not cause deterioration or peeling of the material.This is especially important when used in the wound core of a power distribution transformer.

このほか匵力付䞎性被膜ず地鉄の熱膚脹差に
より、地鉄に匵力がかかるようにするこず。鉄芯
成圢時に鋌板面に締め぀け圧力や、長手方向に圧
瞮力がかかり、䞀般にλ100が正で倧きな倀をも
぀おいる時には、これによ぀お特性の劣化鉄損
ず磁歪振動を生じるのに察し、あらかじめ被膜
によ぀お匵力をかけおおくず、この圧力による特
性劣化が枛少防止できる。も、磁歪が無芖でき
ない材料においおは望たれる。
In addition, tension imparting properties (applying tension to the base steel due to the difference in thermal expansion between the coating and the base steel. During core forming, tightening pressure and compressive force are applied to the steel plate surface in the longitudinal direction, and λ100 is generally positive. When it has a large value, this causes property deterioration (iron loss and magnetostrictive vibration), but if tension is applied in advance by the coating, property deterioration due to this pressure can be reduced and prevented. ) is also desirable for materials where magnetostriction cannot be ignored.

電気機噚の積局鉄芯材料ずしお今日玄3wtた
でのSiを含有するけい玠鋌板が倧量に甚いられお
いる。この内、110001方䜍に集積した集合
組織をも぀方向性けい玠鋌板は、磁束が䞀方向の
みにかかる倉圧噚の鉄芯などに甚いられ、必らず
しも特定の集合組織をもたず、あらゆる方向に盞
応の特性を瀺す無方向性けい玠鋌板は、回転機噚
の鉄芯などに甚いられる。方向性けい玠鋌板にお
いおは、MgOを䞻成分ずする剥離剀を塗垃した
あずの1000℃以䞊の高枩焌鈍によ぀お生じる衚面
酞化膜・フオルステラむト2MgO・SiO2によ
぀お、基本的な絶瞁被膜を圢成し、さらに、匵力
付加性、耐食性を付け加えるために耐熱性のある
リン酞塩を䞻成分ずするコヌチング液を焌付けお
いる。これによ぀お局間絶瞁抵抗は䟋えば
JISC2550で芏定される方法で枬定するず50〜
200Ω−cm2枚になる。たた、850℃皋床の歪
取り焌鈍を行な぀おも密着性は劣化しない。
Today, silicon steel sheets containing up to about 3 wt% Si are used in large quantities as laminated iron core materials for electrical equipment. Among these, grain-oriented silicon steel sheets, which have a texture accumulated in the (110) <001> direction, are used for the iron core of transformers, etc., where magnetic flux is applied only in one direction, and they do not necessarily have a specific texture. Non-oriented silicon steel sheets, which exhibit suitable properties in all directions, are used for iron cores of rotating equipment, etc. In grain-oriented silicon steel sheets, the surface oxide film and forsterite (2MgO・SiO 2 ) produced by high-temperature annealing at 1000°C or higher after applying a release agent containing MgO as the main component causes basic damage. In order to form an insulating film and add tensile strength and corrosion resistance, a heat-resistant phosphate-based coating liquid is baked on. As a result, the interlayer insulation resistance (e.g.
When measured by the method specified in JISC2550) 50 ~
200 (Ω-cm 2 / sheet). Furthermore, even if strain relief annealing is performed at approximately 850°C, the adhesion does not deteriorate.

䞀方、無方向けい玠鋌板には、地鉄面に盎接リ
ン酞塩系無機質コヌチングを、あるいはそれに暹
脂成分を加えたコヌチング液を焌付けおいる。こ
の堎合には䞀般に耐熱性は劣る。
On the other hand, for non-directional steel sheets, a phosphate-based inorganic coating or a coating liquid containing a resin component is baked directly onto the base steel surface. In this case, heat resistance is generally inferior.

以䞊に述べたような埓来技術ずしお公知である
被膜の圢成方法は、この発明の察象である非晶質
合金薄垯あるいは高けい玠鋌急冷薄垯には䞍向き
であるのみならず、実斜困難な点も少なくない。
すなわち、䞋地被膜ずしおのフオルステラむトを
圢成させるためには、1000℃以䞊の高枩焌鈍を必
芁ずするが非晶質合金は結晶化のためにこの焌鈍
ができない。たた、高けい玠鋌急冷薄垯においお
は、特願昭54−164693号で瀺されおいるように、
100面内立方組織が高床に発達し、優れた磁気
特性を有するようにするためには、衚面の地鉄面
を雰囲気に裞出しお10-2〜10-7Torrの真空䞋で
焌鈍しなければならないが、このような焌鈍にお
いおは先述したフオルステラむトを圢成させるこ
ずは困難である。たた、この真空焌鈍のあずに、
衚面を酞化させおMgOを塗垃したあず、さらに、
高枩焌鈍を斜す方法をずればフオルステラむトを
圢成させるこずができるが補造コストが高くなる
ので実甚的ではない。
The coating formation methods known as prior art described above are not only unsuitable for the amorphous alloy ribbon or rapidly solidified high-silicon steel ribbon that is the object of the present invention, but also difficult to implement. There are quite a few points.
That is, in order to form forsterite as a base film, high-temperature annealing of 1000° C. or higher is required, but this annealing is not possible for amorphous alloys due to crystallization. In addition, as shown in Japanese Patent Application No. 164693-1987, for high-silicon steel quenched ribbon,
(100) In order to have a highly developed in-plane cubic structure and excellent magnetic properties, the bare iron surface of the surface is exposed to the atmosphere and annealed under a vacuum of 10 -2 to 10 -7 Torr. However, it is difficult to form the above-mentioned forsterite in such annealing. Also, after this vacuum annealing,
After oxidizing the surface and applying MgO,
Forsterite can be formed by high-temperature annealing, but this is not practical because the manufacturing cost increases.

発明者らは、非晶質合金薄垯および高けい玠鋌
急冷薄垯に良奜な特性を有する被膜を圢成させる
べく、皮々の実隓を行な぀たが、これらの薄垯の
衚面に真空蒞着、化孊蒞着あるいはスパツタリン
グによ぀お、セラミツクス薄膜を斜こすず良奜な
特性を有する被膜が圢成されるこずを芋出し、こ
の発明を完成させたものである。
The inventors conducted various experiments in order to form coatings with good properties on amorphous alloy ribbons and high-silicon steel quenched ribbons. The present invention was completed based on the discovery that a thin ceramic film having good properties could be formed by applying a ceramic thin film by chemical vapor deposition or sputtering.

この発明においおは、被膜を圢成させる察象の
電磁材料ずしお、Feを70at以䞊含有する非晶
質合金薄垯ず液䜓からの超急冷法によ぀お䜜成さ
れた〜8wtのSiを含有する高けい玠鋌急冷薄
垯を甚いるこずずする。Feを70at以䞊含有す
る非晶質合金薄垯は通垞、宀枩での飜和磁束密床
が玄1.5T以䞊の倀をも぀ので電力甚トランスな
どのコアヌ材料ずしお甚いるこずができる。これ
らは、FeaXbYc添字は原子であらわされる
組成から成るこずが知られ、ここで、75、
25、Co、Ni、Mn、Cu、Crの内の䞀
皮以䞊、、Si、、、Geの内の䞀皮以
䞊である。代衚的には、Fe81B13Si4C2、
Fe78B20P1Ge1、Fe78Co3Si5B14などが、比范的に
飜和磁束密床が倧きく、か぀熱的に安定で磁気特
性が優れおいるこずが知られおいる。たた、この
発明では䞊蚘のような非晶質合金薄垯のほかに
も、FeaCobTi、Zrc䜆し、70、15、
20であらわされる非晶質合金薄垯を甚
いるこずができる。
In this invention, the electromagnetic material on which the film is formed is an amorphous alloy ribbon containing 70 at% or more of Fe and 2 to 8 wt% of Si produced by ultra-quenching from a liquid. High-silicon steel quenched ribbon will be used. Amorphous alloy ribbons containing 70 at% or more Fe usually have a saturation magnetic flux density of about 1.5 T or more at room temperature, so they can be used as core materials for power transformers and the like. These are known to have a composition expressed as Fe a X b Y c (subscripts are atomic %), where a75, b
+c25, X=one or more of Co, Ni, Mn, Cu, and Cr; Y=one or more of B, Si, C, P, and Ge. Typically , Fe81B13Si4C2 ,
It is known that Fe 78 B 20 P 1 Ge 1 , Fe 78 Co 3 Si 5 B 14 , and the like have a relatively large saturation magnetic flux density, are thermally stable, and have excellent magnetic properties. In addition to the above-mentioned amorphous alloy ribbon, this invention also uses Fe a Co b (Ti, Zr) c (where a>70, b<15,
An amorphous alloy ribbon having the formula 5<c<20) can be used.

䞀方、Siを〜8wt含有する高けい玠鋌急冷
薄垯、なかでも100〔OKl〕方䜍に集積した面
内無方向組織を有する急冷薄垯においおは、優れ
た励磁、鉄損特性を有し、電力甚トランスのみな
らず回転機などのコアヌ材料ずしお甚いるこずが
できる。
On the other hand, high-silicon steel quenched ribbons containing 2 to 8 wt% Si, especially quenched ribbons with in-plane non-directional structures accumulated in the (100) [OKl] orientation, have excellent excitation and iron loss characteristics. It can be used as a core material not only for power transformers but also for rotating machines.

この発明においおは薄垯の衚面に、SiO2、
MgO、Al2O3、TiO2、Ce2O3、SrO2、Ta2O5、
ThO2およびZrO2などの耐食性セラミツクスを真
空蒞着、化孊蒞着あるいはスパツタリングによ぀
お薄膜被芆を圢成する。
In this invention, SiO 2 ,
MgO , Al2O3 , TiO2 , Ce2O3 , SrO2 , Ta2O5 ,
Thin film coatings of corrosion-resistant ceramics such as ThO 2 and ZrO 2 are formed by vacuum deposition, chemical vapor deposition or sputtering.

真空蒞着においおは、通垞10-2皋床のあるいは
さらに高床の真空䞋で、前蚘のセラミツクスを電
子線照射などによ぀お加熱し、基盀薄垯の衚
面にセラミツクス薄膜を圢成させる。基盀薄
垯は、特に加熱しなくおも良奜な薄膜が圢成さ
れるが、䞀般に200〜400℃に加熱しおおくず、よ
り高密床で密着性の優れた薄膜が圢成される。こ
の堎合、結晶質である高けい玠鋌薄垯においおは
任意の枩床に加熱しおセラミツクスを蒞着させ埗
るが、非晶質合金薄垯の堎合には加熱枩床をその
合金の結晶化枩床以䞋にするこずが必芁ずされ
る。Fe75〜85、Si、、25〜15の非晶質合
金はその結晶化枩床が300〜500℃にわた぀おい
る。䞀般に非晶質合金薄垯は液䜓から急冷しお䜜
成したたたの状態では磁気特性が悪いので、キナ
リヌ点以䞊結晶化枩床で焌鈍しお特性を向䞊させ
る。この際、薄垯の長手方向に磁堎をかけお冷华
するず長手方向に䞀軞異方性が生じ、特に長手方
向に優れた磁気特性が埗られる。
In vacuum evaporation, the ceramic is heated by electron beam irradiation or the like under a vacuum of about 10 -2 or higher to form a ceramic thin film on the surface of the substrate (thin ribbon). A good thin film can be formed on the substrate (thin ribbon) without particular heating, but generally, if it is heated to 200 to 400°C, a thin film with higher density and better adhesion will be formed. In this case, a crystalline high-silicon steel ribbon can be heated to any temperature to deposit ceramics, but in the case of an amorphous alloy ribbon, the heating temperature is lower than the crystallization temperature of the alloy. It is necessary to do so. The amorphous alloy of Fe75-85 (B, Si, C, P) 25-15 has a crystallization temperature ranging from 300 to 500 °C. In general, amorphous alloy ribbons have poor magnetic properties when they are produced by quenching from a liquid, so they are annealed at a crystallization temperature above the Curie point to improve their properties. At this time, when a magnetic field is applied in the longitudinal direction of the ribbon to cool it, uniaxial anisotropy occurs in the longitudinal direction, and particularly excellent magnetic properties can be obtained in the longitudinal direction.

この発明においおは、非晶質合金薄垯の堎合
に、この磁気向䞊のための熱凊理ずセラミツクス
薄膜圢成を同時に同䞀工皋で行なうのが望たし
い。
In the present invention, in the case of an amorphous alloy ribbon, it is desirable that the heat treatment for improving magnetism and the formation of the ceramic thin film be performed simultaneously in the same process.

たた、発明者らは真空蒞着においお連続的にセ
ラミツクス蒞着を斜す際に、薄垯の長手方向に匵
力をかけるず、最終成品での薄垯の磁気特性は向
䞊し、特に湟曲などによる圧瞮応力がかか぀た堎
合にも磁気特性の劣化が少なくなるこずを芋出し
た。
In addition, the inventors found that when applying tension in the longitudinal direction of the ribbon during continuous ceramic deposition in vacuum evaporation, the magnetic properties of the ribbon in the final product improve, especially compressive stress due to curvature etc. It has been found that even in such cases, deterioration of magnetic properties is reduced.

第図に特性の䞀䟋を瀺す。単ロヌル法で䜜成
した25Ό厚のFe80B20非晶質薄垯を10-2Torrの
真空槜内で電子線照射加熱によるSiO2ずMgOの
蒞着を行な぀た。この際、薄垯を290℃に加熱し
た。このあず、さらに325℃で50Oeの磁堎䞭焌鈍
を斜したあず、平板状で、又、皮々の曲率のトロ
むダル状でHc倀盎流、1.2Tを枬定し
た。第図に瀺すようにトロむダルの埄を小さく
しおゆくずHc倀は劣化し、軟磁性材料ずしおの
メリツトは倱なわれおゆく。これは湟曲によ぀お
板に郚分的に圧瞮力が生じたためず考えられる。
特にこの実斜䟋のようにFe含有量の高く、磁歪
λ100が正の倧きな倀をも぀材料では著しい。し
かし、第図に瀺すようにSiO2やMgOを玄1Ό
蒞着するず、湟曲によるHcの劣化は、はるかに
小さくなる。Fe80B20非晶質薄垯の熱膚脹率は玄
10×10-6K-1であるのに察しお、SiO2ずMgOのそ
れは、×10-6K-1皋床あるいはそれ以䞋である
ので、蒞着時に加熱したあずの冷华で熱膚脹率の
差によ぀お薄垯に匵力が働らく。このために湟曲
による圧瞮力が緩和され第図のようなHc倀の
劣化の抑制が生じたず考えられる。
Figure 1 shows an example of the characteristics. SiO 2 and MgO were deposited on a 25 ÎŒm thick Fe 80 B 20 amorphous ribbon prepared by a single roll method in a vacuum chamber at 10 −2 Torr by electron beam irradiation heating. At this time, the ribbon was heated to 290°C. After this, after further annealing in a magnetic field of 50 Oe at 325° C., the Hc value (DC, Bm = 1.2 T) was measured in a flat plate shape and in a toroidal shape with various curvatures. As shown in Figure 1, as the diameter of the toroid is reduced, the Hc value deteriorates and the merits of the material as a soft magnetic material are lost. This is thought to be due to compressive force being generated locally on the plate due to the curvature.
This is particularly noticeable in materials like this example, which have a high Fe content and a large positive value of magnetostriction λ100. However, as shown in Figure 1, SiO 2 or MgO is
When deposited, the degradation of Hc due to curvature is much smaller. The coefficient of thermal expansion of Fe 80 B 20 amorphous ribbon is approximately
10 × 10 -6 K -1 , whereas that of SiO 2 and MgO is about 1 × 10 -6 K -1 or less, so the difference in thermal expansion coefficient is caused by cooling after heating during vapor deposition. tension is exerted on the ribbon. This is thought to have alleviated the compressive force caused by the curvature and suppressed the deterioration of the Hc value as shown in Figure 1.

さらに4.5wt珪玠鋌における同様な䟋を第
図に瀺す。双ロヌル法で䜜成した4.5wtSiを含
む珪玠鋌薄垯を1000℃で連続焌鈍した。この薄垯
の衚面粗床は平均粗さRa1.0Όであ぀た。こ
の薄膜には第図の堎合ず同様にしおSiO2ず
MgOの蒞着を行い、皮々の曲率によるトロむダ
ル状でHc倀盎流、1.2Tを枬定した。
第図に瀺すように圎曲によりHc倀は劣化する
が、SiO2やMgOを蒞着したものは、その劣化が
小さくなる。
Furthermore, a similar example of 4.5wt% silicon steel is shown in the second example.
As shown in the figure. A silicon steel ribbon containing 4.5wt%Si prepared by the twin roll method was continuously annealed at 1000℃. The surface roughness of this ribbon was an average roughness Ra=1.0 ÎŒm. This thin film is coated with SiO 2 in the same way as in Figure 1.
MgO was deposited, and the Hc value (DC, Bm=1.2T) was measured in a toroidal shape with various curvatures.
As shown in FIG. 2, the Hc value deteriorates due to curvature, but this deterioration is reduced in the case of SiO 2 or MgO deposited.

以䞊のようなセラミツクス薄膜圢成による磁噚
特性劣化の抑制は実甚的には倧きな効果をも぀。
Suppressing the deterioration of ceramic properties by forming a ceramic thin film as described above has a great practical effect.

この発明で察象ずするアモルフアス合金や高珪
玠鋌急冷薄垯は、通垞、トロむダル状に巻いお鉄
芯ずし、電力倉圧噚や電子機噚に甚いられるの
で、圎曲による磁気特性の劣化が倧きい堎合に
は、平板状で、優れた特性を瀺しおも実甚に耐え
られない。この発明は圎曲による劣化を抑える効
果を有するので特に実機における特性を充分に改
良するものである。
The amorphous alloys and high-silicon steel quenched ribbons that are the subject of this invention are usually wound into a toroidal shape to form an iron core and used in power transformers and electronic devices, so if the magnetic properties are significantly degraded due to curvature, , it is flat and has excellent properties, but cannot be put to practical use. This invention has the effect of suppressing deterioration due to curvature, and therefore sufficiently improves the characteristics particularly in actual machines.

次に、第図に同じ非晶質薄垯サンプルを甚い
お、SiO2を0.8Όの厚さに真空蒞着したあずの平
板状および35mmφのトロむダル状で枬定した鉄損
W12/501.2T励磁で50Hzでの鉄損を瀺す。真空
蒞着においおは、薄垯の加熱を行なわない堎合ず
350℃に加熱した堎合のそれぞれで匵力を付加し
ながら、SiO2の蒞着を斜し、このあず350℃で
50Oeの磁堎䞭焌鈍を斜した。匵力を付加しお蒞
着を行なうず鉄損は䜎くなる。特にこの傟向は薄
垯を湟曲しお枬定する堎合に著しい。このような
付加匵力の圱響は、玄0.5Kgmm2の匵力からあら
われおくる。したが぀お、この発明においおは蒞
着時に付加する匵力は0.5Kgmm2以䞊ずする。
Next, Figure 3 shows the iron loss measured using the same amorphous ribbon sample in a flat plate shape and a 35 mmφ toroidal shape after vacuum-depositing SiO 2 to a thickness of 0.8 ÎŒm.
W 12/50 (Iron loss at 50Hz with 1.2T excitation) is shown. In vacuum evaporation, there are cases where the ribbon is not heated and cases where the ribbon is not heated.
SiO 2 was vapor-deposited while applying tension in each case of heating to 350°C, and then at 350°C.
Annealing was performed in a magnetic field of 50 Oe. If the deposition is performed under tension, the iron loss will be lowered. This tendency is particularly noticeable when measuring a curved ribbon. The effect of such additional tension becomes apparent from a tension of approximately 0.5 Kg/mm 2 . Therefore, in the present invention, the tension applied during vapor deposition is set to 0.5 Kg/mm 2 or more.

次に、双ロヌル法で溶鋌から盎接補板した
120Ό厚のけい玠鋌薄垯を、1140℃で玄
10-2Torrの真空䞭で20分間焌鈍したあず、同じ
真空槜内でMgOの蒞着を行な぀た。この蒞着の
期間䞭に、薄垯の長手方向に匵力をかけた。これ
らの薄垯の平板状ず35mmφのトロむダル状での鉄
損倀を第図に瀺す。トロむダルにするず鉄損倀
は劣化する。この傟向は磁歪が倧きい䜎Si材料ほ
ど著しいが、蒞着時に匵力をかけおおくずこの劣
化は緩和される。この匵力は0.5Kgmm2以䞊で有
効になる。
Next, the plate was made directly from molten steel using the twin roll method.
A silicon steel ribbon with a thickness of 120 ÎŒm is heated at 1140℃ to approx.
After annealing for 20 minutes in a vacuum of 10 -2 Torr, MgO was deposited in the same vacuum chamber. During this deposition, tension was applied in the longitudinal direction of the ribbon. Figure 4 shows the iron loss values of these thin strips in a flat plate shape and a 35 mmφ toroidal shape. When made toroidal, the iron loss value deteriorates. This tendency is more pronounced for low-Si materials with higher magnetostriction, but this deterioration can be alleviated by applying tension during deposition. This tension becomes effective at 0.5Kg/mm 2 or more.

以䞊の詊隓䟋の結果から刀るように、真空蒞着
によ぀おセラミツクスの薄膜被芆を薄垯衚面に斜
すこずは、応甚における磁性劣化を緩和するので
より奜たしい。
As can be seen from the results of the above test examples, it is more preferable to apply a ceramic thin film coating to the surface of the ribbon by vacuum deposition because it alleviates magnetic deterioration during application.

セラミツクスは高絶瞁性ず高耐食性を有しおい
るので、薄垯衚面が充分に厚みのあるセラミツク
ス薄膜におおわれおいるず絶瞁性ず耐食性は必然
的に充たされるこずずなる。
Ceramics have high insulation properties and high corrosion resistance, so if the surface of the ribbon is covered with a sufficiently thick ceramic thin film, insulation and corrosion resistance will inevitably be satisfied.

この発明においおは、セラミツクスを0.1Ό以
䞊の厚みで薄膜ずしおコヌチングするず、玄10
Ω−cm2枚以䞊の局間電気絶瞁抵抗が埗られ
た。たた、0.1Ό以䞊の厚みがあるず電気機噚の
コアヌ材料ずしお充分な耐食性が埗られる。した
が぀お、この発明においおはセラミツクス薄膜の
厚みを0.1Ό以䞊ずする。しかし、䞀方、セラミ
ツクス薄膜の厚みが3Ό以䞊になるず、磁性䞊
や絶瞁・耐食䞊はむしろ奜たしくなるが、成品薄
垯ずしおの非磁性郚分が増倧しお占積率が劣化し
応甚䞊は䞍郜合になるず同時に曲げ密着性が劣化
しお、䟋えば20mmφ曲率皋床の湟曲で剥離するよ
うになる。たた、圓然ながら3Ό以䞊の蒞着は
長時間を芁するので工業的にも奜たしくない。し
たが぀おこの発明においおは、セラミツクス薄膜
の厚みを3Ό以䞋ずする。
In this invention, when ceramics are coated as a thin film with a thickness of 0.1 ÎŒm or more, approximately 10
An interlayer electrical insulation resistance of (Ω-cm 2 /sheet) or more was obtained. Further, if the thickness is 0.1 ÎŒm or more, sufficient corrosion resistance can be obtained as a core material for electrical equipment. Therefore, in this invention, the thickness of the ceramic thin film is set to 0.1 ÎŒm or more. However, on the other hand, if the thickness of the ceramic thin film becomes 3 ÎŒm or more, it is preferable in terms of magnetism, insulation, and corrosion resistance, but the non-magnetic portion of the finished product ribbon increases and the space factor deteriorates, which is disadvantageous in terms of application. At the same time, the bending adhesion deteriorates, and peeling occurs, for example, at a curvature of about 20 mmφ. Further, as a matter of course, vapor deposition of 3 ÎŒm or more requires a long time and is not preferred from an industrial perspective. Therefore, in this invention, the thickness of the ceramic thin film is set to 3 ÎŒm or less.

次に、この発明においおは、セラミツクス薄膜
を化孊蒞着によ぀お斜しおも良い。代衚的には
AlCl3、SiCl4、ZrCl4などの金属塩化物の蒞気を
H2、Co2などのガスをキダリダヌずしお薄垯にあ
お、その衚面にAl2O3、SiO2、ZrO2などのセラミ
ツクス薄膜を圢成させる。この堎合は通垞薄垯を
700〜1050℃に加熱しおおくのが、より密床の高
く、密着性の良い薄膜が圢成される。高枩加熱が
できない非晶質合金薄垯にはこの方法は適しおい
ない。高けい玠鋌薄垯にはこの方法を適甚するこ
ずができ前述したように、薄膜圢成時に匵力を付
加しおおくず磁性の湟曲にずもなう劣化が緩和さ
れる。
Next, in the present invention, the ceramic thin film may be applied by chemical vapor deposition. Typically
Vapors of metal chlorides such as AlCl 3 , SiCl 4 , ZrCl 4
A gas such as H 2 or Co 2 is applied to the ribbon as a carrier to form a ceramic thin film of Al 2 O 3 , SiO 2 , ZrO 2 or the like on its surface. In this case, a thin strip is usually used.
Heating to 700-1050°C will form a thin film with higher density and better adhesion. This method is not suitable for amorphous alloy ribbons that cannot be heated at high temperatures. This method can be applied to high-silicon steel ribbons, and as described above, if tension is applied during thin film formation, deterioration due to magnetic curvature is alleviated.

たた、この発明においおは薄膜圢成にスパツタ
リングを甚いおも良い結果が埗られる。この方法
では通垞、真空䞋においおSiO2などのセラミツ
クスをアルゎンなどでスパツタヌしお薄垯衚面に
薄膜を圢成させる。この堎合においおも真空蒞着
の堎合ず党く同様にスパツタリングの期間䞭に薄
垯を加熱しおおくず同時に0.5Kgmm2以䞊の匵力
を付加しおおくのが良い。
Further, in the present invention, good results can be obtained even when sputtering is used to form a thin film. In this method, ceramics such as SiO 2 are usually sputtered with argon or the like under vacuum to form a thin film on the surface of the ribbon. In this case, as in the case of vacuum deposition, it is preferable to heat the ribbon during sputtering and at the same time apply a tension of 0.5 kg/mm 2 or more.

以䞊に述べた真空蒞着、化孊蒞着およびスパツ
タリング法によ぀お衚面に耐食性、絶瞁性および
匵力付䞎性さらに曲げ密着性の良奜なセラミツク
ス薄膜から成る被膜を圢成させた非晶質合金薄垯
および高けい玠鋌薄垯は、このたたの状態で、電
気機噚のコアヌ材料ずしお応甚できる。特に、匵
力付䞎性の優れたこの発明の成品は、巻きコアヌ
鉄芯材料などに応甚するずその特性が発揮され
る。
Amorphous alloy ribbons and high silicone alloys are produced using the vacuum deposition, chemical vapor deposition, and sputtering methods described above to form coatings consisting of ceramic thin films with corrosion resistance, insulation properties, tension imparting properties, and good bending adhesion. Raw steel ribbon can be used as a core material for electrical equipment in its original state. In particular, the product of the present invention, which has excellent tension imparting properties, exhibits its properties when applied to wound core iron core materials.

たた、応甚によ぀おはさらに高床の絶瞁性や耐
食性あるいは匵力付䞎性を芁求される堎合があ
る。このような堎合には、セラミツクス薄膜を圢
成させたあず、匕続いおリン酞塩を䞻成分ずする
コヌチング液を塗垃し、800℃皋床の枩床で焌付
けお匵力付䞎型の䞊塗り被膜を圢成させるのが良
い。この匵力付䞎型の被膜は埓来公知のように薄
垯の磁歪−圧瞮特性を䞀局改良する。
Furthermore, depending on the application, even higher levels of insulation, corrosion resistance, or tension imparting properties may be required. In such cases, after forming a ceramic thin film, a coating liquid containing phosphate as the main component is applied and baked at a temperature of about 800°C to form a tension-applied top coat. is good. This tensioning coating further improves the magnetostrictive-compressive properties of the ribbon, as is known in the art.

このようにしお被膜をコヌチングした薄垯は剪
断・打抜きされコアヌに組み立おられる。この発
明の被膜は800℃皋床の歪取り焌鈍に充分に耐え
るこずができる。
The thus coated ribbon is sheared and punched and assembled into a core. The coating of this invention can sufficiently withstand strain relief annealing at about 800°C.

以䞋実斜䟋に぀いお述べる。 Examples will be described below.

実斜䟋  85Ό厚の6.4wtSi−Fe急冷薄垯ず、25Ό厚
の非晶質急冷薄垯Fe81B13.5Si3.5C2を、衚面酞
化物陀去のためにそれぞれ軜床のH2SO4酞掗に
䟛したあず、それらの薄垯面䞊にSiO2ずAl2O3の
混合薄膜2Όをスパツタリングで圢成させた。
スパツタリングはアルゎンむオンで行ない圧力を
×10-4Torrにした。
Example 1 An 85 ÎŒm thick 6.4wt% Si-Fe quenched ribbon and a 25 ÎŒm thick amorphous quenched ribbon (Fe 81 B 13.5 Si 3.5 C 2 ) were each treated with mild H 2 to remove surface oxides. After being subjected to SO 4 pickling, a mixed thin film of 2 ÎŒm of SiO 2 and Al 2 O 3 was formed on the ribbon surface by sputtering.
Sputtering was performed using argon ions at a pressure of 3×10 −4 Torr.

この薄膜は10mmφの湟曲をおこな぀おも剥離し
なか぀た。たた局間絶瞁抵抗は70〜100Ω・cm2
枚であ぀た。さらに、この薄垯を湿床80、35℃
の空気䞭に30日間暎露したが腐食の発生は認めら
れなか぀た。
This thin film did not peel off even after being bent to a diameter of 10 mm. Also, the interlayer insulation resistance is 70 to 100Ω・cm 2 /
It was hot. Furthermore, this thin strip was heated at 80% humidity and 35°C.
No corrosion was observed after exposure to the air for 30 days.

【図面の簡単な説明】[Brief explanation of drawings]

第図、第図は皮々な曲率䞋でHcの劣化の
ありさたを瀺す図衚、第図、第図は蒞着時の
付加匵力ず鉄損の関係グラフである。
Figures 1 and 2 are graphs showing how Hc deteriorates under various curvatures, and Figures 3 and 4 are graphs of the relationship between added tension during vapor deposition and iron loss.

Claims (1)

【特蚱請求の範囲】  Feを70at以䞊含有する非晶質合金急冷薄
垯あるいは溶鋌からの盎接補板法によ぀お䜜られ
たSi2〜8wtを含有する高珪玠鋌急冷薄垯の衚
面に真空蒞着、化孊蒞着あるいはスパツタリング
によ぀お0.1Ό以䞊3ÎŒm以䞋の厚みのセラミツク
ス薄膜を斜こすこずを特城ずする電磁薄垯に良奜
な絶瞁性、匵力付䞎性、耐食性および曲げ密着性
を有する被膜を圢成する方法。  特蚱請求の範囲第項蚘茉の方法においお、
セラミツクス薄膜を斜こす工皋が、薄垯の加熱ず
0.5Kgmm2以䞊の匵力付䞎ずのうち少なくずも䞀
方の条件䞋であるこず。  Feを70at以䞊含有する非晶質合金急冷薄
垯あるいは溶鋌からの盎接補板法によ぀お䜜られ
たSi2〜8wtを含有する高珪玠鋌急冷薄垯の衚
面に真空蒞着、化孊蒞着あるいはスパツタリング
によ぀お0.1Ό以䞊3ÎŒm以䞋の厚みのセラミツク
ス薄膜を斜こすこずずこのセラミツクス薄膜を斜
こした埌、リン酞塩を䞻成分ずする匵力付䞎圢䜎
熱膚匵絶瞁被膜を斜こすこずずの結合を特城ずす
る電磁薄垯に良奜な絶瞁性、匵力付䞎性、耐食性
および曲げ密着性を有する被膜を圢成する方法。
[Scope of Claims] 1. The surface of a quenched amorphous alloy ribbon containing 70 at% or more Fe or a quenched high silicon steel ribbon containing 2 to 8 wt% Si made by direct plate manufacturing from molten steel. A coating having good insulation properties, tension imparting properties, corrosion resistance and bending adhesion for electromagnetic thin strips, characterized in that a ceramic thin film with a thickness of 0.1 ÎŒm or more and 3 ÎŒm or less is applied to the electromagnetic ribbon by vacuum deposition, chemical vapor deposition or sputtering. How to form. 2. In the method described in claim 1,
The process of applying a ceramic thin film involves heating the ribbon and
Must be under at least one of the following conditions: applying a tension of 0.5Kg/mm 2 or more. 3. Vacuum deposition or chemical vapor deposition on the surface of an amorphous alloy quenched ribbon containing 70at% or more of Fe or a quenched high silicon steel ribbon containing 2 to 8wt% Si made by direct plate manufacturing from molten steel. Alternatively, a ceramic thin film with a thickness of 0.1 ÎŒm or more and 3 ÎŒm or less is applied by sputtering, and after this ceramic thin film is applied, a tension-applied low thermal expansion insulation coating containing phosphate as a main component is applied. A method for forming a coating having good insulation properties, tension imparting properties, corrosion resistance, and bending adhesion properties on an electromagnetic ribbon characterized by bonding.
JP17020480A 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band Granted JPS5795608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17020480A JPS5795608A (en) 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17020480A JPS5795608A (en) 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band

Publications (2)

Publication Number Publication Date
JPS5795608A JPS5795608A (en) 1982-06-14
JPH0151043B2 true JPH0151043B2 (en) 1989-11-01

Family

ID=15900589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17020480A Granted JPS5795608A (en) 1980-12-04 1980-12-04 Method for forming film having excellent insulating property, tension imparting property, corrosion resistance, and bending adhesion in thin electromagnetic band

Country Status (1)

Country Link
JP (1) JPS5795608A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296703A (en) * 1985-06-26 1986-12-27 Kawasaki Steel Corp Iron loss reduction method for single directional grain oriented silicon steel plate
AU4693099A (en) * 1998-06-18 2000-01-05 Allied-Signal Inc. Amorphous metal stator for a radial-flux electric motor
JP6033834B2 (en) * 2014-12-25 2016-11-30 東芝䞉菱電機産業システム株匏䌚瀟 Cage rotor manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss

Also Published As

Publication number Publication date
JPS5795608A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US5069731A (en) Low-frequency transformer
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
US6562473B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
EP0695812B1 (en) Nanocrystalline alloy with insulating coating, magnetic core made thereof, and process for forming insulating coating on a nanocrystalline alloy
WO2011102328A1 (en) Non-oriented electromagnetic steel sheet and process for production thereof
JP7016358B2 (en) Electrical steel sheet with insulating film and its manufacturing method
JPS63302504A (en) Magnetic core and manufacture thereof
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JPH0151043B2 (en)
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
CN114106593B (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP6645632B1 (en) Electromagnetic steel sheet with insulating coating, method of manufacturing the same, iron core of transformer using the above-mentioned electromagnetic steel sheet, transformer, and method of reducing dielectric loss of transformer
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
US3160509A (en) High temperature coating for silicon steel
WO2024162441A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
WO2023139847A1 (en) Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
KR20240116512A (en) Coating for oriented silicon steel coating layer, oriented silicon steel plate, and manufacturing method therefor
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
CN114381584A (en) Insulating coating liquid for oriented silicon steel surface, oriented silicon steel plate and manufacturing method thereof
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss