JP2000323318A - Directional silicon steel lamination with low core-loss value - Google Patents

Directional silicon steel lamination with low core-loss value

Info

Publication number
JP2000323318A
JP2000323318A JP11131875A JP13187599A JP2000323318A JP 2000323318 A JP2000323318 A JP 2000323318A JP 11131875 A JP11131875 A JP 11131875A JP 13187599 A JP13187599 A JP 13187599A JP 2000323318 A JP2000323318 A JP 2000323318A
Authority
JP
Japan
Prior art keywords
rolling direction
young
modulus
steel sheet
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11131875A
Other languages
Japanese (ja)
Other versions
JP3473494B2 (en
Inventor
Hiroshi Yamaguchi
山口  広
Mineo Muraki
峰男 村木
Seiji Okabe
誠司 岡部
Mitsumasa Kurosawa
光正 黒沢
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13187599A priority Critical patent/JP3473494B2/en
Publication of JP2000323318A publication Critical patent/JP2000323318A/en
Application granted granted Critical
Publication of JP3473494B2 publication Critical patent/JP3473494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a core-loss value by forming a tension anisotropic coating on the surface of a directional silicon steel lamination, wherein Young's modulus in the rolling direction divided by coefficient of thermal expansion is greater than Young's modulus perpendicular to the rolling direction divided by coefficient of thermal expansion. SOLUTION: After plating with Cr a finally finished annealed steal plate including Si at 3 weight percent and formed of a directional silicon steel lamination having a thickness of 0.23 mm, it anneals at a different temperature to evaluate magnetic properties. A tension imparted to the steel plate is calculated from a warp of sample steal plated on either side with Cr. In accordance with the calculated result, Young's modulus becomes about 1.4 times when a Cr plated film is directed to the orientation <001> in the rolling direction, and then an obtained stress also becomes about 1.4 times. A coating imparting a greater tension in the rolling direction may be any of anisotropic coatings in which Young's modulus in the rolling direction divided by coefficient of thermal expansion (EL/αL) is greater than Young's modulus perpendicular to the rolling direction divided by coefficient of thermal expansion (Ec/αc).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器や発電器の
鉄心等に利用される方向性珪素鋼板に関し、特に該鋼板
の表面に被覆する被膜に張力異方性を付与することによ
って、鉄損値の一層の低減を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet used for an iron core of a transformer or a power generator, and more particularly to a steel sheet by imparting tensile anisotropy to a film covering the surface of the steel sheet. It is intended to further reduce the loss value.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(110)
[001]方位に配向した方向性珪素鋼板は、優れた軟
磁気特性を有することから商用周波数域での各種鉄心材
料として広く用いられている。かかる珪素鋼板において
特に重要な特性は、一般に50Hzの周波数で 1.7Tに磁化
させた場合の損失であるW17/50 (W/kg)で表わされると
ころの鉄損が低いことである。
2. Description of the Related Art Si is contained and the crystal orientation is (110).
Oriented silicon steel sheets oriented in the [001] direction are widely used as various iron core materials in the commercial frequency range because of their excellent soft magnetic properties. A particularly important characteristic of such a silicon steel sheet is a low iron loss represented by W 17/50 (W / kg), which is a loss when magnetized to 1.7 T at a frequency of 50 Hz.

【0003】鉄損のうち、渦電流損(We )を低減する
のに有効な方法としては、Siを含有させて電気抵抗を高
める方法、鋼板板厚を薄くする方法、さらには結晶粒径
を低減する方法が、一方ヒステリシス損(Wh )を低減
する方法としては、圧延方向に<001>軸を高度に揃
える方法が知られている。上記した各方法のうち、Siを
多量に含有させる方法は、飽和磁束密度の低下を招き鉄
心のサイズ拡大の原因になるため、自ずから限界があっ
た。また、結晶方位を揃える方法も、すでに磁束密度B
8 にして1.96Tや1.97Tという優れた値の製品が得られ
ており、これ以上の改善の余地は少なくなっている。さ
らに、製品板厚を低減する方法についても、過度に薄い
板厚の製品は圧延が困難であることから、工業的には現
実的ではない。
Among the iron losses, effective methods for reducing eddy current loss (We) include a method of increasing electric resistance by adding Si, a method of reducing the thickness of a steel sheet, and a method of reducing a crystal grain size. As a method of reducing the hysteresis loss (W h ), a method of highly aligning the <001> axis in the rolling direction is known. Among the above-mentioned methods, the method of containing a large amount of Si has its own limit because it causes a decrease in the saturation magnetic flux density and causes an increase in the size of the iron core. In addition, the method of aligning the crystal orientations is similar to the method in which the magnetic flux density
Products with excellent values of 1.96T and 1.97T for 8 have been obtained, leaving little room for further improvement. Further, the method of reducing the thickness of the product is not industrially practical because an extremely thin product is difficult to roll.

【0004】その他、鉄損の低減に有効な方法として、
鋼板に張力を付加する方法が知られていて、工業的に
は、鋼板より熱膨張係数の小さい材質からなる被膜を被
成することによって、鋼板に対して張力を付与してい
る。すなわち、最終的に結晶方位を揃える2次再結晶と
鋼板の純化を兼ねる最終仕上焼鈍工程で、鋼板表面の酸
化物(SiO2を主体とする)と鋼板表面に塗布した焼鈍分
離剤(MgOを主成分とする)とが反応してフォルステラ
イト (Mg2SiO4)を主成分とする被膜が形成されるが、こ
の被膜は鋼板に与える張力が大きく、鉄損低減に効果が
ある。さらに、この張力効果を増大するために、上記し
たフォルステライト質被膜上に、低熱膨張性のコーティ
ング(張力付与型の絶縁コーティング)を上塗りして、
製品とすることが一般的である。
[0004] Other effective methods for reducing iron loss include:
A method of applying tension to a steel sheet is known, and industrially, tension is applied to the steel sheet by forming a coating made of a material having a smaller thermal expansion coefficient than that of the steel sheet. That is, in the final refining annealing step, which combines the secondary recrystallization to finally align the crystal orientation and the purification of the steel sheet, the oxide on the steel sheet surface (mainly SiO 2 ) and the annealing separator (MgO) applied to the steel sheet surface Reacts with the main component) to form a coating containing forsterite (Mg 2 SiO 4 ) as a main component, but this coating has a large tension applied to the steel sheet and is effective in reducing iron loss. Further, in order to increase the tension effect, a low thermal expansion coating (tensile type insulating coating) is overcoated on the forsterite coating,
Generally, it is a product.

【0005】現在、フォルステライト被膜を有する方向
性珪素鋼板に適用される張力付与型の絶縁コーティング
としては、Alやアルカリ土類金属のリン酸塩とコロイダ
ルシリカ、無水クロム酸またはクロム酸塩を主成分とし
た処理液を塗布・焼付けすることによって形成されてい
るものが多い。このコーティングによる張力付与の機構
は、コロイダルシリカに代表される地鉄より熱膨張係数
の小さい無機質を大量に含有する被膜を高温で焼付ける
ことにより、地鉄と絶縁コーティングとの熱膨張差に基
づいて、常温では鋼板に張力が付与される現象を利用し
ている。この方法で形成される絶縁被膜は、鋼板に対す
る張力付与効果が大きく、鉄損低減に極めて有効であ
る。かかる絶縁被膜の代表的形成方法については、例え
ば特公昭53−28375 号公報および特公昭56−52117 号公
報等に開示されている。
At present, as a tension imparting type insulating coating applied to a grain oriented silicon steel sheet having a forsterite film, a phosphate of Al or alkaline earth metal and colloidal silica, chromic anhydride or chromate are mainly used. Many are formed by applying and baking a treatment liquid as a component. The mechanism of applying tension by this coating is based on the difference in thermal expansion between the ground iron and the insulating coating by baking the coating containing a large amount of inorganic substances having a smaller thermal expansion coefficient than that of the ground iron represented by colloidal silica at a high temperature. Thus, at room temperature, a phenomenon in which tension is applied to a steel sheet is used. The insulating coating formed by this method has a large effect of imparting tension to the steel sheet, and is extremely effective in reducing iron loss. A typical method of forming such an insulating film is disclosed in, for example, Japanese Patent Publication No. 53-28375 and Japanese Patent Publication No. 56-52117.

【0006】[0006]

【発明が解決しようとする課題】さて、鋼板と被膜との
熱膨張係数差を利用して鋼板に張力を付与する場合、そ
の張力値σは次式(1) で表されることが知られている
(例えば特許第2664323 号公報)。 σ=2Ecoa ・Acoa (T−T0 )(αmet −αcoa )÷Am --- (1) ここで、Ecoa :被膜のヤング率 Acoa , Amet :被膜、鋼板の断面積 T:被膜の被成温度(軟化温度) T0 :測定温度(室温) αcoa , αmet :被膜、鋼板の熱膨張係数 上掲式(1) に従えば、被膜のヤング率が高く、熱膨張係
数が鋼板のそれと比較して低いほど、張力値は大きくな
る。しかしながら、現行以上に被膜のヤング率や熱膨張
係数を変更しても、所望の低鉄損は得られなかった。
It is known that when a tension is applied to a steel sheet by utilizing a difference in thermal expansion coefficient between the steel sheet and the coating, the tension value σ is expressed by the following equation (1). (Eg, Japanese Patent No. 2664323). σ = 2E coa · A coa (T−T 0 ) (α met −α coa ) ÷ A m --- (1) where, E coa : Young's modulus of the coating A coa , A met : Cutting of coating, steel plate Area T: Coating temperature (softening temperature) T 0 : Measurement temperature (room temperature) α coa , α met : Coefficient of thermal expansion of coating and steel plate According to the above equation (1), the Young's modulus of the coating is high, The lower the coefficient of thermal expansion compared to that of a steel sheet, the greater the tension value. However, a desired low iron loss could not be obtained even if the Young's modulus or the coefficient of thermal expansion of the coating was changed more than at present.

【0007】以下、この理由について述べる。フォルス
テライトを主成分とする鉱物質の一次被膜にしても、上
塗りの低熱膨張性の張力付与型コーティングにしても、
被膜が発生させる応力は2次元的には等方的であり、面
内のすべての方向に一様に張力を付与する。これらの被
膜を鋼板に被成することによって磁区細分化効果が発揮
され、鉄損値が低下するのは、2次再結晶した方向性珪
素鋼板の結晶が圧延方向に対し、(110)[001]
方位に集積しているためである。なぜなら、ほぼ単結晶
に近いほど方位集積している方向性珪素鋼板は、圧延方
向には<100>軸、圧延と直角方向には<110>軸
を持つ結晶群から成っている。Fe等の体心立方格子(B
CC)を有する金属は一般的に<100>方位のヤング
率が最も小さい。下記のヤング率の定義式(2) で示され
るように、同一の応力σが付加された場合、ヤング率が
小さいほど物質の変形量は大きくなる。 付加応力σ=ヤング率E×変形量△L --- (2)
Hereinafter, the reason will be described. Whether it's a primary coating of minerals based on forsterite or a top-coating, low thermal expansion, tensioning coating,
The stress generated by the coating is isotropic in two dimensions, and uniformly applies tension in all directions in the plane. By forming these coatings on the steel sheet, the effect of magnetic domain refining is exhibited and the iron loss value is reduced because the crystal of the secondary recrystallized directional silicon steel sheet is (110) [001] with respect to the rolling direction. ]
This is because they are accumulated in the direction. This is because a grain-oriented silicon steel sheet which is oriented and oriented closer to a single crystal is composed of a crystal group having a <100> axis in the rolling direction and a <110> axis in a direction perpendicular to the rolling direction. Body-centered cubic lattice (B
Metals having CC) generally have the lowest Young's modulus in the <100> orientation. As shown by the following Young's modulus definition equation (2), when the same stress σ is applied, the smaller the Young's modulus, the larger the amount of deformation of the material. Additional stress σ = Young's modulus E × deformation △ L --- (2)

【0008】従って、方向性珪素鋼板に対して等方的に
一様な応力を付与した場合であっても、特に圧延方向に
最も伸張変形する。圧延方向に張力が加わった場合、圧
延方向とほぼ平行な磁区は細分化され、鉄損値は低減す
る。逆に圧延方向と直角に張力を付与した場合には、磁
区パターンは乱れたり消失したりして、鉄損値の増大を
招く。しかしながら、フォルステライトや上塗りコーテ
ィング等、等方的に張力を付与する被膜でも、上述した
ような鋼板自身の変形に対する異方性から圧延方向への
張力効果が最大となるので、鉄損値が低減するのであ
る。
Therefore, even when a uniform stress is applied isotropically to the grain-oriented silicon steel sheet, the steel sheet undergoes the most stretching deformation, particularly in the rolling direction. When tension is applied in the rolling direction, magnetic domains substantially parallel to the rolling direction are subdivided, and the iron loss value is reduced. Conversely, when tension is applied perpendicular to the rolling direction, the magnetic domain pattern is disturbed or disappears, resulting in an increase in iron loss value. However, even with a coating that imparts isotropic tension, such as forsterite or a topcoat, the iron loss value is reduced because the tensile effect in the rolling direction is maximized due to the anisotropy of the steel sheet itself as described above. You do it.

【0009】前掲式(1) から明らかなように、被膜の膜
厚を増加させたり、ヤング率を高めたり、熱膨張係数を
小さくすることによって、付与応力を増大させることは
可能である。しかしながら、この方法では同時に磁区細
分化に有害な圧延と直角方向の張力成分も増加するた
め、等方的な性質を有する被膜の各種因子を単に変更す
るだけでは、鉄損低減効果は飽和し、現状以上の鉄損低
減効果は得られなかった。上記したような理由により、
鋼板への張力付与による鉄損低減技術には、新しい発展
が近年認められなかったのである。
As is apparent from the above formula (1), it is possible to increase the applied stress by increasing the thickness of the coating, increasing the Young's modulus, or decreasing the coefficient of thermal expansion. However, this method also increases the rolling component and the tensile component in the perpendicular direction, which are detrimental to magnetic domain refining, so that simply changing various parameters of the coating having isotropic properties saturates the iron loss reducing effect. The effect of reducing iron loss was not obtained. For the reasons mentioned above,
In recent years, no new development has been recognized in the technology for reducing iron loss by applying tension to a steel sheet.

【0010】[0010]

【課題を解決するための手段】さて、発明者らは、上記
の限界を打破すべく種々検討を加えた結果、被膜自身に
張力異方性を付与するという全く新しい着想を得た。す
なわち、鉄損低減に有害な圧延と直角方向の張力付与効
果を減じ、より有効な圧延方向の張力付与を増加させる
べく鋭意研究を進めた結果、自身が張力付与異方性を有
する被膜を新たに見出し、本発明を完成させるに至った
のである。
Means for Solving the Problems The inventors of the present invention have made various studies to overcome the above-mentioned limitations, and as a result, have obtained a completely new idea of imparting tensile anisotropy to the coating itself. In other words, as a result of diligent research to reduce the effect of applying tension in the direction perpendicular to rolling that is detrimental to reducing iron loss, and to increase the application of tension in the rolling direction more effectively, a new film that has its own tension application anisotropy was developed. And completed the present invention.

【0011】すなわち、 本究明の要旨構成は次のとお
りである。 1.圧延方向のヤング率を熱膨張係数で除した値(EL
/αL )が、圧延方向と直角方向のヤング率を熱膨張係
数で徐した値(EC /αC )よりも大きい異方性被膜を
有することを特徴とする鉄損値の低い方向性珪素鋼板。
That is, the gist configuration of the present study is as follows. 1. The value obtained by dividing the Young's modulus in the rolling direction by the coefficient of thermal expansion ( EL
/ Α L ) having an anisotropic coating larger than the value (E C / α C ) obtained by reducing the Young's modulus in the direction perpendicular to the rolling direction by the coefficient of thermal expansion (E C / α C ). Silicon steel sheet.

【0012】2.鋼板の圧延方向に結晶配向している被
膜を有することを特徴とする上記1に記載の鉄損値の低
い方向性珪素鋼板。
2. 2. The grain-oriented silicon steel sheet having a low iron loss value according to the above 1, wherein the grain-oriented silicon steel sheet has a film oriented in the rolling direction of the steel sheet.

【0013】[0013]

【発明の実施の形態】以下、本発明について具体的に説
明する。3wt%Siを含有し、最終板厚が0.23mmの方向性
珪素鋼板の最終仕上焼鈍板を、H2SO4 で酸洗し、表面の
フォルステライトを除去した。得られた鋼板に、六価ク
ロムと硫酸からなる一般的なサージェント浴を用いてCr
メッキを施した。その後、種々の温度で焼鈍し、磁気特
性を評価した。また、鋼板の片面のみにCrメッキを行っ
た試料の反り量から、鋼板に対する付与張力を算出し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. A final finish-annealed sheet of a grain oriented silicon steel sheet containing 3 wt% Si and having a final sheet thickness of 0.23 mm was pickled with H 2 SO 4 to remove forsterite on the surface. The obtained steel sheet was treated with Cr using a general Sargent bath consisting of hexavalent chromium and sulfuric acid.
Plated. Thereafter, annealing was performed at various temperatures, and the magnetic properties were evaluated. Further, the tension applied to the steel sheet was calculated from the amount of warpage of a sample in which only one side of the steel sheet was plated with Cr.

【0014】図1に、焼鈍温度と鉄損値との関係を示
す。同図に示したとおり、焼鈍温度の上昇とともに鉄損
17/50 値は著しく低下している。
FIG. 1 shows the relationship between the annealing temperature and the iron loss value. As shown in the figure, the iron loss W 17/50 value is remarkably reduced as the annealing temperature increases.

【0015】また、図2に、焼鈍温度とCrメッキ膜に発
生する応力との関係を示す。図中の点線は、Crのヤング
率、熱膨張係数、メッキ厚みを式(1) に代入して得た理
論値であるが、焼鈍温度が 600℃以上になると予想を上
回る応力が得られた。予想値を超える応力が発生した試
料について、Cr膜の結晶方位を測定したところ、Cr結晶
は下地鋼板と同じく、圧延方向に(110)[001]
方位が揃うように整合配向していることが分かった。
FIG. 2 shows the relationship between the annealing temperature and the stress generated in the Cr plating film. The dotted line in the figure is the theoretical value obtained by substituting the Young's modulus, coefficient of thermal expansion, and plating thickness of Cr into Equation (1) .When the annealing temperature was 600 ° C or higher, a stress higher than expected was obtained. . When the crystal orientation of the Cr film was measured for a sample in which a stress exceeding the expected value was generated, the Cr crystal was (110) [001] in the rolling direction, similarly to the base steel sheet.
It was found that the orientation was aligned so that the orientations were aligned.

【0016】表1に、FeおよびCrの多結晶体のヤング率
と、単結晶の各基本方位におけるヤング率を示す。前述
したように、Feのヤング率は<001>方位が最も小さ
い。この点は、3wt%程度のSiを含む珪素鋼でも同様で
ある。一方、Crのヤング率は<001>方位が最大であ
る。
Table 1 shows the Young's modulus of the polycrystal of Fe and Cr and the Young's modulus in each of the basic orientations of the single crystal. As described above, the Young's modulus of Fe is the smallest in the <001> orientation. The same applies to silicon steel containing about 3 wt% of Si. On the other hand, the Young's modulus of Cr is the largest in the <001> orientation.

【0017】[0017]

【表1】 [Table 1]

【0018】このように、Crメッキ膜は、多結晶膜で等
方的な張力を発生する場合と比較して、圧延方向に<0
01>方位を配向した場合には、ヤング率が約1.4 倍と
なるため、得られる応力も 1.4倍程度になると推定され
る。以上のことから、付与応力が異方性を持つ被膜を鋼
板表面に被成することによって、効果的に磁区が細分化
され、その結果、著しい鉄損の低減が達成されたものと
考えられる。
As described above, the Cr plating film is less than <0 in the rolling direction as compared with the case where a polycrystalline film generates isotropic tension.
When the <01> orientation is oriented, the Young's modulus is about 1.4 times, and thus the obtained stress is estimated to be about 1.4 times. From the above, it is considered that by applying a coating having anisotropic applied stress on the surface of the steel sheet, the magnetic domains were effectively subdivided, and as a result, a remarkable reduction in iron loss was achieved.

【0019】ところで、圧延方向により大きな張力付与
効果を与える被膜としては、ヤング率が異方性を持つも
のでなくとも、圧延方向の熱膨張係数が低いものでも構
わない。すなわち、圧延方向のヤング率を熱膨張係数で
除した値(EL /αL )が、圧延と直角方向のそれ(E
C /αC )よりも大きければ良い。
By the way, as a film giving a greater effect of imparting tension in the rolling direction, a film having a low coefficient of thermal expansion in the rolling direction may be used as long as it does not have an anisotropic Young's modulus. That is, the value obtained by dividing the Young's modulus in the rolling direction by the coefficient of thermal expansion (E L / α L ) is equal to that in the direction perpendicular to the rolling (E L / α L ).
C / α C ).

【0020】BCC金属であればMo、W等の6族元素は
<001>方位のヤング率が大きいので、<001>方
位を圧延方向に揃えてやれば良く、それ以外では<11
1>方位に揃えば良い。FCCやHCP金属の場合も同
様に考えればよい。勿論、金属膜に限らず、セラミック
ス被膜でも、鋼板の圧延方向における熱膨張係数が小さ
いか、またはヤング率が大きいような異方性を有する被
膜であれば構わない。
In the case of BCC metal, Group 6 elements such as Mo and W have a large Young's modulus in the <001> orientation, so that the <001> orientation may be aligned with the rolling direction.
1> The direction may be aligned. Similar considerations apply to FCC and HCP metals. Of course, not only the metal film but also a ceramic film may be used as long as the film has an anisotropy such that the coefficient of thermal expansion in the rolling direction of the steel sheet is small or the Young's modulus is large.

【0021】非晶質や立方晶系の結晶では、熱膨張係数
は一定であるが、それ以外の六方晶、三斜晶および斜方
晶系では、a軸とそれに直角なc軸とでは熱膨張係数が
異なる。例えば、 CaCO3(アラゴナイト)は、a軸方向
でα=10×10-6/K、c軸方向でα=33×10-6/Kであ
り、Feのα=13×10-6/Kと比較して、a軸方向は小さ
く、c軸方向は大きい。従って、a軸を圧延方向にそろ
えた場合、式(1) より圧延方向には引張応力、圧延方向
と直角方向には圧縮応力を付与できるという、鉄損の低
減にとって極めて合理的な被膜となる。
In an amorphous or cubic crystal, the coefficient of thermal expansion is constant, but in other hexagonal, triclinic and orthorhombic systems, the a-axis and the c-axis perpendicular to it have a different thermal expansion coefficient. Different expansion coefficients. For example, CaCO 3 (aragonite) has α = 10 × 10 −6 / K in the a-axis direction, α = 33 × 10 −6 / K in the c-axis direction, and α = 13 × 10 −6 / K in Fe. As compared with, the a-axis direction is small and the c-axis direction is large. Therefore, when the a-axis is aligned with the rolling direction, it is possible to apply a tensile stress in the rolling direction and a compressive stress in the direction perpendicular to the rolling direction according to the formula (1). .

【0022】また、被膜のマトリックスは等方的な性質
を有するものであっても、繊維状の組織を含み、それら
が圧延方向に平行になっていて、異方性を発揮するよう
な被膜であっても良い。例えば、マトリックス中にガラ
スファイバー繊維を均一ランダムに分散させるのではな
く、連続的に一軸配向させることで、その方向のヤング
率を高めることができる。
Further, even if the matrix of the coating has an isotropic property, it has a fibrous structure which is parallel to the rolling direction and exhibits anisotropy. There may be. For example, instead of randomly dispersing glass fiber fibers in a matrix, by continuously uniaxially orienting the glass fiber fibers, the Young's modulus in that direction can be increased.

【0023】なお、かような異方性被膜の膜厚は、特に
限定されるものではないが、被膜密着性や占積率を考慮
すると0.05〜20μm 程度とするのが好ましい。
The thickness of such an anisotropic film is not particularly limited, but is preferably about 0.05 to 20 μm in consideration of film adhesion and space factor.

【0024】次に、本発明の珪素鋼板について、その好
適成分組成について説明する。本発明で使用される鋼板
の成分としては、Siを 1.5〜7.0 wt%、Mnを0.03〜2.5
wt%程度含有させることが望ましい。すなわち、SiやMn
は、製品の電気抵抗を高め、鉄損を低減するのに有効な
成分であるが、Siは 7.0wt%を超えると硬度が高くなっ
て製造や加工に困難を伴い、一方Mnは 2.5wt%を超える
と熱処理時にγ変態を誘起して磁気特性を劣化させるお
それがある。また、鋼中には、上記の元素の他に、方向
性珪素鋼板の製造に適するインヒビター成分として知ら
れている、Al, B, Bi, Sb, Mo, Te, Sn, P, Ge, As,
Nb,Cr, Ti, Cu, Pb, ZnおよびInなどを単独または複合
して含有させることができる。さらに、C、S、Nなど
の不純物はいずれも、磁気特性上有害な作用があり、特
に鉄損を劣化させるので、それぞれC:0.003 wt%以
下、S:0.002 wt%以下、N:0.002 wt%以下程度に抑
制することが望ましい。
Next, the preferred composition of the silicon steel sheet of the present invention will be described. As the components of the steel sheet used in the present invention, Si is 1.5 to 7.0 wt%, and Mn is 0.03 to 2.5 wt%.
It is desirable to contain about wt%. That is, Si or Mn
Is an effective component to increase the electrical resistance of products and reduce iron loss. However, if Si exceeds 7.0 wt%, its hardness will increase and it will be difficult to manufacture and process, while Mn will be 2.5 wt% If it exceeds, there is a possibility that γ transformation is induced during the heat treatment to deteriorate the magnetic properties. Further, in steel, in addition to the above elements, Al, B, Bi, Sb, Mo, Te, Sn, P, Ge, As, which are known as inhibitor components suitable for the production of grain-oriented silicon steel sheets.
Nb, Cr, Ti, Cu, Pb, Zn, In and the like can be contained alone or in combination. Further, impurities such as C, S, and N all have harmful effects on magnetic properties and particularly deteriorate iron loss. Therefore, C: 0.003 wt% or less, S: 0.002 wt% or less, and N: 0.002 wt%. % Is desirable.

【0025】珪素鋼板の製造方法については、特に限定
されることはなく、常法に従って製造すれば良い。仕上
焼鈍後の表面については、メッキ法により異方性被膜を
被成する場合、仮にフォルステライトが存在していても
通電可能な程度に抵抗値が低ければ良く、勿論存在して
なくても良い。また、単にフォルステライト等の無機質
被膜を除去しただけの地鉄面でも有効ではあるが、表面
に平滑化処理を施した方が鉄損の低減にはより効果的で
ある。例えば、サーマルエッチングや化学研磨等により
表面の粗度を極力小さくし、鏡面状態に仕上げた表面
や、ハロゲン化物水溶液中での電解による結晶方位強調
処理で得られるグレイニング様面等が挙げられる。特に
後者の3wt%Si−FeSi(110)面のテラスとステップ
が交互に配列する表面は、鏡面と異なり粗度が高いこと
による密着性の向上に加えて、電析速度が個々の二次再
結晶粒の面方位に依存しなくなるため、メッキ層の厚さ
や密着性を左右する結合力にバラツキが生じなくなるの
で、被膜特性が安定しており、より優れた処理法と言え
る。
The method for manufacturing the silicon steel sheet is not particularly limited, and may be manufactured according to a conventional method. Regarding the surface after finish annealing, when forming an anisotropic film by a plating method, even if forsterite is present, it is only necessary that the resistance value is low enough to allow conduction, and of course, it may not be present. . In addition, although it is effective on a ground iron surface in which an inorganic coating such as forsterite is simply removed, it is more effective to reduce the iron loss by performing a smoothing treatment on the surface. For example, there may be mentioned a mirror-finished surface having a surface roughness as small as possible by thermal etching or chemical polishing or a graining-like surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution. In particular, the latter surface of the 3 wt% Si-FeSi (110) surface where the terraces and steps are alternately arranged is different from the mirror surface in that not only the adhesion is improved due to the high roughness, but also the deposition rate of the individual secondary Since it does not depend on the plane orientation of the crystal grains, there is no variation in the bonding force that affects the thickness and adhesion of the plating layer, so that the film characteristics are stable and it can be said that this is a more excellent processing method.

【0026】メッキ法以外であれば、特に表面性状を規
定するものではないが、真空蒸着でのエピタキシャル成
長等を利用して異方性を得る場合には、必要な表面処理
がなされるべきである。なお、メッキ法の場合には、絶
縁被膜がないので、電析層の上に絶縁コーティングを形
成させる。絶縁コーティングとしては、張力付与効果を
有している方が鉄損値低減にはより有効であるが、絶縁
性を有するものであれば一般的なコーティングであって
も構わない。
There is no particular limitation on the surface properties except for the plating method. However, in the case where anisotropy is obtained by using epitaxial growth by vacuum evaporation, necessary surface treatment should be performed. . In the case of the plating method, since there is no insulating film, an insulating coating is formed on the electrodeposited layer. As the insulating coating, it is more effective to reduce the iron loss value if it has a tension imparting effect, but a general coating may be used as long as it has insulating properties.

【0027】張力コーティングの種類としては、従来か
らフォルステライト被膜を有する方向性珪素鋼板に用い
られているリン酸塩−コロイダルシリカ−クロム酸系の
コーティング等が、その効果およびコスト、均一処理性
などの点から好適である。コーティングの厚みについて
は、張力付与効果や占積率、被膜密着性等の点から 0.3
〜10μm 程度とするのが好ましい。また、張力コーティ
ングとしては、これ以外にも特開平6−65754 号公報、
特開平6−65755 号公報および特開平6−299366号公報
などで提案されているホウ酸−アルミナ等の酸化物系被
膜を適用することも可能である。これら等方的な張力被
膜と本発明の異方性張力被膜との組合せで、特に異方性
の効果が減じることはなかった。
As the kind of the tension coating, a phosphate-colloidal silica-chromic acid type coating which has been conventionally used for a grain oriented silicon steel sheet having a forsterite film, and the like, its effect, cost, uniform processing property, etc. It is preferable from the point of view. The thickness of the coating should be 0.3
It is preferably about 10 μm. Further, as the tension coating, other than this, JP-A-6-65754,
It is also possible to apply an oxide coating such as boric acid-alumina proposed in JP-A-6-65755 and JP-A-6-299366. The combination of these isotropic tension films and the anisotropic tension film of the present invention did not particularly reduce the effect of anisotropy.

【0028】このようにして得られた鋼板に、更なる鉄
損の低減を目的としてレーザーまたはプラズマ炎等を照
射して磁区の細分化を行っても、絶縁コーティングの密
着性にはなんら問題ない。また、本発明の方向性珪素鋼
板の製造工程の任意の段階で、磁区細分化のため、表面
にエッチングや歯形ロールで一定間隔の線状溝を形成す
ることも、一層の鉄損低減を図る手段として有効であ
る。
Even if the magnetic domain is subdivided by irradiating the steel sheet thus obtained with a laser or a plasma flame for the purpose of further reducing iron loss, there is no problem in the adhesion of the insulating coating. . Further, at any stage of the production process of the grain-oriented silicon steel sheet of the present invention, by forming linear grooves at regular intervals by etching or tooth-shaped rolls on the surface for magnetic domain refinement, the iron loss is further reduced. It is effective as a means.

【0029】[0029]

【実施例】Si:3.4 wt%、C:0.07wt%、Mn0.07wt%、
Se:0.02wt%、Sb:0.04wt%、Al:0.03wt%およびN:
0.09wt%を含有し、残部は実質的にFeの組成になる鋼ス
ラブを、常法に従い、熱間圧延、ついで冷延圧延して、
最終板厚:0.20mmの冷延板に仕上げた。ついで、得られ
た冷延板に、圧延方向とほぼ直角方向に線状の溝を形成
する磁区細分化処理を施したのち、脱炭・一次再結晶焼
鈍を施し、ついで MgOを主成分とし、塩化鉛を添加した
焼鈍分離剤を塗布してから、二次再結晶過程と純化過程
を含む最終焼鈍を施して、フォルステライト被膜のない
方向性珪素鋼板を製造した。また、平滑化処理を行わな
い焼鈍ままの素材の他に、NaCl水溶液中での電解による
結晶方位強調処理およびHF−H202浴中での化学研磨によ
る鏡面化処理の2種類の前処理を施し、表面を磁気的に
平滑化した。
Example: Si: 3.4 wt%, C: 0.07 wt%, Mn 0.07 wt%,
Se: 0.02 wt%, Sb: 0.04 wt%, Al: 0.03 wt% and N:
A steel slab containing 0.09 wt% and the remainder having a substantially Fe composition was hot-rolled and then cold-rolled according to a conventional method.
Finished into a cold-rolled sheet with a final sheet thickness of 0.20 mm. Next, the obtained cold-rolled sheet is subjected to a magnetic domain refining treatment for forming a linear groove in a direction substantially perpendicular to the rolling direction, and then subjected to decarburization and primary recrystallization annealing, and then to MgO as a main component, After applying an annealing separating agent to which lead chloride was added, final annealing including a secondary recrystallization process and a purification process was performed to produce a grain-oriented silicon steel sheet without a forsterite film. In addition to annealing while the material that does not perform smoothing processing, two types of pre-processing of the specular treatment by chemical polishing in an electrolytic due to crystal orientation-intensifying treatment, and HF-H 2 0 2 bath in the aqueous solution of NaCl And the surface was magnetically smoothed.

【0030】このようにして得られた鋼板にCrをメッキ
を施したのち、種々の温度で焼鈍し、得られた鋼板の鉄
損値 (W17/50)とCrメッキ粒の結晶方位を測定した。ま
た、圧延方向(L方向)と圧延方向とは直角方向(C方
向)のヤング率の比(EL /EC )を、対応する方向の
鋼板の反り量から算出した。なお、クロムはBCCであ
るので、熱膨張係数は全ての方向で一定・等方的でα=
8.4 ×10-6/Kである。また、メッキ浴は、六価クロ
ム、硫酸、ケイフッ化ナトリウムからなるケイフッ化浴
を使用した。得られた結果を表2に示す。
After the steel sheet thus obtained was plated with Cr, it was annealed at various temperatures, and the iron loss value (W 17/50 ) of the obtained steel sheet and the crystal orientation of the Cr plated grains were measured. did. Further, the ratio (E L / E C ) of the Young's modulus in the direction perpendicular to the rolling direction (L direction) and the rolling direction (C direction) was calculated from the amount of warpage of the steel sheet in the corresponding direction. Since chromium is BCC, the coefficient of thermal expansion is constant and isotropic in all directions and α =
8.4 × 10 −6 / K. The plating bath used was a fluorosilicic bath composed of hexavalent chromium, sulfuric acid, and sodium fluorosilicate. Table 2 shows the obtained results.

【0031】[0031]

【表2】 [Table 2]

【0032】同表から明らかなように、焼鈍処理によっ
てCrメッキ膜に配向性が現れてくると、鉄損値は格段に
低減した。一方、メッキ層が配向していない比較例(試
料No.1, 4, 7)では、鉄損値の低減は不十分であった。
特に試料No.7は、メッキ時に導入された電着応力に起因
すると考えられる歪のために、鉄損値は著しく劣化した
ものと推定される。
As is clear from the table, when the orientation appeared in the Cr plating film by the annealing treatment, the iron loss value was remarkably reduced. On the other hand, in Comparative Examples (Sample Nos. 1, 4, and 7) in which the plating layer was not oriented, the iron loss value was not sufficiently reduced.
In particular, it is presumed that the iron loss value of Sample No. 7 was significantly deteriorated due to the strain considered to be caused by the electrodeposition stress introduced during plating.

【0033】[0033]

【発明の効果】かくして、本発明に従い、方向性珪素鋼
板の表面に、磁区細分化に効果的な圧延方向に平行な張
力成分が、有害な直角方向の張力成分よりも大きい、張
力異方性を有する被膜を被成することにより、従来に比
べて格段に鉄損値を低減することができ、その産業上の
メリットは極めて大きい。
Thus, according to the present invention, on the surface of a grain-oriented silicon steel sheet, a tension component parallel to the rolling direction effective for magnetic domain refining is larger than a harmful perpendicular direction tension component. By forming a coating having the above, the iron loss value can be reduced remarkably as compared with the prior art, and the industrial advantage is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Crメッキ後の焼鈍温度と鉄損との関係を示し
たグラフである。
FIG. 1 is a graph showing a relationship between an annealing temperature after Cr plating and iron loss.

【図2】 Crメッキ後の焼鈍温度と発生応力との関係を
示したグラフである。
FIG. 2 is a graph showing a relationship between an annealing temperature after Cr plating and a generated stress.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡部 誠司 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 5E041 AA02 BC01 CA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Seiji Okabe 1-chome, Kawasaki-dori, Mizushima, Kurashiki-shi, Okayama Pref. Inside the Mizushima Works, Kawasaki Steel Corporation (72) Mitsumasa Kurosawa 1, Kawasaki-dori Mizushima, Kurashiki-shi, Okayama Chome (without address) Mizushima Works, Kawasaki Steel Corporation (72) Inventor Michio Komatsubara 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (without address) Mizushima Works, Kawasaki Steel Corporation F-term (reference) 5E041 AA02 BC01 CA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧延方向のヤング率を熱膨張係数で除し
た値(EL /αL )が、圧延方向と直角方向のヤング率
を熱膨張係数で徐した値(EC /αC )よりも大きい異
方性被膜を有することを特徴とする鉄損値の低い方向性
珪素鋼板。
The value obtained by dividing the Young's modulus in the rolling direction by the coefficient of thermal expansion (E L / α L ) is the value obtained by reducing the Young's modulus in the direction perpendicular to the rolling direction by the coefficient of thermal expansion (E C / α C ). A grain-oriented silicon steel sheet having a low iron loss value, having a larger anisotropic coating.
【請求項2】 鋼板の圧延方向に結晶配向している被膜
を有することを特徴とする請求項1記載の鉄損値の低い
方向性珪素鋼板。
2. The grain-oriented silicon steel sheet having a low iron loss value according to claim 1, wherein the steel sheet has a film oriented in the rolling direction of the steel sheet.
JP13187599A 1999-05-12 1999-05-12 Grain-oriented silicon steel sheet with low iron loss value Expired - Fee Related JP3473494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13187599A JP3473494B2 (en) 1999-05-12 1999-05-12 Grain-oriented silicon steel sheet with low iron loss value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13187599A JP3473494B2 (en) 1999-05-12 1999-05-12 Grain-oriented silicon steel sheet with low iron loss value

Publications (2)

Publication Number Publication Date
JP2000323318A true JP2000323318A (en) 2000-11-24
JP3473494B2 JP3473494B2 (en) 2003-12-02

Family

ID=15068193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13187599A Expired - Fee Related JP3473494B2 (en) 1999-05-12 1999-05-12 Grain-oriented silicon steel sheet with low iron loss value

Country Status (1)

Country Link
JP (1) JP3473494B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040057A (en) * 2002-07-08 2004-02-05 Nippon Steel Corp Annealed core, and manufacturing method thereof
JP2010183070A (en) * 2009-01-07 2010-08-19 Kagoshima Univ Photovoltaic generator and manufacturing method thereof
WO2012001952A1 (en) * 2010-06-29 2012-01-05 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
WO2020149405A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
CN114555860A (en) * 2019-10-31 2022-05-27 杰富意钢铁株式会社 Electromagnetic steel sheet with insulating coating film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040057A (en) * 2002-07-08 2004-02-05 Nippon Steel Corp Annealed core, and manufacturing method thereof
JP2010183070A (en) * 2009-01-07 2010-08-19 Kagoshima Univ Photovoltaic generator and manufacturing method thereof
WO2012001952A1 (en) * 2010-06-29 2012-01-05 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
US9514868B2 (en) 2010-06-29 2016-12-06 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JPWO2020149405A1 (en) * 2019-01-17 2021-09-30 日本製鉄株式会社 Non-oriented electrical steel sheets, split stators and rotary electric machines
CN113272455A (en) * 2019-01-17 2021-08-17 日本制铁株式会社 Non-oriented electromagnetic steel sheet, split stator, and rotating electrical machine
WO2020149405A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
US20220021248A1 (en) * 2019-01-17 2022-01-20 Nippon Steel Corporation Non-oriented electrical steel sheet, segmented stator, and rotating electrical machine
EP3913079A4 (en) * 2019-01-17 2022-08-31 Nippon Steel Corporation Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
JP7192887B2 (en) 2019-01-17 2022-12-20 日本製鉄株式会社 Non-oriented electrical steel sheet, split type stator and rotating electric machine
CN114555860A (en) * 2019-10-31 2022-05-27 杰富意钢铁株式会社 Electromagnetic steel sheet with insulating coating film
EP4026930A4 (en) * 2019-10-31 2022-10-26 JFE Steel Corporation Electromagnetic steel sheet with insulation coating film
US20240102172A1 (en) * 2019-10-31 2024-03-28 Jfe Steel Corporation Electrical steel sheet with insulating film

Also Published As

Publication number Publication date
JP3473494B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR100447048B1 (en) Grain-oriented electrical steel sheet in film adhesion and extremely low in core loss and its production method
JP2008150697A (en) Production method of magnetic steel sheet
JP3882103B2 (en) Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
JP3473494B2 (en) Grain-oriented silicon steel sheet with low iron loss value
JP2001247944A (en) Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JP3386717B2 (en) Method for producing oriented silicon steel sheet with low hysteresis loss
JP2019021920A (en) Directional electromagnetic steel plate and method for manufacturing the same
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP2019123936A (en) Method for manufacturing grain-oriented electromagnetic steel sheets
JP4123847B2 (en) Oriented silicon steel sheet
JP3380775B2 (en) Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties
WO2022250113A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP4192332B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
TW202403056A (en) Method for producing electromagnetic steel sheet, and cold-rolled sheet
JP4807064B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP2024503998A (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH11193420A (en) Grain oriented silicon steel sheet with extremely low iron loss, and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees