JP3380775B2 - Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties - Google Patents

Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties

Info

Publication number
JP3380775B2
JP3380775B2 JP20733999A JP20733999A JP3380775B2 JP 3380775 B2 JP3380775 B2 JP 3380775B2 JP 20733999 A JP20733999 A JP 20733999A JP 20733999 A JP20733999 A JP 20733999A JP 3380775 B2 JP3380775 B2 JP 3380775B2
Authority
JP
Japan
Prior art keywords
coating
steel sheet
grain
iron loss
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20733999A
Other languages
Japanese (ja)
Other versions
JP2001032083A (en
Inventor
山口  広
誠司 岡部
光正 黒沢
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP20733999A priority Critical patent/JP3380775B2/en
Publication of JP2001032083A publication Critical patent/JP2001032083A/en
Application granted granted Critical
Publication of JP3380775B2 publication Critical patent/JP3380775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、変圧器や発電器の
鉄心等に利用される方向性珪素鋼板、中でも歪感受性が
小さく、しかも磁気特性改善効果の大きい張力付与型の
絶縁被膜を有する方向性珪素鋼板に関するものである。 【0002】 【従来の技術】方向性珪素鋼板の鉄損低減方法の一つと
して、絶縁被膜と鋼板との熱膨張係数の差を利用して鋼
板に張力を付与する手段が知られているが、この張力付
与型被膜は、鉄損特性の改善だけでなく、交番磁界中で
の磁歪特性の改善や鋼板に歪が加えられたときの鉄損の
増加いわゆる歪感受性を軽減する効果も有している。か
かる張力付与型のコーティング被膜の形成方法について
は、例えば、特公昭59−17521 号公報や特開昭53−2804
3 号公報等に、コロイダルシリカ、リン酸塩および無水
クロム酸からなるコーティング液を用いる技術が開示さ
れている。 【0003】また、特開昭59−197520号公報や特開昭63
−42332 号公報等には、鋼板に線状疵等を導入し、歪取
焼鈍を施しても鉄損値が劣化することのない低鉄損方向
性珪素鋼板の製造技術が開示されている。この鉄損低減
効果は磁区幅が減少する磁区細分化効果に依っている。
しかしながら、鋼板表面に線状疵等を導入した低鉄損方
向性珪素鋼板の場合、外部からの歪が疵の周辺に集中し
易くなって、鉄損や磁歪特性を劣化させることがある。
例えば、鋼板を搬送するためのピンチロールや鋼板の長
さを計測するためのメジャーリングロールを鋼板に押し
当てた場合、低鉄損が維持できなくなる事例が生じる場
合がある。そのため、線状疵等の効果で低鉄損化がなさ
れている鋼板を使用してトランスを組んでも、鉄損値は
期待されるほど低くならないことがある。特に積鉄心ト
ランスに使用する場合には、鉄心加工後に歪取焼鈍を行
わないため、鉄損値の劣化や騒音の増大などの問題が懸
念される。 【0004】上記した張力付与型被膜は、このような外
部から導入される歪の影響を軽減する効果を有し、その
軽減効果は被膜厚が厚くなるほど大きくなるのである
が、厚すぎる場合には焼付け時にコーティング内部で発
生した水蒸気の外部への排出が阻害されて、被膜にふく
れと呼ばれるふくらみ状の欠陥や穴欠陥が生じ易くな
る。 【0005】この点、特開平5−1387号公報には、焼付
け時の昇温速度を制御することによってふくれを防止す
る技術が、また特願平9−324532号公報には、コーティ
ングを2回繰り返して行うことによって歪感受性を低減
する技術がそれぞれ開示されているが、いずれも被膜厚
が厚くなるとやはりふくれが発生し、占積率が低下する
という問題を生じた。 【0006】 【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、好適な張力付与型の被膜を被
成することによって、歪感受性が小さくかつ磁気特性に
優れた方向性珪素鋼板を得ようとするものである。 【0007】 【課題を解決するための手段】さて、発明者らは、被膜
の物性と鉄損、磁歪および歪感受性との関係について綿
密な調査、検討を行った結果、被膜の平均密度を高める
ことが所期した目的の達成に極めて有効であることの知
見を得た。本発明は、上記の新規知見に基づいて完成さ
れたものである。 【0008】すなわち、本発明は、地鉄部を除く被膜の
平均密度が 3.7 g/cm3以上であって、しかも片面当たり
の目付量が 0.5 g/m2 以上の膜厚でかつ表面粗さが中心
線平均粗さRaで0.25μm 以下の被膜を有することを特徴
とする歪感受性が小さく磁気特性に優れた方向性珪素鋼
板である。 【0009】本発明において、歪感受性の一層の改善の
ためには、被膜の平均密度を 4.2 g/cm3以上とすること
が特に有利である。 【0010】 【発明の実施の形態】以下、本発明の基礎となった実験
結果について説明する。実験1 Si:3wt%を含有する最終板厚:0.23mmの冷延板を、脱
炭・一次再結晶焼鈍後、塩化鉛と水酸化ストロンチウム
を含む焼鈍分離剤を用いて、フォルステライト被膜がな
くかつ鏡面に近い状態の素材を得た。得られた鋼板に種
々の厚みでCrめっきを行い、ついでりん酸マグネシウム
とコロイド状シリカを主成分とする絶縁コーティング液
をロールコーターにて種々の厚みに塗布し、 800℃, 1
分の焼き付け処理を行った。 【0011】かくして得られた張力被膜付き方向性珪素
鋼板の歪感受性について調べた結果を、Crめっき層と絶
縁被膜を組み合わせた被膜の平均密度との関係で、図1
に示す。ここに、Crめっきと絶縁被膜の密度はそれぞれ
6.8 g/cm3、2.4 g/cm3 である。なお、歪感受性につい
ては、直径:100 mm、幅:50mmのスチールロールからな
るメジャリングロールをロール圧下力:15 kgf/cm で押
し付けつつ通板した時の鉄損W17/50 値の変化量で評価
した。また、同図には、従来法に従い、フォルステライ
ト被膜とりん酸マグネシウムおよびコロイド状シリカか
らなる絶縁被膜とを被成した場合についての調査結果も
併せて示す。 【0012】同図に示したとおり、被膜の平均密度が
3.7 g/cm3以上の場合には、鉄損の劣化を 0.02 W/kg以
下に抑えることができ、特に被膜の平均密度を 4.2 g/c
m3以上とした場合には鉄損の劣化は 0.01 W/kgとほぼ一
定の値となった。これに対し、従来のフォルステライト
被膜とりん酸およびコロイド状シリカからなる絶縁被膜
とを合わせた被膜の平均密度は約 2.7 g/cm3で、鉄損の
劣化程度は約 0.04 W/kgであった。一般に張力付与型コ
ーティングによる鉄損低減代は 0.02 W/kg程度であり、
従って被膜の平均密度が 3.7 g/cm3未満では、その向上
分が相殺されてしまう。 【0013】実験2 Si:3wt%を含有する最終板厚:0.23mmの冷延板を、脱
炭・一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を
塗布してから、最終仕上げ焼鈍を施して得た、フォルス
テライト被膜付き方向性珪素鋼板を、りん酸にて軽酸洗
したのち、その表面にTaN, NbN, Si3N4 を分散させたり
ん酸マグネシウムとコロイド状シリカからなるコーティ
ング液とかような窒化物を分散させないコーティング液
をそれぞれ塗布し、800 ℃で1分間焼き付けた。なお、
得られた被膜の膜厚は、フォルステライト被膜を含みす
べて片面当たり 3.9 g/cm2であった。得られた試料につ
いて、磁束密度B:1.7 T、周波数:50Hzにおける磁歪
特性について調べた結果を図2に示す。 【0014】同図は磁歪−圧縮応力特性曲線であるが、
同図に示したとおり、磁歪振動に対する圧縮応力特性
は、平均密度が大きなコーティング被膜の試料ほど改善
されていることが分かる。 【0015】上述したとおり、平均密度が大きな被膜を
被成することによって、鋼板の歪感受性が改善される理
由は、まだ明確に解明されたわけではないが,歪が付加
されたときに生じる鋼板のミクロな磁性振動の増加に対
して、高密度の被膜の慣性が大きいことおよび堅固な被
膜であることが、かかる振動の増加を抑制する方向に作
用することによるものと考えられる。 【0016】以下、本発明の方向性珪素鋼板の好適成分
組成範囲について説明する。本発明で使用する鋼板の成
分としては、Siを 1.5〜7.0 wt%、Mnを0.03〜2.5wt%
含有させることが望ましい。すなわち、SiやMnは、製品
の電気抵抗を高め鉄損を低減するのに有効な成分である
が、いずれも上記範囲の下限に満たないとその添加効果
に乏しく、一方Siは7.0wt%を超えると硬くなって製造
や加工が困難となり、またMnは 2.5wt%を超えると熱処
理時γ変態を誘起して磁気特性を劣化させるからであ
る。 【0017】また、上記の元素の他に公知のインヒビタ
ー成分、例えばAl, B, Bi, Sb, Mo, Te, Sn, P, Ge,
As, Nb, Cr, Ti, Cu, Pb, ZnおよびInなどを、単独また
は複合で含有させることができる。なお、C、S、Nな
どの不純物はいずれも、磁気特性上有害な作用があり、
特に鉄損を劣化させるので、それぞれC:0.003 wt%以
下、S:0.002 wt%以下、N:0.002 wt%以下に抑制す
ることが好ましい。 【0018】上記の好適成分組成に調整した溶鋼を、連
続鋳造法または造塊−分塊法によってスラブとしたの
ち、常法に従い、熱間圧延、冷間圧延、脱炭・一次再結
晶焼鈍および最終仕上げ焼鈍を施して、方向性珪素鋼板
とする。最終仕上げ焼鈍後の表面としては、電気めっき
法により異方性被膜を被成する場合、フォルステライト
が存在していても通電可能な程度に抵抗値が低ければ良
く、勿論存在していなくても良い。 【0019】また、溶融めっき法や無電解めっき法で金
属被膜を被成する場合には、通常のフォルステライト被
膜を有する最終仕上げ焼鈍板をそのまま用いることがで
きる。また、単にフォルステライト等の無機質被膜を除
去しただけの地鉄面でも有効ではあるが、表面に平滑化
処理を施した方が鉄損値の低下にはより効果的である。
例えば、サーマルエッチングや化学研磨等により表面粗
さを極力小さくして、鏡面状態に仕上げた表面やハロゲ
ン化物水溶液中での電解による結晶方位強調処理で得ら
れるグレイニング様面等が挙げられる。 【0020】さて、本発明では、上記したような被膜付
き方向性珪素鋼板において、鋼板の地鉄部を除く被膜の
平均密度を 3.7 g/cm3以上、好ましくは 4.2 g/cm3以上
とすることが肝要である。すなわち、平均密度を高める
ことによって被膜の慣性と硬度を増し、鋼板の歪感受性
を低下させることが可能となる。この目的のためには、
地鉄部を除く被膜部の平均密度を 3.7 g/cm3以上望まし
くは 4.2 g/cm3以上とする必要がある。というのは、前
掲図1に示したように、被膜の平均密度を 3.7 g/cm3
上とすることによって、鉄損の劣化を 0.02 W/kg以下に
抑えることができ、特に被膜の平均密度を 4.2 g/cm3
上とすることによって鉄損の劣化を 0.01 W/kgまで抑制
することができるからである。 【0021】なお、めっき法による金属被膜の場合には
絶縁被膜が存在しないので、電析層の上に絶縁コーティ
ングを形成させる必要があるが、この場合には、金属被
膜と絶縁コーティングの二層被膜として平均密度を制御
する必要がある。 【0022】ここに、被膜の平均密度は次式で算出する
ことができる。 平均密度=(被膜被成前後の重量差)/(試料の鋼板面
積×平均膜厚) なお、上掲式中における(試料の鋼板面積)は、両面塗
布の場合には試料サイズの2倍となる。また、平均膜厚
は、電磁式膜厚計や渦電流式膜厚計等の通常の膜厚計に
よる他、光学顕微鏡やSEM等による鋼板の断面観察に
よっても求めることができる。なお本実験では、電磁式
膜厚計を用いて膜厚の測定を行った。さらに、被膜形成
後の試料を用いて測定する場合には、被膜のみを機械的
もしくは化学的に研削し、その前後の重量差を(試料の
鋼板面積×研削による被膜の減厚分)で除すことによっ
て求めることができる。 平均密度=研削前後の重量差/(試料の鋼板面積×被膜
の減厚分) 【0023】絶縁被膜としては、張力付与効果を有して
いる方が鉄損の低減にはより有効であるが、絶縁性を有
するものであれば一般的な被膜で構わない。また、張力
被膜の種類としては、従来からフォルステライト被膜を
有する方向性珪素鋼板に用いられているりん酸塩−コロ
イダルシリカ−クロム酸系のコーティング等がその効果
およびコスト、均一処理性などの点から好適である。被
膜厚みとしては、張力付与効果や占積率、被膜密着性等
の点から 0.3〜10μm 程度の範囲とするのが好ましい。
また、張力被膜としては、これ以外にも、特開平6−65
754 号公報、特開平6−65755 号公報および特開平6−
299366号公報などに提案されているほう酸−アルミナ等
の酸化物系被膜を適用することも可能である。 【0024】被膜の平均密度を増加させる手段として
は、例えば張力被膜中に微細粒子を分散させて被膜の平
均密度を大きくする方法等が有効で、比重の大きなHf
C, WC, TaC等の炭化物やHfN, TaN, CrNなどの窒
化物、さらにはほう化物、酸化物などのセラミックスや
金属粉末を分散添加させることが好適である。なお、不
溶性微粒子の場合には、粒子が均一に被膜中に分散する
ように強撹拌するなどの工夫が必要である。 【0025】次に、かかる高密度被膜の適正な膜厚につ
いて述べる。被膜の膜厚が、片面当たりの目付量で 0.5
g/cm2に満たない場合には、絶縁被膜により磁歪振動を
抑える効果がなく、平均密度の如何に係わらず良好な磁
歪特性が得られないので、被膜の膜厚は、片面当たりの
目付量で 0.5 g/cm2以上に限定した。また、上限につい
ては、フクレ、占積率、被膜密着性の観点から15 g/cm2
以下程度とするのが望ましい。なお、前述の金属被膜を
含む場合には、絶縁被膜との合計厚みを被膜の厚みとす
る。 【0026】また、被膜表面の性状も歪感受性に影響を
及ぼし、被膜表面が平滑なほど外部からの歪導入時の鉄
損値劣化が小さい。これに対し、被膜表面の凹凸が大き
い場合には、特に高密度で堅固な被膜のためか、付加さ
れた外部歪が凹凸部周辺に集中し局所的な鉄損劣化を引
き起こすため、全体の鉄損値が増大すると推定される。
ここに、適正な被膜の表面粗さは中心線平均粗さRaで0.
25μm 以下である。 【0027】このようにして得られた鋼板に、さらなる
鉄損の低減を目的としてレーザーあるいはプラズマ炎等
を照射して磁区の細分化を行っても、絶縁被膜の密着性
には何ら問題ない。また、方向性珪素鋼板の製造工程の
任意の段階で磁区細分化のために、表面にエッチングや
歯形ロールで一定間隔の溝を形成することも、一層の鉄
損低減を図る手段として有効である。 【0028】 【実施例】実施例1 Si:3wt%を含有する最終板厚:0.23mmに圧延された冷
延板を、脱炭・一次再結晶焼鈍後、MgO を主成分とし金
属塩化物を含む焼鈍分離剤を塗布してから、二次再結晶
過程と純化過程を含む最終仕上げ焼鈍を施し、フォルス
テライト被膜がなくかつ鏡面に近い表面状態を有する素
材を得た。ついで、一部の素材について、NaCl水溶液中
での電解研磨やH2O2−HF溶液中での化学研磨を行い、表
面をさらに磁気的に平滑化したのち、めっき浴としてCr
O3:250 g/l 、硫酸:2.5 g/l からなるサージェント浴
を使用して、Crの電気めっきを行った。その後、張力コ
ーティングとしてりん酸マグネシウム、コロイダルシリ
カおよびクロム酸マグネシウムを主成分とする水性処理
液を塗布し、 800℃で焼き付け種々の厚さの被膜を形成
させた。かくして得られた方向性珪素鋼板について、ロ
ール圧下力:15 kgf/cm でメジャリングロールを通板
し、歪を導入する前後の鉄損W17/50 値の変化について
調べた。なお、得られた方向性珪素鋼板の表面粗さは全
て0.18から0.23μm の範囲であった。得られた結果を表
1に示す。 【0029】 【表1】 【0030】同表から明らかなように、Cr+張力コート
を合わせた平均密度が低かったり、被膜の厚みが十分で
ない場合(試料No.5〜7)には、歪導入により鉄損値は
大幅に劣化した。これに対し、本発明の要件を満足する
適合例(試料No.1〜4)はいずれも、歪に対する感受性
は小さく、鉄損値の劣化を効果的に抑制することができ
た。 【0031】実施例2 Si:3wt%を含有する最終板厚:0.23mmに圧延された冷
延板を、脱炭・一次再結晶焼鈍後、MgO を主成分とする
焼鈍分離剤を塗布してから、二次再結晶過程と純化過程
を含む最終仕上げ焼鈍を施し、フォルステライト被膜付
きの方向性珪素鋼板を得た。ついで、鋼板の一部につい
て、酸洗処理を施し、フォルステライトの一部または全
量を除去し、グラス被膜量および表面粗さを変化させ
た。その後、得られた素材にNi−P無電解めっきを施し
た。めっき浴は、硫酸ニッケル:40 g/l、次亜燐酸ナト
リウム:10 g/lと酢酸ナトリウムからなる酸性浴を使用
した。ここに、Ni−P層のみの平均密度は7.7g/cm3であ
った。無電解めっき層はめっき均一性が良く、めっき前
の表面粗さをほぼ継承していた。 【0032】その後、張力被膜として、りん酸アルミニ
ウム、コロイダルシリカおよび無水クロム酸を主成分と
する水性処理液を塗布し、 800℃で焼き付け種々の厚さ
の被膜を形成させた。表2に、得られた鋼板の表面粗
さ、被膜平均密度、被膜厚みおよび実施例1と同様に評
価した歪導入による鉄損劣化量について調べた結果を示
す。また、同表には、磁歪−圧縮応力特性を測定し、圧
縮付加応力σ=5.0 MPa 時における磁歪値λppについて
の調査結果も併記する。 【0033】 【表2】【0034】同表に示したとおり、Ni−Pめっきを行わ
なかった試料No.12, 14 では、被膜平均密度が小さいた
め、歪感受性が大きく、大幅な鉄損値の劣化が生じた。
しかも、磁歪振動も大きくなった。また、被膜厚みが下
限に満たない試料No.13 も、同様に大きな鉄損値劣化と
磁歪値λppを示した。この点、試料No.4は、被膜平均密
度、被膜厚みとも適合範囲内であるため、低い磁歪値を
示したが、表面粗さが上限を超えたため鉄損値の劣化量
が大きくなった。これに対し、本発明の要件を全て満足
する適合例(試料No.1〜3)はいずれも、鉄損劣化量が
極めて小さく、また優れた磁歪特性を示した。なお、フ
ォルステライト被膜の除去による影響は特に見当たらな
かった。 【0035】 【発明の効果】かくして本発明によれば、絶縁被膜の厚
みを特に増加させる必要なしに、その平均密度を高め、
かつ表面粗さを低減することにより、歪感受性が小さく
かつ磁気特性に優れた方向性珪素鋼板を安定して得るこ
とができ、その産業界に与えるメリットは非常に大き
い。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet used for an iron core of a transformer or a power generator, and more particularly to a steel sheet having a low strain sensitivity and an effect of improving magnetic properties. The present invention relates to a grain-oriented silicon steel sheet having a large tension applying type insulating film. 2. Description of the Related Art As one of the methods for reducing iron loss of a grain oriented silicon steel sheet, there is known a means for applying tension to a steel sheet by utilizing a difference in thermal expansion coefficient between an insulating film and a steel sheet. This tension-imparting coating not only improves iron loss characteristics, but also has the effect of improving magnetostriction characteristics in an alternating magnetic field and increasing iron loss when strain is applied to a steel sheet, so-called reducing strain sensitivity. ing. The method of forming such a tension imparting type coating film is described in, for example, JP-B-59-17521 and JP-A-53-2804.
No. 3 discloses a technique using a coating liquid composed of colloidal silica, phosphate and chromic anhydride. [0003] Also, Japanese Patent Application Laid-Open Nos.
Japanese Patent No. 42332 discloses a technique for producing a low iron loss directional silicon steel sheet which does not deteriorate in iron loss value even when a linear flaw or the like is introduced into the steel sheet and subjected to strain relief annealing. This iron loss reduction effect depends on the magnetic domain segmentation effect of reducing the magnetic domain width.
However, in the case of a low iron loss directional silicon steel sheet having a linear flaw or the like introduced on the surface of the steel sheet, external strain tends to concentrate on the periphery of the flaw, which may degrade iron loss and magnetostriction characteristics.
For example, when a pinch roll for transporting a steel sheet or a measuring roll for measuring the length of the steel sheet is pressed against the steel sheet, a case where low iron loss cannot be maintained may occur. Therefore, even when a transformer is assembled using a steel sheet whose iron loss is reduced due to the effect of linear flaws or the like, the iron loss value may not be as low as expected. In particular, when used in a laminated iron core transformer, since the strain relief annealing is not performed after machining the iron core, problems such as deterioration of the iron loss value and increase in noise may occur. The above-mentioned tension imparting type coating has an effect of reducing the influence of such externally introduced strain, and the effect of the reduction increases as the coating thickness increases. Discharge of water vapor generated inside the coating during baking to the outside is hindered, and bulging defects or hole defects called blisters are easily generated in the coating. In this regard, Japanese Patent Application Laid-Open No. Hei 5-1387 discloses a technique for preventing blistering by controlling the rate of temperature rise during baking, and Japanese Patent Application No. 9-324532 discloses a technique of coating twice. Techniques for reducing the strain sensitivity by repeating the process have been disclosed, but in each case, when the coating thickness is large, blisters also occur, and the space factor decreases. SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. By forming a suitable tension-imparting film, the strain sensitivity is small and the magnetic properties are excellent. The purpose is to obtain a grain-oriented silicon steel sheet. Means for Solving the Problems The inventors of the present invention have conducted detailed investigations and studies on the relationship between physical properties of the coating and iron loss, magnetostriction and strain sensitivity, and as a result, have increased the average density of the coating. It was found that this was extremely effective in achieving the intended purpose. The present invention has been completed based on the above new findings. That is, according to the present invention, a film having an average density of not less than 3.7 g / cm 3 and a basis weight per side of not less than 0.5 g / m 2 and a surface roughness Is a grain-oriented silicon steel sheet having a small strain sensitivity and excellent magnetic properties, characterized by having a coating having a center line average roughness Ra of 0.25 μm or less. In the present invention, in order to further improve strain sensitivity, it is particularly advantageous to set the average density of the coating to 4.2 g / cm 3 or more. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results on which the present invention is based will be described. Experiment 1 A cold rolled sheet containing Si: 3 wt% and having a final thickness of 0.23 mm was subjected to decarburization and primary recrystallization annealing, and then no forsterite film was formed using an annealing separator containing lead chloride and strontium hydroxide. A material close to a mirror surface was obtained. The obtained steel sheet was plated with Cr in various thicknesses, and then an insulating coating solution containing magnesium phosphate and colloidal silica as main components was applied in various thicknesses using a roll coater.
For a minute. FIG. 1 shows the results obtained by examining the strain sensitivity of the thus obtained grain-oriented silicon steel sheet with a tensile coating in relation to the average density of the coating obtained by combining the Cr plating layer and the insulating coating.
Shown in Here, the densities of the Cr plating and the insulating film are respectively
6.8 g / cm 3 and 2.4 g / cm 3 . Regarding the strain sensitivity, the amount of change in the iron loss W 17/50 value when a measuring roll composed of a steel roll having a diameter of 100 mm and a width of 50 mm was passed through while being pressed at a roll reduction force of 15 kgf / cm. Was evaluated. The figure also shows the results of a survey conducted when a forsterite film and an insulating film made of magnesium phosphate and colloidal silica were formed according to the conventional method. As shown in the figure, the average density of the coating is
3.7 g / in the case of cm 3 or more, deterioration of core loss can be suppressed to below 0.02 W / kg, in particular 4.2 g / c the average density of the coating
When m 3 or more, the iron loss degradation was almost constant at 0.01 W / kg. In contrast, in the conventional folder average density of the coating obtained by combining the insulating coating of stellite coating with phosphoric acid and colloidal silica was about 2.7 g / cm 3, deterioration degree of the iron loss met about 0.04 W / kg Was. Generally, the cost of iron loss reduction by the tension application type coating is about 0.02 W / kg,
Therefore, if the average density of the coating is less than 3.7 g / cm 3 , the improvement is offset. Experiment 2 A cold-rolled sheet containing Si: 3 wt% and having a final thickness of 0.23 mm was subjected to decarburization / primary recrystallization annealing, and then an annealing separator mainly composed of MgO was applied thereto, followed by final finishing annealing. After the directional silicon steel sheet with the forsterite coating obtained by performing the above, after light pickling with phosphoric acid, it consists of magnesium phosphate and colloidal silica with TaN, NbN, Si 3 N 4 dispersed on the surface. A coating liquid and a coating liquid which does not disperse nitrides were applied, and baked at 800 ° C. for 1 minute. In addition,
The thickness of the obtained films including the forsterite film was 3.9 g / cm 2 per one side. FIG. 2 shows the result of examining the magnetostriction characteristics of the obtained sample at a magnetic flux density B of 1.7 T and a frequency of 50 Hz. FIG. 1 shows a magnetostriction-compression stress characteristic curve.
As shown in the figure, it can be seen that the compressive stress characteristics with respect to the magnetostrictive vibration are improved as the coating film sample has a higher average density. As described above, although the reason why the strain sensitivity of a steel sheet is improved by forming a coating having a large average density has not been clearly elucidated, it is not clear yet. It is considered that the high inertia of the high-density coating and the rigid coating against the increase in micromagnetic vibration act in a direction to suppress the increase in the vibration. The preferred composition range of the grain-oriented silicon steel sheet of the present invention will be described below. As components of the steel sheet used in the present invention, Si is 1.5 to 7.0 wt%, and Mn is 0.03 to 2.5 wt%.
Desirably, it is contained. In other words, Si and Mn are effective components for increasing the electrical resistance of the product and reducing iron loss, but if none of them is below the lower limit of the above range, the effect of the addition is poor, while the content of Si is 7.0 wt%. If Mn exceeds 2.5 wt%, Mn will induce γ transformation during heat treatment to deteriorate magnetic properties. In addition to the above elements, known inhibitor components such as Al, B, Bi, Sb, Mo, Te, Sn, P, Ge,
As, Nb, Cr, Ti, Cu, Pb, Zn, In and the like can be contained alone or in combination. In addition, impurities such as C, S, and N all have harmful effects on magnetic properties.
Particularly, since iron loss is deteriorated, it is preferable to suppress the content of C to 0.003 wt% or less, S: 0.002 wt% or less, and N: 0.002 wt% or less. The slab of the molten steel adjusted to the above preferable composition is formed by a continuous casting method or an ingot-bulking method, followed by hot rolling, cold rolling, decarburization / primary recrystallization annealing and A final finish annealing is performed to obtain a grain-oriented silicon steel sheet. As a surface after final finish annealing, when forming an anisotropic film by an electroplating method, it is only necessary that the resistance value is low enough to allow conduction even if forsterite is present, and of course, even if it does not exist good. When a metal film is formed by a hot-dip plating method or an electroless plating method, a final finish-annealed sheet having a usual forsterite film can be used as it is. Further, although it is effective even on a ground iron surface in which an inorganic coating such as forsterite is simply removed, it is more effective to reduce the iron loss value by performing a smoothing treatment on the surface.
For example, there may be mentioned a mirror-finished surface with a surface roughness as small as possible by thermal etching or chemical polishing, or a graining-like surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution. According to the present invention, in the above-described grain-oriented silicon steel sheet with a coating, the average density of the coating excluding the ground iron portion of the steel sheet is 3.7 g / cm 3 or more, preferably 4.2 g / cm 3 or more. It is important. That is, by increasing the average density, the inertia and hardness of the coating can be increased, and the strain sensitivity of the steel sheet can be reduced. For this purpose,
The average density of the coating portion excluding the base iron portion needs to be 3.7 g / cm 3 or more, preferably 4.2 g / cm 3 or more. , As shown supra Figure 1, by the average density of the coating and 3.7 g / cm 3 or more, it is possible to suppress deterioration of the iron loss below 0.02 W / kg, in particular the average of the film density because Is set to 4.2 g / cm 3 or more, the deterioration of iron loss can be suppressed to 0.01 W / kg. In the case of a metal film formed by plating, there is no insulating film, so it is necessary to form an insulating coating on the electrodeposited layer. It is necessary to control the average density as a coating. Here, the average density of the coating can be calculated by the following equation. Average density = (weight difference before and after film formation) / (sample steel sheet area × average film thickness) In the above formula, (sample steel sheet area) is twice the sample size in the case of double-side coating. Become. The average film thickness can be determined by a normal film thickness meter such as an electromagnetic film thickness meter or an eddy current film thickness meter, or by observing a cross section of a steel sheet using an optical microscope or an SEM. In this experiment, the film thickness was measured using an electromagnetic film thickness meter. Furthermore, when measuring using a sample after the film is formed, only the film is mechanically or chemically ground, and the weight difference before and after that is divided by (the steel sheet area of the sample × the thickness of the film reduced by the grinding). Can be obtained by doing Average density = weight difference before and after grinding / (area of steel sheet of sample × thickness of coating) As an insulating coating, it is more effective to reduce iron loss if it has a tension imparting effect. A general coating may be used as long as it has an insulating property. Further, as the kind of the tension film, a phosphate-colloidal silica-chromic acid type coating which has been conventionally used for a grain oriented silicon steel sheet having a forsterite film has advantages in terms of its effect, cost, uniform processing property, and the like. Is preferred. The thickness of the coating is preferably in the range of about 0.3 to 10 μm from the viewpoint of the effect of imparting tension, the space factor, and the adhesion of the coating.
In addition, as the tension coating, besides the above, see JP-A-6-65.
754, JP-A-6-65755 and JP-A-6-65755
It is also possible to apply an oxide-based coating such as boric acid-alumina proposed in JP-A-299366. As a means for increasing the average density of the coating, for example, a method of dispersing fine particles in a tension coating to increase the average density of the coating is effective.
It is preferable to disperse and add carbides such as C, WC and TaC, nitrides such as HfN, TaN and CrN, and ceramics and metal powders such as borides and oxides. In the case of insoluble fine particles, it is necessary to take measures such as strong stirring so that the particles are uniformly dispersed in the coating. Next, the appropriate thickness of the high-density coating will be described. The thickness of the coating is 0.5
If it is less than g / cm 2 , the insulating coating does not have the effect of suppressing magnetostrictive vibration, and good magnetostriction characteristics cannot be obtained regardless of the average density. To 0.5 g / cm 2 or more. The upper limit is 15 g / cm 2 from the viewpoint of blisters, space factor, and film adhesion.
It is desirable to set it to the following level. In the case where the above-described metal coating is included, the total thickness with the insulating coating is defined as the thickness of the coating. The properties of the coating surface also affect the strain sensitivity, and the smoother the coating surface, the smaller the iron loss value degradation when applying external strain. On the other hand, if the unevenness of the coating surface is large, it may be due to the high density and solid coating, or the added external strain may concentrate around the unevenness and cause local iron loss deterioration. It is estimated that the loss value increases.
Here, the appropriate surface roughness of the coating is the center line average roughness Ra of 0.
25 μm or less. Even if the magnetic domain is subdivided by irradiating the steel sheet thus obtained with a laser or a plasma flame for the purpose of further reducing iron loss, there is no problem in the adhesion of the insulating film. In addition, in order to refine magnetic domains at any stage of the process of manufacturing a grain-oriented silicon steel sheet, forming grooves at regular intervals by etching or tooth-shaped rolls on the surface is also effective as a means for further reducing iron loss. . EXAMPLE 1 A cold-rolled sheet rolled to a final sheet thickness of 0.23 mm containing Si: 3% by weight was subjected to decarburization and primary recrystallization annealing, and then to a metal chloride mainly composed of MgO. After the application of the annealing separating agent, a final finish annealing including a secondary recrystallization process and a purification process was performed to obtain a material having no forsterite film and a surface state close to a mirror surface. Then, for some materials, subjected to chemical polishing in an electrolytic polishing or H 2 O 2 -HF solution in an aqueous NaCl solution, after further magnetically smooth surface, Cr as a plating bath
Electroplating of Cr was performed using a surge bath consisting of O 3 : 250 g / l and sulfuric acid: 2.5 g / l. Thereafter, an aqueous treatment liquid containing magnesium phosphate, colloidal silica and magnesium chromate as main components was applied as a tension coating, and baked at 800 ° C. to form films having various thicknesses. The grain-oriented silicon steel sheet thus obtained was passed through a measuring roll at a roll reduction force of 15 kgf / cm, and the change in iron loss W17 / 50 value before and after the introduction of strain was examined. The surface roughness of the grain-oriented silicon steel sheets obtained was all in the range of 0.18 to 0.23 μm. Table 1 shows the obtained results. [Table 1] As is clear from the table, when the average density of the combined Cr + tension coat is low or the thickness of the coating is not sufficient (samples Nos. 5 to 7), the iron loss value is significantly increased by introducing strain. Deteriorated. On the other hand, all of the conforming examples (samples Nos. 1 to 4) satisfying the requirements of the present invention were low in sensitivity to strain and could effectively suppress the deterioration of the iron loss value. Example 2 A cold-rolled sheet rolled to a final sheet thickness of 0.23 mm containing Si: 3% by weight was subjected to decarburization / primary recrystallization annealing, and then an annealing separator containing MgO as a main component was applied. Then, a final finish annealing including a secondary recrystallization process and a purification process was performed to obtain a grain-oriented silicon steel sheet with a forsterite film. Next, a part of the steel plate was subjected to an acid pickling treatment to remove a part or all of the forsterite, thereby changing the glass coating amount and the surface roughness. After that, the obtained material was subjected to Ni-P electroless plating. The plating bath used was an acidic bath composed of nickel sulfate: 40 g / l, sodium hypophosphite: 10 g / l, and sodium acetate. Here, the average density of only the Ni—P layer was 7.7 g / cm 3 . The electroless plating layer had good plating uniformity and almost inherited the surface roughness before plating. Thereafter, an aqueous treatment liquid containing aluminum phosphate, colloidal silica and chromic anhydride as main components was applied as a tension film, and baked at 800 ° C. to form films of various thicknesses. Table 2 shows the results obtained by examining the surface roughness, coating average density, coating thickness, and the amount of iron loss deterioration due to the introduction of strain evaluated in the same manner as in Example 1 of the obtained steel sheet. In addition, in the same table, the magnetostriction-compression stress characteristics were measured, and the results of a survey on the magnetostriction value λpp when the compressive applied stress σ = 5.0 MPa are also shown. [Table 2] As shown in the table, in Samples Nos. 12 and 14, which were not subjected to Ni-P plating, since the average film density was low, the strain sensitivity was large and the iron loss value was significantly deteriorated.
Moreover, the magnetostrictive vibration also increased. Sample No. 13 in which the film thickness was less than the lower limit also showed large iron loss value deterioration and magnetostriction value λpp. In this regard, sample No. 4 exhibited a low magnetostriction value because both the average film density and the film thickness were within the applicable range, but the surface roughness exceeded the upper limit, and the amount of deterioration of the iron loss value was large. On the other hand, all of the conforming examples (samples Nos. 1 to 3) satisfying all the requirements of the present invention exhibited extremely small iron loss deterioration and exhibited excellent magnetostriction characteristics. In addition, the influence by the removal of the forsterite film was not particularly found. As described above, according to the present invention, it is possible to increase the average density of the insulating film without particularly increasing the thickness of the insulating film.
In addition, by reducing the surface roughness, it is possible to stably obtain a grain-oriented silicon steel sheet having low strain sensitivity and excellent magnetic properties, which has a great advantage to the industry.

【図面の簡単な説明】 【図1】 地鉄部を除く被膜の平均密度と鉄損の変化量
との関係を示したグラフである。 【図2】 被膜の平均密度をバラメータとする磁歪−圧
縮応力特性曲線図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a relationship between an average density of a coating film excluding a base iron part and a variation in iron loss. FIG. 2 is a magnetostriction-compression stress characteristic curve diagram with the average density of a coating as a parameter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (56)参考文献 特開 平11−80909(JP,A) 特開 平3−215679(JP,A) 特開 昭63−227719(JP,A) 特開 平5−226134(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 22/00 - 22/86 H01F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Michio Komatsubara, Inventor 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. JP-A-3-215679 (JP, A) JP-A-63-227719 (JP, A) JP-A-5-226134 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 22/00-22/86 H01F 1/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】 地鉄部を除く被膜の平均密度が 3.7 g/c
m3以上であって、しかも片面当たりの目付量が 0.5 g/m
2 以上の膜厚でかつ表面粗さが中心線平均粗さRaで0.25
μm 以下の被膜を有することを特徴とする歪感受性が小
さく磁気特性に優れた方向性珪素鋼板。
(57) [Claims] [Claim 1] The average density of the coating excluding the base iron part is 3.7 g / c
m 3 or more, and the weight per side is 0.5 g / m
2 or more film thickness and surface roughness 0.25 in center line average roughness Ra
A grain-oriented silicon steel sheet having a small strain sensitivity and excellent magnetic properties, characterized by having a coating of not more than μm.
JP20733999A 1999-07-22 1999-07-22 Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties Expired - Fee Related JP3380775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20733999A JP3380775B2 (en) 1999-07-22 1999-07-22 Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20733999A JP3380775B2 (en) 1999-07-22 1999-07-22 Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2001032083A JP2001032083A (en) 2001-02-06
JP3380775B2 true JP3380775B2 (en) 2003-02-24

Family

ID=16538115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20733999A Expired - Fee Related JP3380775B2 (en) 1999-07-22 1999-07-22 Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3380775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839830B2 (en) * 2005-12-27 2011-12-21 Jfeスチール株式会社 Oriented electrical steel sheet with excellent magnetostrictive properties
JP6657837B2 (en) * 2015-11-19 2020-03-04 日本製鉄株式会社 Grain-oriented electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2001032083A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US6136456A (en) Grain oriented electrical steel sheet and method
WO2020203928A1 (en) Directional electromagnetic steel sheet and manufacturing method of same
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
EP0910101A1 (en) Ultra-low iron loss unidirectional silicon steel sheet
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
KR102230629B1 (en) Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
KR20200120736A (en) Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JP3380775B2 (en) Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties
WO2009093492A1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP4839830B2 (en) Oriented electrical steel sheet with excellent magnetostrictive properties
JP2002180134A (en) Method for depositing insulation film on grain oriented silicon steel sheet
JPH11222654A (en) Grain-oriented silicon steel sheet having extremely low iron loss
WO2020149324A1 (en) Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel
CN114106593A (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JP2000323318A (en) Directional silicon steel lamination with low core-loss value
JP3280898B2 (en) Ultra-low iron loss unidirectional silicon steel sheet
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
TWI675113B (en) Multilayer electromagnetic steel sheet
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof
JP2005264234A (en) Superlow iron loss grain oriented magnetic steel sheet having excellent thermal stability
JPH11329819A (en) Ultra-small core loss unidirectional silicon steel plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3380775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees