JPH01259510A - Magnetic ribbon and magnetic core - Google Patents

Magnetic ribbon and magnetic core

Info

Publication number
JPH01259510A
JPH01259510A JP63088694A JP8869488A JPH01259510A JP H01259510 A JPH01259510 A JP H01259510A JP 63088694 A JP63088694 A JP 63088694A JP 8869488 A JP8869488 A JP 8869488A JP H01259510 A JPH01259510 A JP H01259510A
Authority
JP
Japan
Prior art keywords
magnetic
ribbon
fine powder
layers
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63088694A
Other languages
Japanese (ja)
Other versions
JP2716064B2 (en
Inventor
Takashi Matsuoka
孝 松岡
Toshikazu Furuhata
降籏 俊和
Yasushi Ueda
康 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13949956&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01259510(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP63088694A priority Critical patent/JP2716064B2/en
Priority to CA000596211A priority patent/CA1340795C/en
Priority to DE68921363T priority patent/DE68921363T2/en
Priority to KR1019890004745A priority patent/KR920005490B1/en
Priority to EP89303542A priority patent/EP0337716B1/en
Priority to AT89303542T priority patent/ATE119309T1/en
Publication of JPH01259510A publication Critical patent/JPH01259510A/en
Publication of JP2716064B2 publication Critical patent/JP2716064B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons

Abstract

PURPOSE:To improve magnetic characteristics by minimizing the reduction of an occupation area rate to secure insulation among ribbon layers by allowing fine powder comprising a nonmagnetic insulating inorganic substance to adhere to at least one surface of a magnetic ribbon. CONSTITUTION:A magnetic ribbon is formed by allowing fine powder comprising a nonmagnetic, insulating inorganic substance to adhere to at least one surface thereof. The fine powder serves as a spacer to form air layers among ribbon layers. Antimony pentoxide is preferably available as the inorganic substance. Since the air layers are provided among the ribbon layers in such a manner to serve as insulating layers, an eddy current can be prevented from being produced and an occupation area rate can be increased to the utmost, to improve magnetic characteristics of the magnetic ribbon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性リボンおよびその磁性リボンを用いて形成
した磁心に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic ribbon and a magnetic core formed using the magnetic ribbon.

〔従来の技術〕[Conventional technology]

磁性リボンを巻回しあるいは積層して磁心を形成した場
合、リボン層間の絶縁が悪いと、リボン層間を流れる渦
電流が生じ、渦電流損失の増大により全体の鉄損(磁損
〉が増大する。この傾向はとくに高周波の場合に顕著で
ある。そして、透磁率の周波数特性が悪<100KHz
以上ではメリットのある利用は期待できない。
When a magnetic core is formed by winding or laminating magnetic ribbons, if the insulation between the ribbon layers is poor, eddy currents flow between the ribbon layers, and the overall iron loss (magnetic loss) increases due to an increase in eddy current loss. This tendency is particularly noticeable in the case of high frequencies.And when the frequency characteristic of magnetic permeability is poor <100KHz
With the above conditions, no advantageous use can be expected.

そこで、従来は、リボン層間の絶縁を良好にするため、
リボン層間に非磁性物質からなる絶縁層を設けることが
行われ、その−手段としてリボン表面に−様な絶縁膜を
形成して、上記問題の解決を図ろうとしている。
Therefore, conventionally, in order to improve insulation between ribbon layers,
An attempt has been made to provide an insulating layer made of a non-magnetic material between the ribbon layers, and as a means of this, an insulating film like this is formed on the surface of the ribbon in an attempt to solve the above problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、磁性リボンとしてアモルファス磁性リボンを製
造する場合、400℃前後で焼鈍することが行われるが
、このような焼鈍が行われると、絶縁膜とリボンとの線
膨張係数の違い、すなわち、はとんどの場合、絶縁膜の
線膨張係数の方がアモルファスリボンのそれより大きい
ので、リボンに圧縮応力が生じ、磁歪の逆効果により磁
気特性が劣化する。
However, when producing an amorphous magnetic ribbon as a magnetic ribbon, annealing is performed at around 400°C, but when such annealing is performed, the difference in linear expansion coefficient between the insulating film and the ribbon, that is, the In most cases, the coefficient of linear expansion of the insulating film is larger than that of the amorphous ribbon, so compressive stress is generated in the ribbon, and the magnetic properties deteriorate due to the opposite effect of magnetostriction.

また、400℃前後の焼鈍に耐える絶縁膜としては、材
料的に限られるという問題もあり、さらに、絶縁膜を設
けると磁心を構成した場合、磁性体の充填率(占積率)
が低下し、結果として磁心の大型化を招いてしまう。
In addition, there is the problem that there are limited materials for an insulating film that can withstand annealing at around 400°C.Furthermore, when an insulating film is provided to form a magnetic core, the filling factor (space factor) of the magnetic material decreases.
decreases, resulting in an increase in the size of the magnetic core.

本発明は、このような問題点を解決するためになされた
もので、占積率の低下を最小限にしてリボン層間の絶縁
性を確保して、磁気特性のよい磁性リボンおよび磁心を
提供することを技術的課題とするものである。
The present invention was made to solve these problems, and provides a magnetic ribbon and a magnetic core with good magnetic properties by minimizing the decrease in space factor and ensuring insulation between ribbon layers. This is a technical issue.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、その理論的前提として、まず、次のような点
に着目してなされた。
The present invention was made by first focusing on the following points as its theoretical premise.

すなわち、先に述べたように、磁性リボンによる磁心の
製造にさいしては、絶縁膜を介在させるのが一般的で、
当業者間ではいかに絶縁性能の良い絶縁膜材料を見い出
すかが最大の関心事になっている。
That is, as mentioned earlier, when manufacturing a magnetic core using a magnetic ribbon, it is common to use an insulating film.
The greatest concern among those skilled in the art is how to find an insulating film material with good insulation performance.

しかし、観点を変えてみると、このような絶縁膜が無い
場合でも眉間に空気層があれば、それが絶縁層となって
、渦電流を防ぎ、しかも、できるだけ占積率を大きくで
きる。
However, from a different perspective, even if there is no such insulating film, if there is an air layer between the eyebrows, it will act as an insulating layer to prevent eddy currents and increase the space factor as much as possible.

そこで、本発明では、このような空気層を確保するため
に、非磁性体であり、かつ、絶縁性を有する無機物から
なる微粉を少なくとも一面に付着させて磁性リボンとし
、また、これを巻回もしくは積層して磁心とした。
Therefore, in the present invention, in order to secure such an air layer, fine powder made of a non-magnetic and insulating inorganic substance is attached to at least one surface to form a magnetic ribbon, and this is wound. Alternatively, they can be laminated to form a magnetic core.

そして、本発明では、当初の目的として空気層を確保す
るために前記微粉を付着させたが、微粉をリボンの少な
くとも一面に、まんべんなく密に付着させた場合も考え
られる。この場合には空気層を確保するという意味は無
くなり、微粉自体が絶縁層として作用することとなるが
、この場合も微粉により空気層を確保する場合と同様の
効果を得られる。従って、本発明は、微粉を粗に付着さ
せる場合、または、密に付着させる場合のいずれをも含
む広い概念である。
In the present invention, the fine powder was attached as an initial purpose to ensure an air layer, but it is also conceivable that the fine powder was attached evenly and densely to at least one surface of the ribbon. In this case, there is no point in ensuring an air layer, and the fine powder itself acts as an insulating layer, but in this case as well, the same effect as when securing an air layer using fine powder can be obtained. Therefore, the present invention has a broad concept that includes both cases in which the fine powder is coarsely adhered and cases in which the fine powder is adhered densely.

〔作用〕[Effect]

以下、本発明の作用を述べ、さらに具体的な解決手段に
ついて説明する。
Hereinafter, the effects of the present invention will be described, and further specific solutions will be explained.

本発明では、無機物からなる微粉を少なくとも一面に付
着させて磁性リボンとしたので、この磁性リボンを巻回
し、あるいは、積層して磁心とした場合、微粉がスペー
サとなって、リボンによる各層間に空気層が形成される
In the present invention, a magnetic ribbon is made by attaching fine powder made of an inorganic substance to at least one surface, so when this magnetic ribbon is wound or laminated to form a magnetic core, the fine powder acts as a spacer between each layer of the ribbon. An air layer is formed.

これに対し、微粉をリボンの少なくとも一面に、まんべ
んなく密に付着させた場合は、前記のように微粉自体が
絶縁層として作用する。
On the other hand, when the fine powder is evenly and densely adhered to at least one surface of the ribbon, the fine powder itself acts as an insulating layer as described above.

ここで、本発明における磁性リボンとは、磁性体の薄帯
であり、磁性体材料としては、遷移金属中のFe、Co
、Ni等の強磁性元素単体、あるいは強磁性元素同士の
合金、特性改善を図るために加えられる非強磁性元素と
強磁性元素との合金、フェライト、パーマロイ、アモル
ファス合金等を例示できる。アモルファス金属としては
、Fe−B、Fe−B−C,Fe−B−3i、Fe−B
 −5i−C,Fe−B−8i−Cr、Fe−Co−B
−9t、Fe−Ni−Mo−B等のFe系、co−B、
 Co−Fe−3i−B、 Co−Fe−Ni −Mo
−B−8i 、 Co−Fe−N 1−B−8i、Co
−Fe−Mn−BrBX、i、Co−Fe −Mn−N
 i 、 Co−Mn−N 1−B−8i等のCo系等
を例示できる。
Here, the magnetic ribbon in the present invention is a thin ribbon of a magnetic material, and examples of the magnetic material include Fe and Co in transition metals.
Examples include single ferromagnetic elements such as Ni, alloys of ferromagnetic elements, alloys of non-ferromagnetic elements and ferromagnetic elements added to improve properties, ferrite, permalloy, amorphous alloys, etc. Amorphous metals include Fe-B, Fe-B-C, Fe-B-3i, Fe-B
-5i-C, Fe-B-8i-Cr, Fe-Co-B
-9t, Fe-based such as Fe-Ni-Mo-B, co-B,
Co-Fe-3i-B, Co-Fe-Ni-Mo
-B-8i, Co-Fe-N 1-B-8i, Co
-Fe-Mn-BrBX,i,Co-Fe-Mn-N
Examples include Co-based materials such as Co-Mn-N 1-B-8i and Co-Mn-N 1-B-8i.

このような磁性リボンに付着される無機物の微粉として
は、非磁性体であり、かつ、絶縁性を有することが条件
となる。微粉が磁性体であり、また、導電性を有すると
、磁気特性に悪影響を与えたり、渦電流が流れやすくな
ったりするからである。
The inorganic fine powder attached to such a magnetic ribbon must be non-magnetic and have insulating properties. This is because if the fine powder is magnetic and has electrical conductivity, it may adversely affect magnetic properties or cause eddy currents to easily flow.

また1本発明で使用する無機物としては、■スラス(け
い酸ナトリウム)、雲母(アルミノけい酸アルカリ塩、
フィロけい酸アルカリ塩)、炭化ケイ素、硫酸カルシウ
ム半水塩、炭酸カルシウム、炭酸マグネシウム、炭酸カ
ルシウム、硫酸バリウム等に代表される自然状態で安定
な無機物質、■酸化アルミニウム、酸化ホウ素、酸化マ
グネシウム、二酸化ケイ素、二酸化スズ、酸化亜鉛、二
酸化ジルコニウム、五酸化アンチモン等の金属酸化物、
■前記■に例示される素材、その他、ペロブスカイト、
ケイ酸塩ガラス、リン酸塩、チタン酸塩、ニオブ、タン
タル、タングステン酸塩等の複酸化物からなるセラミッ
クス、窒化アルミニウム、酸窒化アルミニウム焼結体、
窒化ホウ素、窒化ホウ素マグネシウム、窒化ホウ素複合
体、窒化ケイ素、窒化ケイ素ランタン、サイアロン等の
窒1ヒ物、炭化ホウ素、炭化ケイ素、炭化ホウ素アルミ
ニウム、炭化ポウ素アルミニウム、炭化チタン等の炭化
物、ニホウ化チタン、六ホウ化カルシウム、六ホウ化ラ
ンタン等のホウ化物で例示されるセラミックス素材を単
体、もしくは複合して形成したセラミックスを例示でき
る。これらの中では、五酸化アンチモンが好適である。
In addition, the inorganic substances used in the present invention include ■slas (sodium silicate), mica (alkali aluminosilicate,
Alkaline phyllosilicate salts), silicon carbide, calcium sulfate hemihydrate, calcium carbonate, magnesium carbonate, calcium carbonate, barium sulfate, etc. Inorganic substances that are stable in their natural state, aluminum oxide, boron oxide, magnesium oxide, Metal oxides such as silicon dioxide, tin dioxide, zinc oxide, zirconium dioxide, antimony pentoxide,
■Materials exemplified in ■ above, others, perovskite,
Ceramics made of complex oxides such as silicate glass, phosphates, titanates, niobium, tantalum, and tungstates, aluminum nitride, aluminum oxynitride sintered bodies,
Boron nitride, boron magnesium nitride, boron nitride composite, silicon nitride, lanthanum silicon nitride, nitrides such as sialon, carbides such as boron carbide, silicon carbide, boron aluminum carbide, boron aluminum carbide, titanium carbide, diboride Examples include ceramics made of a single ceramic material or a composite of ceramic materials such as borides such as titanium, calcium hexaboride, and lanthanum hexaboride. Among these, antimony pentoxide is preferred.

これら無機物の微粉の粒径についてみると、微粉をリボ
ンにまんべんなく付着させて絶縁層とする点を考慮する
と、微粉の粒径は小さくてもよいが、小さくすることは
製造を困難にする要因となる。一方、余り大きいとリボ
ンで磁心を形成した場合、リボン間の間隙の幅が大きく
なりすぎて磁性体の占積率が小さくなる。このような理
由から、微粉の粒径は10nm〜2μmであるのが望ま
しい。
Regarding the particle size of these inorganic fine powders, considering that the fine powder is evenly attached to the ribbon to form an insulating layer, the particle size of the fine powder may be small, but making it small is a factor that makes manufacturing difficult. Become. On the other hand, if it is too large, when the magnetic core is formed of ribbons, the width of the gap between the ribbons becomes too large and the space factor of the magnetic material becomes small. For these reasons, it is desirable that the particle size of the fine powder is 10 nm to 2 μm.

また、微粉の付着量はリボンの嘔位面積(lcば)当り
、微粉が10−7cm3〜2X 10−’cm’、さら
に好適には、3X10−’cm3〜10−’cm3とな
る量だけ付着するようにするとよい。この付着量を単位
面積当りの微粉重量に換算すると、微粉の素材の比重に
よりその値が変わるが、五酸化アンチモンの場合、3.
8x 10−7g/cri 〜7゜6X10−’g/c
rf、さらに好適には1.lXl0−’g/cr♂〜3
.8X 10−’g/cr112である。
In addition, the amount of fine powder attached is 10-7 cm3 to 2X 10-'cm3, more preferably 3X10-'cm3 to 10-'cm3 per horizontal area (LC) of the ribbon. It is a good idea to do so. When this amount of adhesion is converted to the weight of fine powder per unit area, the value changes depending on the specific gravity of the material of the fine powder, but in the case of antimony pentoxide, 3.
8x 10-7g/cri ~7゜6X10-'g/c
rf, more preferably 1. lXl0-'g/cr♂~3
.. 8×10-'g/cr112.

微粉の付着手段は、この微粉を水あるいはトルリボン表
面に塗布した後、強制的もしくは自然に乾燥して微粉を
リボンに付着させる。この溶液の濃度で前記リボンへの
付着量が決定する。すなわち、五酸化アンチモンの場合
、トルエンに対し、0.1〜30重量%の比率でコロイ
ド状に分散させるとよい。この範囲内にあって3重量%
程度でも効果があり、占積率の低下はほとんどなく、磁
気特性も劣化しない。ここで、溶液の塗布膜の厚さは1
0μm以下であることが、上記付着量を決定する上で好
ましい。また、溶媒の蒸発には溶媒に応じて乾燥炉を使
用し100℃以下で乾燥するとよい。
The means for adhering the fine powder is to apply the fine powder to water or the surface of the ribbon and then forcefully or naturally dry it to adhere the fine powder to the ribbon. The concentration of this solution determines the amount of adhesion to the ribbon. That is, in the case of antimony pentoxide, it is preferable to disperse it in colloidal form at a ratio of 0.1 to 30% by weight with respect to toluene. 3% by weight within this range
It is effective even to a certain extent, with almost no decrease in space factor and no deterioration in magnetic properties. Here, the thickness of the solution coating film is 1
It is preferable that the thickness is 0 μm or less in determining the above-mentioned adhesion amount. Further, for evaporation of the solvent, it is preferable to use a drying oven and dry at 100° C. or lower depending on the solvent.

ところで、磁性リボン、とりわけアモルファスリボンは
、必要に応じて歪取りのために、窒素等不活性ガス雰囲
気中において、300〜500℃の温度で、0.5〜5
時間焼鈍するとよい、この焼鈍は、リボンを巻回あるい
は積層して磁心とした後に行ってもよいし、リボンの状
態のままで行ってもよい、とりわけ、キュリー点よりも
10〜50℃高い温度で焼鈍するとき、高周波での特性
のよいものが得られる。なお、焼鈍は磁場中で行っても
よいし、無磁場で行ってもよい。
By the way, magnetic ribbons, especially amorphous ribbons, are heated at a temperature of 0.5 to 5 ℃ in an inert gas atmosphere such as nitrogen at a temperature of 300 to 500 ° C.
Time annealing is recommended. This annealing may be performed after the ribbon is wound or laminated to form a magnetic core, or may be performed in the ribbon state, particularly at a temperature 10 to 50°C higher than the Curie point. When annealing with , good properties at high frequencies can be obtained. Note that annealing may be performed in a magnetic field or without a magnetic field.

そして、巻回もしくは積層したアモルファス磁心を焼鈍
する場合、リボン間の微粉は、粉体であるがゆえに線膨
張ということが磁心に影響を与えない、むしろ、アモル
ファスリボンの収縮に伴う応力を吸収するという作用を
奏する。
When annealing a wound or laminated amorphous magnetic core, since the fine powder between the ribbons is powder, linear expansion does not affect the magnetic core, but rather absorbs the stress caused by the contraction of the amorphous ribbon. It has this effect.

以上のことを踏まえて本発明にかかる磁心を製造する方
法を述べる。
Based on the above, a method for manufacturing a magnetic core according to the present invention will be described.

まず、磁性リボン、微粉の溶液を用意し、各種塗布方法
により磁性リボンの少なくとも一面に微粉溶液を塗布し
、溶媒を乾燥させる。得られた微粉1すき磁性リボンを
、張力をかけて巻回し、トロイダル型の磁心を得る。I
&後に、必要に応じて歪取りの焼鈍を行う9なお、巻回
時にかける張力は0.05〜2kgが好ましい。
First, a magnetic ribbon and a solution of fine powder are prepared, and the fine powder solution is applied to at least one surface of the magnetic ribbon by various coating methods, and the solvent is dried. The obtained magnetic ribbon with one layer of fine powder is wound under tension to obtain a toroidal magnetic core. I
& After that, annealing is performed to remove strain if necessary.9 Note that the tension applied during winding is preferably 0.05 to 2 kg.

一方、積層型の磁心を製造する場合は、微扮付きリボン
を所定形状に切断し、積層して磁心とするが、必要に応
じて行う焼鈍は積層の而に行ってもよいし、積層して磁
心を形成してから行ってもよい。
On the other hand, in the case of manufacturing a laminated magnetic core, the ribbons with slight shading are cut into a predetermined shape and laminated to form the magnetic core. However, annealing may be performed as necessary during the lamination process, or even after lamination. This may be done after forming the magnetic core.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第7図に示した装置で、アライド社製のアモルファスリ
ボン(la)、2605S−2(Fe7aB13  S
i6.10mm幅) を順送りで五酸化アンチモンのコ
ロイド溶液(2)中に浸し、引き上げる際に一対のバー
コータ(3)ではさんで余分な溶液を落し、温風乾燥機
(4)で温風を当てて乾燥しつつ微粉付きリボン(1b
)を巻取った。
In the apparatus shown in Fig. 7, amorphous ribbon (LA), 2605S-2 (Fe7aB13 S
i6.10mm width) was immersed in a colloidal solution of antimony pentoxide (2) in a progressive manner, and when pulled up, it was sandwiched between a pair of bar coaters (3) to remove excess solution, and heated with hot air in a hot air dryer (4). While drying, remove the ribbon with fine powder (1b
) was wound up.

五酸化アンチモンのコロイド溶液(2)はトルエンを溶
媒とし、トルエン97重厘%に対し、五酸化アンチモン
を3重量%分散させたものである。
The colloidal solution (2) of antimony pentoxide uses toluene as a solvent, and 3% by weight of antimony pentoxide is dispersed in 97% by weight of toluene.

次に、第8図に示したように、微粉付きリボン(1b)
をローラ(5)を介して順送りし、最終段で張力をかけ
つつ巻回し、アモルファス製磁心(6)を形成した。そ
して、同寸法の磁心を複数形成し、そのそれぞれを窒素
雲囲気のもと、435℃で2時間焼鈍した。
Next, as shown in FIG. 8, the ribbon with fine powder (1b)
was sequentially fed through rollers (5) and wound at the final stage while applying tension to form an amorphous magnetic core (6). Then, a plurality of magnetic cores having the same dimensions were formed, and each core was annealed at 435° C. for 2 hours under a nitrogen cloud.

得られた各磁心のB −H特性、鉄損の周波数特性、透
磁率の周波数特性を測定した。B−11特性は、10エ
ルステツド(Oe)の磁界を印加した場合と、1エルス
テツド(Oe)の磁界を印加した場合の2つの場合につ
いて測定した。
The B-H characteristics, iron loss frequency characteristics, and magnetic permeability frequency characteristics of each of the obtained magnetic cores were measured. The B-11 characteristics were measured in two cases: when a magnetic field of 10 oersted (Oe) was applied and when a magnetic field of 1 oersted (Oe) was applied.

また、トルエン70重量%に対し、五酸化アンチモンを
30重量%分散させたコロイド溶液を塗布し、同様の測
定をした。各実施例の詳細な粂件は以下の通りである。
Further, a colloidal solution in which 30% by weight of antimony pentoxide was dispersed in 70% by weight of toluene was applied, and the same measurements were performed. The details of each example are as follows.

■実施例1(3重量%溶液) (a)  磁心;上記の磁性リボンを巻回した1−1フ
イダルコア 内径=23.OOmrn 外径=37.00mm 高さ=10.00mm 質量−42,OOg 素材の密度=7.18g/rn3 体Ff4    =5.850X10−6(m’)有効
断面積=6.207X10−’(rrt2)平均磁路長
=9.425X10−2(m)占積率=88.67%(
全体積に対するリボンの占める比率) 磁性リボン巻同時の張力=0.8kg (b)  塗布したコロイド溶液; 有機溶媒=トルエン 100重量% 微粉  −五酸化アンチモン 3重量%(’c)  結
果 *B−H特性;第1図に示す *鉄損の周波数特性;第2図に示す コアに巻いた1次巻線の巻数は5.2次巻線の巻数は1
0である。
■Example 1 (3% by weight solution) (a) Magnetic core; 1-1 fidal core wound with the above magnetic ribbon; inner diameter = 23. OOmrn Outer diameter = 37.00mm Height = 10.00mm Mass -42, OOg Material density = 7.18g/rn3 Body Ff4 = 5.850X10-6 (m') Effective cross-sectional area = 6.207X10-' (rrt2 ) Average magnetic path length = 9.425X10-2 (m) Space factor = 88.67% (
Ratio of the ribbon to the total volume) Tension when winding the magnetic ribbon = 0.8 kg (b) Coated colloid solution; Organic solvent = toluene 100% by weight Fine powder - antimony pentoxide 3% by weight ('c) Results *B-H Characteristics: *Frequency characteristics of iron loss shown in Figure 1; Number of turns of the primary winding wound around the core shown in Figure 2 is 5. Number of turns of the secondary winding is 1.
It is 0.

*透磁率の周波数特性;第3図に示す コアに巻いた1次巻線の巻数は10 測定磁界= 5 mOe 測定電流=2.65173mA ■実施例2(30重1%溶液) (a)  磁心;上記の磁性リボンを巻回した1−ロイ
ダルコア 内径”23.00mm 外径=37.00mm 高さ=10.00mm 質量=25.57g 素材の密度= 7 、18 g、/m’体積   =3
.ら61 x 10−60−6(有効断面積=3.77
9X10−’(m2)平均磁路長=9.425xlO−
2(m)占積率=53.98% 磁性リボン巻同時の張力−0,8kg (b)  塗布したコロイド溶液; 有機溶媒=トルエン 70重量% 微粉  −五酸化アンチモン 30重量%(c)  結
果 *B−H特性;第4図に示す *鉄損の周波数特性;第5図に示す コアに巻いた1次巻線の巻数は5.2次巻線の巻数は1
0である。
*Frequency characteristics of magnetic permeability; The number of turns of the primary winding wound around the core shown in Figure 3 is 10. Measured magnetic field = 5 mOe Measured current = 2.65173 mA ■Example 2 (30w 1% solution) (a) Magnetic core 1-loidal core wound with the above magnetic ribbon Inner diameter 23.00 mm Outer diameter = 37.00 mm Height = 10.00 mm Mass = 25.57 g Density of material = 7,18 g,/m' Volume = 3
.. 61 x 10-60-6 (effective cross-sectional area = 3.77
9X10-' (m2) average magnetic path length = 9.425xlO-
2 (m) Space factor = 53.98% Tension at the same time as magnetic ribbon winding - 0.8 kg (b) Coated colloid solution; Organic solvent = toluene 70% by weight Fine powder - antimony pentoxide 30% by weight (c) Results * B-H characteristics; shown in Fig. 4 *Frequency characteristics of iron loss; Fig. 5 The number of turns of the primary winding wound around the core is 5. The number of turns of the secondary winding is 1
It is 0.

*透磁率の周波数特性;第6図に示す コアに巻いた1次巻線の巻数は10 測定磁界= 5 mOe 測定磁界= 5 moe 測定電流=2.65173mA 以上の結果から、実施例のものでは、ヒステリシスがよ
り線形に近く、また、鉄損についても全体的に低く、と
くに高周波部分での上昇を低く押さえることができる。
*Frequency characteristics of magnetic permeability; The number of turns of the primary winding wound around the core shown in Fig. 6 is 10. Measured magnetic field = 5 mOe Measured magnetic field = 5 moe. Measured current = 2.65173 mA. , the hysteresis is closer to linearity, and the iron loss is also lower overall, especially in the high frequency range, the increase can be suppressed to a low level.

200kHzまでほぼ一定の透磁率が得られた。Almost constant magnetic permeability was obtained up to 200 kHz.

〔発明の効果〕〔Effect of the invention〕

本発明では、前記構成としたので、とりわけ。 In the present invention, since the above structure is adopted, particularly.

10 k Hz以上の周波数での磁気特性を改善でき、
また、占積率をできるだけ大きくできて、磁心の小型化
に寄与できる。
Can improve magnetic properties at frequencies above 10 kHz,
Furthermore, the space factor can be increased as much as possible, contributing to miniaturization of the magnetic core.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の第1の実施例の磁気特性を示
したグラフ図で、第1図はB−H特性、第2図は鉄損の
周波数特性、第3図は透磁率の周波数特性である。第4
0〜第6図は本発明の第2の実施例の磁気特性を示した
グラフ図で、第4図はB−H特性、第5図は鉄損の周波
数特性、第6図は透磁率の周波数特性である。また、第
7図は微粉の付着処理装置を示した概略図、第8図はト
ロイダル型の磁心の製造手段を示した図である。 1a・・磁性リボン(無処理)、1b・・微粉付き磁性
リボン、2・・微粉のコロイド溶液、3・・バーコータ
、4・・温風乾燥機、5・・ローラ。 6・・磁心。 特許出願人     三井石油化学工業株式会社第1図 第2図 開筬収 LHz] 第3図 n浪牧 [Hzコ 第4図 第5図 F@須数 [)−1zコ 第6図 fi[ff [Hz] 第7図 特許庁長官     吉 1)文 絞 殿1、事件の表
示     昭和63年特許願第88694号2、発明
の名称     磁性リボン及び磁心3、補正をする者 事件との関係    特許出願人 住   所     東京都千代田区霞が関三丁目2番
5号名   称  (5118)三井石油化学工業株式
会社代表者  竹林省吾 4、代理人 〒101東京都千代田区神田神保町3丁目10番地花卉
ビル3階 6、補正の内容 (1)明細書第6頁第1O行目に rCo−Fe−Mn−13rI3iJとあるのをrCo
−Fe−Mn−B−SiJと補正する。 (2)明細書第6頁第11行目に rco−Mn−Ni−B−Si等のCo系等を例示でき
る。」とあるのを rCo−Mn−Ni−B−St、  Go−Fe−Mn
 −N i −B等のCo系等を例示できる。」と補正
する。
Figures 1 to 3 are graphs showing the magnetic characteristics of the first embodiment of the present invention. Figure 1 is the B-H characteristic, Figure 2 is the frequency characteristic of iron loss, and Figure 3 is the transparent This is the frequency characteristic of magnetic property. Fourth
0 to 6 are graphs showing the magnetic characteristics of the second embodiment of the present invention. FIG. 4 is the B-H characteristic, FIG. 5 is the frequency characteristic of iron loss, and FIG. 6 is the magnetic permeability characteristic. It is a frequency characteristic. Further, FIG. 7 is a schematic diagram showing a fine powder adhesion processing device, and FIG. 8 is a diagram showing a means for manufacturing a toroidal magnetic core. 1a: Magnetic ribbon (untreated), 1b: Magnetic ribbon with fine powder, 2: Colloidal solution of fine powder, 3: Bar coater, 4: Warm air dryer, 5: Roller. 6. Magnetic core. Patent Applicant: Mitsui Petrochemical Industries, Ltd. Figure 1 Figure 2 Opening Reed Income LHz] Figure 3 [Hz] Figure 7 Yoshi, Commissioner of the Patent Office 1) Written by Mr. Shibori 1, Indication of the case 1988 Patent Application No. 88694 2, Title of the invention Magnetic ribbon and magnetic core 3, Relationship with the amended person case Patent applicant Address: 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo Name (5118) Mitsui Petrochemical Industries Co., Ltd. Representative: Shogo Takebayashi 4, Agent: 3rd floor 6, Floriculture Building, 3-10 Kanda Jimbocho, Chiyoda-ku, Tokyo 101; Contents of the amendment (1) rCo-Fe-Mn-13rI3iJ on page 6, line 10 of the specification is replaced by rCo
-Fe-Mn-B-SiJ. (2) Co-based materials such as rco-Mn-Ni-B-Si can be exemplified on page 6, line 11 of the specification. " is rCo-Mn-Ni-B-St, Go-Fe-Mn
Co-based materials such as -N i -B can be exemplified. ” he corrected.

Claims (6)

【特許請求の範囲】[Claims] (1)非磁性体であり、かつ、絶縁性を有する無機物か
らなる微粉を少なくとも一面に付着させたことを特徴と
する磁性リボン。
(1) A magnetic ribbon characterized by having fine powder made of a non-magnetic and insulating inorganic substance adhered to at least one surface.
(2)アモルファス金属からなる特許請求の範囲第1項
記載の磁性リボン。
(2) The magnetic ribbon according to claim 1, which is made of an amorphous metal.
(3)前記無機物が金属酸化物であり、微粉の径が10
nm〜2μmである特許請求の範囲第1項または第2項
記載の磁性リボン。
(3) The inorganic substance is a metal oxide, and the diameter of the fine powder is 10
The magnetic ribbon according to claim 1 or 2, which has a diameter of nm to 2 μm.
(4)不活性ガス雰囲気中において、300〜500℃
の温度で、0.5〜5時間焼鈍した特許請求の範囲第1
項ないし第3項のいずれかに記載の磁性リボン。
(4) 300-500℃ in an inert gas atmosphere
Claim 1 annealed for 0.5 to 5 hours at a temperature of
The magnetic ribbon according to any one of Items 1 to 3.
(5)特許請求の範囲第1項ないし第4項のいずれかに
記載の磁性リボンを巻回もしくは積層して形成した磁心
(5) A magnetic core formed by winding or laminating the magnetic ribbon according to any one of claims 1 to 4.
(6)特許請求の範囲第1項ないし第3項のいずれかに
記載の磁性リボンを巻回もしくは積層した後、不活性ガ
ス雰囲気中で、300〜500℃の温度で、0.5〜5
時間焼鈍して得た磁心。
(6) After winding or laminating the magnetic ribbon according to any one of claims 1 to 3, the magnetic ribbon is heated at a temperature of 0.5 to 5
Magnetic core obtained by time annealing.
JP63088694A 1988-04-11 1988-04-11 Magnetic ribbon and magnetic core Expired - Fee Related JP2716064B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63088694A JP2716064B2 (en) 1988-04-11 1988-04-11 Magnetic ribbon and magnetic core
CA000596211A CA1340795C (en) 1988-04-11 1989-04-10 Magnetic ribbon and magnetic core
EP89303542A EP0337716B1 (en) 1988-04-11 1989-04-11 Magnetic ribbon and magnetic core
KR1019890004745A KR920005490B1 (en) 1988-04-11 1989-04-11 Magnetic ribbon and core
DE68921363T DE68921363T2 (en) 1988-04-11 1989-04-11 Magnetic tape and magnetic core.
AT89303542T ATE119309T1 (en) 1988-04-11 1989-04-11 MAGNETIC BAND AND MAGNETIC CORE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088694A JP2716064B2 (en) 1988-04-11 1988-04-11 Magnetic ribbon and magnetic core

Publications (2)

Publication Number Publication Date
JPH01259510A true JPH01259510A (en) 1989-10-17
JP2716064B2 JP2716064B2 (en) 1998-02-18

Family

ID=13949956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088694A Expired - Fee Related JP2716064B2 (en) 1988-04-11 1988-04-11 Magnetic ribbon and magnetic core

Country Status (6)

Country Link
EP (1) EP0337716B1 (en)
JP (1) JP2716064B2 (en)
KR (1) KR920005490B1 (en)
AT (1) ATE119309T1 (en)
CA (1) CA1340795C (en)
DE (1) DE68921363T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889976A1 (en) 2020-03-27 2021-10-06 Hitachi Metals, Ltd. Manufacturing method for a wound magnetic core, and wound magnetic core

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091253A (en) * 1990-05-18 1992-02-25 Allied-Signal Inc. Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
EP0480265B1 (en) * 1990-10-03 1995-05-17 Nippon Steel Corporation Method of producing permalloy cores
JP2909349B2 (en) * 1993-05-21 1999-06-23 日立金属株式会社 Nanocrystalline soft magnetic alloy ribbon and magnetic core with insulating film formed thereon, pulse generator, laser device, accelerator
US20060017010A1 (en) * 2004-07-22 2006-01-26 Axcelis Technologies, Inc. Magnet for scanning ion beams
JP5555725B2 (en) 2012-01-13 2014-07-23 本田技研工業株式会社 Electric load control device
JP2023031770A (en) 2021-08-25 2023-03-09 Tdk株式会社 Magnetic alloy ribbon, laminate and magnetic core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181114A (en) * 1985-02-07 1986-08-13 Toshiba Corp Manufacture of rolled iron core
JPS61198611A (en) * 1985-02-27 1986-09-03 Kawasaki Steel Corp Manufacture of transformer with amorphous alloy thin band core
JPS6265403A (en) * 1985-09-18 1987-03-24 Kawasaki Steel Corp Improving magnetic characteristics of amorphous alloy thin band

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618903A (en) * 1984-06-25 1986-01-16 Kawasaki Steel Corp Characteristics of amorphous alloy thin belt and improvement of dieing workability thereof
WO1986005314A1 (en) * 1985-02-27 1986-09-12 Kawasaki Steel Corporation Laminate of thinamorphous alloy strip, core made of thin amorphous alloy strip, and process for their production
JPS6210278A (en) * 1985-07-09 1987-01-19 Kawasaki Steel Corp Thin amorphous alloy strip having excellent paramagnetic permeability
JPS6261308A (en) * 1985-09-11 1987-03-18 Toshiba Corp Heat treatment of amorphous wound core
JPS62188209A (en) * 1986-02-13 1987-08-17 Tdk Corp Manufacture of wound core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181114A (en) * 1985-02-07 1986-08-13 Toshiba Corp Manufacture of rolled iron core
JPS61198611A (en) * 1985-02-27 1986-09-03 Kawasaki Steel Corp Manufacture of transformer with amorphous alloy thin band core
JPS6265403A (en) * 1985-09-18 1987-03-24 Kawasaki Steel Corp Improving magnetic characteristics of amorphous alloy thin band

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889976A1 (en) 2020-03-27 2021-10-06 Hitachi Metals, Ltd. Manufacturing method for a wound magnetic core, and wound magnetic core
US11715591B2 (en) 2020-03-27 2023-08-01 Proterial, Ltd. Method for manufacturing a wound magnetic core
EP4365919A2 (en) 2020-03-27 2024-05-08 Proterial, Ltd. Manufacturing method for a wound magnetic core

Also Published As

Publication number Publication date
KR890016591A (en) 1989-11-29
DE68921363D1 (en) 1995-04-06
EP0337716A3 (en) 1990-09-19
CA1340795C (en) 1999-10-19
EP0337716A2 (en) 1989-10-18
ATE119309T1 (en) 1995-03-15
JP2716064B2 (en) 1998-02-18
KR920005490B1 (en) 1992-07-06
EP0337716B1 (en) 1995-03-01
DE68921363T2 (en) 1995-07-13

Similar Documents

Publication Publication Date Title
Ohnuma et al. Magnetostriction and soft magnetic properties of (Co1− xFex)–Al–O granular films with high electrical resistivity
US5242760A (en) Magnetic ribbon and magnetic core
JP2944208B2 (en) Magnetic core using metallic glass ribbon and interlayer insulating material of mica paper
JPH01259510A (en) Magnetic ribbon and magnetic core
JPH0254641B2 (en)
US7138188B2 (en) Magnetic implement using magnetic metal ribbon coated with insulator
Smith et al. Insulations for metallic glasses in pulse power systems
JP2918255B2 (en) Manufacturing method of magnetic core
KR20160044782A (en) Laminated core and their manufacturing method
JP3222458B2 (en) Manufacturing method of magnetic core
JP4851640B2 (en) Amorphous core for accelerator and accelerator using the same
KR20160025756A (en) Laminated core and their manufacturing method
JPH03125407A (en) Inductor core and its manufacture
JPH03125409A (en) Magnetic amplifier core and its manufacture
JP2918254B2 (en) Manufacturing method of magnetic core
JPH0529146A (en) Thin film inductance element utilizing rectangular magnetic core
JPH03125405A (en) Choke coil core and its manufacture
JPH04345007A (en) Compound magnetic film and manufacture thereof as well as core using the same
JPH0442887Y2 (en)
Bao et al. Magnetic field detection utilizing soft magnetic ribbons and a rectangular solenoid
JP2561573B2 (en) Amorphous ribbon saturable core
JP3638291B2 (en) Low loss core
JPH03125408A (en) Magnetic ribbon and magnetic core
JPH03125406A (en) Transformer core and its manufacture
JPH04291708A (en) Electromagnetic device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees