JPS61181114A - Manufacture of rolled iron core - Google Patents

Manufacture of rolled iron core

Info

Publication number
JPS61181114A
JPS61181114A JP2082885A JP2082885A JPS61181114A JP S61181114 A JPS61181114 A JP S61181114A JP 2082885 A JP2082885 A JP 2082885A JP 2082885 A JP2082885 A JP 2082885A JP S61181114 A JPS61181114 A JP S61181114A
Authority
JP
Japan
Prior art keywords
stress
magnetic alloy
amorphous magnetic
iron core
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2082885A
Other languages
Japanese (ja)
Inventor
Eiji Shimomura
英二 霜村
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2082885A priority Critical patent/JPS61181114A/en
Publication of JPS61181114A publication Critical patent/JPS61181114A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Abstract

PURPOSE:To improve rectangularity using magnetic elastic effect by adding a bending stress to an amorphous magnetic alloy thin belt. CONSTITUTION:A rolled iron core 2 is formed by winding amorphous magnetic alloy thin belt 1 having positive or negative magnetic stress except for zero to a bobbin 3a having a larger diameter. Namely, a rolled iron core 2 is formed by adding a bending stress corresponding to a larger bending diameter and an internal stress is eliminated by executing annealing to such rolled iron core 2. Thereafter, an amorphous magnetic alloy thin belt 1 is wound again to a bobbin 3b having smaller diameter. Namely, a stress as large as the difference can be given to the rolled iron core 2 by giving a bending stress corresponding to such small diameter. In this case, it is assumed that stresses having directivity are applied to each part of amorphous magnetic alloy thin belt 1 in place of a plurality of random stresses before the annealing for eliminating stress, namely a large tension is applied to the external size while a large compress force is applied to the internal side. Thereby, high rectangularity can be achieved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、変圧器、リアクトμなどの電磁誘導機器に用
いられ、非晶質磁性合金薄帯からなる巻鉄心の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a wound core made of an amorphous magnetic alloy ribbon, which is used in electromagnetic induction equipment such as a transformer and a reactor μ.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、非晶質磁性合金が、従来の磁性材料例えばけい素
鋼、Fe−Ni系合金等に代シ電磁誘導機器の鉄心材料
として用いられる傾向にある。この材料が注目されてい
る理由は、固有抵抗が約120〜150μΩ/cIII
−(アフイド社製アモルファス磁性材料商品名2605
S2の場合)であシ、低材料例えばけい素鋼板に比べお
よそ3倍の値を持つため鉄損の主要因であろうず電流損
失を低減でき、高い周波数領域に訃いても低鉄慣特性を
発揮できること、又磁界中で焼鈍(熱処理)を行なうこ
とで同じく鉄損の主要因であるヒステリジス損失を低減
できることの2点が挙げられる。
In recent years, there has been a tendency for amorphous magnetic alloys to be used as iron core materials for electromagnetic induction devices in place of conventional magnetic materials such as silicon steel and Fe--Ni alloys. The reason why this material is attracting attention is that it has a specific resistance of approximately 120 to 150 μΩ/cIII.
- (Amorphous magnetic material product name 2605 manufactured by Aphid Co., Ltd.
In the case of S2), it is a low material, for example, has a value about three times that of a silicon steel plate, so it can reduce current loss, which is not the main factor of iron loss, and has low iron inertia even in the high frequency range. Two points can be cited: the ability to exhibit high performance, and the ability to reduce hysteresis loss, which is also the main cause of iron loss, by performing annealing (heat treatment) in a magnetic field.

磁界中において焼鈍を行なうことは、非晶質磁性合金薄
帯が急冷製造された際に薄帯内に複雑に導入された歪み
を除去することを目的としたものであるが、その素材本
来の性質である高い応力感受性のため複雑に導入された
歪みに反応して悪化した磁気棒性は前記焼鈍によシ大巾
に改善されてとステリンス損失保磁力の低下という効果
等がもたらされる。このような非晶質磁性合金薄帯から
なる鉄心は、焼鈍後の加工成形時に歪みが再度複雑に導
入されると逆にその高い応力感受性のため磁気特性の悪
化を再びもたらす。この対策として特開昭59−410
9号公報には硬化時あまシ歪みが加わらないモーμド樹
脂を用いることが開示されておシ、良好な樹脂としてシ
リコーン樹脂が挙げられている。
The purpose of annealing in a magnetic field is to remove the complex distortions introduced into the ribbon when the amorphous magnetic alloy ribbon is rapidly cooled. The magnetic rod properties, which have deteriorated in response to strain introduced in a complicated manner due to the high stress sensitivity inherent in the material, are greatly improved by the annealing, resulting in effects such as a reduction in stealth loss coercive force. When an iron core made of such an amorphous magnetic alloy ribbon is subjected to complex strain again during processing and forming after annealing, the magnetic properties will deteriorate again due to its high stress sensitivity. As a countermeasure to this problem, JP-A-59-410
Publication No. 9 discloses the use of a mode μ mode resin that does not cause mild distortion during curing, and cites silicone resin as a good resin.

また、逆に非晶質磁性合金薄帯の高い応力感受性を積極
的に利用することも考えられている。正の磁気ひずみを
示す材料の磁化方向に張力を加えると磁気特性が向上す
ることを利用して特開昭58−52812号公報には非
晶質磁性合金薄帯を鉄心に巻取る際2〜8々/−の張力
を巻回方向に付加して鉄損を低減させる方法が提案され
ている。
Conversely, it is also being considered to actively utilize the high stress sensitivity of amorphous magnetic alloy ribbons. Utilizing the fact that applying tension in the magnetization direction of a material exhibiting positive magnetostriction improves the magnetic properties, Japanese Patent Application Laid-Open No. 58-52812 discloses a method for winding an amorphous magnetic alloy ribbon around an iron core. A method has been proposed in which a tension of 8/- is applied in the winding direction to reduce iron loss.

アモルファス磁性合金薄帯は低鉄損特性がその特徴であ
夛、前記2つの提案も低鉄損特性を発揮する方法の1例
である。しかし、鉄心としてその磁化曲線の角形性を問
題にする使用方法もある。例えば、パルス変圧器或いは
可飽和リアクトル等である。可飽和リアクトpの場合、
スイッチングレギュレータにおける磁気増巾器や自励発
振用に用いられるが、スイッチングレギュレータの技術
的課題である小形化、高効率化の達成のため高い飽和磁
化、大きな角形比、小さな保磁力が要求される。従来、
スーパーマロイ、フェライト等が使われているが、角形
比或いは飽和磁化等が問題となっているため現在零の磁
気ひずみを有するCo基非晶質磁性合金薄帯の適用が進
められている。しかしこの材料も飽和磁化が0.72T
(テスラー)であシ、未だ十分な飽和磁化であると言え
ない。
Amorphous magnetic alloy ribbons are characterized by low core loss characteristics, and the above two proposals are also examples of methods for exhibiting low core loss characteristics. However, there is also a method of using it as an iron core that concerns the squareness of its magnetization curve. For example, it is a pulse transformer or a saturable reactor. For saturable reactor p,
It is used for magnetic amplifiers and self-excited oscillation in switching regulators, but high saturation magnetization, large squareness ratio, and small coercive force are required to achieve miniaturization and high efficiency, which are the technical challenges of switching regulators. . Conventionally,
Supermalloy, ferrite, and the like have been used, but problems such as squareness ratio or saturation magnetization have caused problems, and therefore Co-based amorphous magnetic alloy ribbons having zero magnetostriction are currently being used. However, this material also has a saturation magnetization of 0.72T.
(Tesler) Well, it cannot be said that the saturation magnetization is still sufficient.

以上の理由によシ、大きな飽和磁化を持ち高周波数領域
においても良好な磁気特性を発揮する鉄系の非晶質磁性
合金薄帯をパルス変圧器、可飽和リアクトμ用鉄心に適
用することが望まれるが、鉄系非晶質合金薄帯は現在8
096程度の角形比しか達成できていないという問題が
あった。
For the above reasons, it is possible to apply iron-based amorphous magnetic alloy ribbons, which have large saturation magnetization and exhibit good magnetic properties even in the high frequency range, to pulse transformers and saturable reactor μ cores. Although desired, the iron-based amorphous alloy ribbon is currently 8
There was a problem that only a squareness ratio of about 0.096 could be achieved.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたもので、磁化曲線
の角形性を向上させうる非晶質磁性合金薄帯からなる巻
鉄心の製造方法を提供することを目的とするものである
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for manufacturing a wound core made of an amorphous magnetic alloy ribbon that can improve the squareness of the magnetization curve.

〔発明の概要〕[Summary of the invention]

本発明の巻鉄心の製造方法は、零でない磁気ひずみを持
つ非晶質磁性合金薄帯を零または任意の曲げ径を持たせ
て焼鈍した後、再度異なる所望の曲げ径を持たせて巻き
直すことを特徴とするものである。すなわち、非晶質磁
性合金薄帯に曲げ応力を付加することによシ、磁気弾性
効果を利用して角形性を向上させたものである。
The method for manufacturing a wound core of the present invention includes annealing an amorphous magnetic alloy ribbon having non-zero magnetostriction to a zero or arbitrary bending diameter, and then rewinding the ribbon to a different desired bending diameter. It is characterized by this. That is, by applying bending stress to the amorphous magnetic alloy ribbon, the squareness is improved by utilizing the magnetoelastic effect.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、零でない正または負の磁気ひずみを持
つ非晶質磁性合金薄帯1を径の大なる巻枠3aに巻回し
て巻鉄心2を形成する。すなわち大きな曲げ径に相当す
る曲げ応力を付与して巻鉄心2を形成し、この巻鉄心2
に焼鈍を施して内部歪み(応力)を除去した径小なる径
の巻枠31:Iに非晶質磁性合金薄帯1を巻き直す。す
なわち小さな曲げ径に相当する曲げ応力を付与すること
で、その差分の曲げ応力が巻鉄心2に付与される。この
場合、非晶質磁性合金薄帯1の各部分には歪取焼鈍前の
複雑でランダムなひずみではなく、第2図に示すように
外側には大きな張力、内側には大きな圧縮力というよう
に方向性のある応力が働いていると考えられる。正(負
)の磁気ひずみを持つ非晶質磁性合金薄帯1は張力によ
シ磁気弾性的な異方性が張力方向に平行に(負の場合直
角方向)誘起され、磁化され易くCに<<】なる反面、
圧縮力によシ磁気弾性的な異方性が圧縮力方向と直角方
向に(負の場合平行に)誘起され磁化され難く(易く)
なる。特に応力感受性の高い正の磁気ひずみを持つ鉄系
の非晶質磁性合金薄帯では前記傾向が顕著であると考え
られる。すなわち第3図(イ)に示した磁化曲線のよう
に曲は応力の張力分が磁化曲線を垂直にし、圧縮力分が
それ以上の磁化の増加を抑制することで高い角形性を発
揮させることが可能になる(負の磁気ひずみを持つ薄帯
も同様に高い角形性を示す)と推測される。ここで(ロ
)は焼鈍後曲げ応力を付加していない試料の典型的l1
l−H曲線である。第4図に本発明方法で製造した巻鉄
心の特性を示す。非晶質磁性合金薄帯としては正の大き
な磁気ひずみを持つ米国アライド社製のMETGLAS
 2605S2材料を用い、これをまず直径10(1m
の巻枠に巻回して巻鉄心とし400 A/mの直流磁界
社訓して(図中O印)或いは印加しないまi(図中Δ印
)、焼鈍温度400°C2焼鈍時間1時間、N2ガス中
で焼鈍を施した。その後直径20Mから801m1での
巻枠に巻き直した後、その角形比を調べた。角形比は残
留磁束密度Brと、磁化力EがtA、/an時の(誘導
)磁束密度B1との比を採ったものである。
In FIG. 1, a wound core 2 is formed by winding an amorphous magnetic alloy ribbon 1 having non-zero positive or negative magnetostriction around a winding frame 3a having a large diameter. That is, the wound core 2 is formed by applying bending stress corresponding to a large bending diameter, and this wound core 2 is
The amorphous magnetic alloy ribbon 1 is re-wound onto a smaller diameter winding frame 31:I which has been annealed to remove internal strain (stress). That is, by applying a bending stress corresponding to a small bending diameter, a bending stress corresponding to the difference is applied to the wound core 2. In this case, each part of the amorphous magnetic alloy ribbon 1 does not have the complicated and random strain before strain relief annealing, but instead has a large tension on the outside and a large compressive force on the inside, as shown in Figure 2. It is thought that directional stress is acting on the In the amorphous magnetic alloy ribbon 1 with positive (negative) magnetostriction, magnetoelastic anisotropy is induced by tension in parallel to the tension direction (in the case of negative, perpendicular direction), and it is easily magnetized and becomes C. <<] On the other hand,
Magnetoelastic anisotropy is induced by the compressive force in a direction perpendicular to the direction of the compressive force (parallel if it is negative), making it difficult (or easy) to be magnetized.
Become. It is thought that the above-mentioned tendency is particularly remarkable in iron-based amorphous magnetic alloy ribbons that have positive magnetostriction and are highly sensitive to stress. In other words, as shown in the magnetization curve shown in Figure 3 (a), the tension component of the stress makes the magnetization curve perpendicular, and the compressive force component suppresses any further increase in magnetization, thereby exhibiting high squareness. It is presumed that (thin ribbons with negative magnetostriction also exhibit high squareness). Here, (b) is a typical l1 of the sample to which no bending stress was applied after annealing.
It is an lH curve. FIG. 4 shows the characteristics of the wound core manufactured by the method of the present invention. METGLAS manufactured by Allied, USA, has a large positive magnetostriction compared to an amorphous magnetic alloy ribbon.
Using 2605S2 material, it was first cut into a diameter of 10 (1 m).
The core was wound around a winding frame of 400 A/m with a DC magnetic field applied (marked O in the figure) or not applied (marked Δ in the figure), annealing temperature 400°C, annealing time 1 hour, N2 Annealing was performed in gas. After that, it was re-wound onto a winding frame with a diameter of 20 m to 801 m1, and its squareness ratio was examined. The squareness ratio is the ratio between the residual magnetic flux density Br and the (induced) magnetic flux density B1 when the magnetizing force E is tA,/an.

磁場中焼鈍では曲げ応力を加えなかった場合の85第か
ら直径20mの巻枠に巻き直した場合0999g″!で
、無磁場焼鈍では64mから94%まで連続的に変化し
ている。このことは、角形比を向上させることはもちろ
ん任意の角形比を選択できることも示している。
In magnetic field annealing, when no bending stress was applied, the weight was 0999 g''! when rewinding from No. 85 to a 20 m diameter winding frame, and in non-magnetic field annealing, it continuously changed from 64 m to 94%. , it is shown that not only can the squareness ratio be improved, but also that an arbitrary squareness ratio can be selected.

なシ、上記実施例は焼鈍前の曲げ径を大とし、焼鈍後の
曲げ径を小とした場合について説明し九が、逆に実施し
てもよ<、1九焼鈍前の曲げ径を零としてもよい。
The above example describes the case where the bending diameter before annealing is made large and the bending diameter after annealing is made small. You can also use it as

〔発明の効果〕〔Effect of the invention〕

本発明による巻鉄心の製造方法は以上説明したように、
零でない磁気ひずみを有する非晶質磁性合金薄帯を零ま
九は任意の自げ径を持たせて焼鈍した後、異なる所望の
曲げ径に巻き直すことで巻鉄心に曲げ応力を付加してそ
の磁気特性の1つである磁化曲線の角形性を連続的に向
上させることができる。
As explained above, the method for manufacturing a wound core according to the present invention includes:
An amorphous magnetic alloy ribbon with non-zero magnetostriction is annealed to a desired self-diameter and then re-wound to a different desired bending diameter to apply bending stress to the wound core. The squareness of the magnetization curve, which is one of its magnetic properties, can be continuously improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による巻鉄心の製造方法を示
す説明図、第2図は曲げ応力が加わった非晶質磁性合金
薄帯の応力分布を示す説明図、第3図は歪取シ焼鈍後曲
げ応力を加えなかった試料のB−H曲線−)と曲げ応力
を加えた試料のB−H曲線(イ)を示す線図、第4図は
巻鉄心の角形比と巻き直し直径の関係を示す線図である
。 図面中、1は非晶質磁性合金薄帯、2は巻鉄心、5h、
51:1は巻枠を示す。 (7317)代理人 弁理士 則 近Wl  佑Cほか
1名)第 1 図 第 3 口 jp+4  口 jkl+、i径(rnrn)
FIG. 1 is an explanatory diagram showing a method for manufacturing a wound core according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the stress distribution of an amorphous magnetic alloy ribbon subjected to bending stress, and FIG. Figure 4 shows the B-H curve of the sample to which no bending stress was applied after annealing and the B-H curve (a) of the sample to which bending stress was applied. Figure 4 shows the squareness ratio of the wound core and the rewinding. FIG. 3 is a diagram showing the relationship between diameters. In the drawing, 1 is an amorphous magnetic alloy ribbon, 2 is a wound core, 5h,
51:1 indicates the winding frame. (7317) Agent Patent attorney Nori Chika Wl Yu C and 1 other person) Figure 1 Figure 3 Mouth jp+4 Mouth jkl+, i diameter (rnrn)

Claims (1)

【特許請求の範囲】[Claims] 零でない磁気ひずみを有する非晶質磁性合金薄帯を零ま
たは任意の曲げ径を持たせて焼鈍した後、異なる所望の
曲げ径を持たせて巻き直したことを特徴とする巻鉄心の
製造方法。
A method for producing a wound core, characterized in that an amorphous magnetic alloy ribbon having non-zero magnetostriction is annealed to have zero or arbitrary bending diameter, and then re-wound to have a different desired bending diameter. .
JP2082885A 1985-02-07 1985-02-07 Manufacture of rolled iron core Pending JPS61181114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082885A JPS61181114A (en) 1985-02-07 1985-02-07 Manufacture of rolled iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082885A JPS61181114A (en) 1985-02-07 1985-02-07 Manufacture of rolled iron core

Publications (1)

Publication Number Publication Date
JPS61181114A true JPS61181114A (en) 1986-08-13

Family

ID=12037899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082885A Pending JPS61181114A (en) 1985-02-07 1985-02-07 Manufacture of rolled iron core

Country Status (1)

Country Link
JP (1) JPS61181114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115616A (en) * 1986-10-31 1988-05-20 Nippon Steel Corp Manufacture of toroidal core made of amorphous alloy ribbon
JPH01259510A (en) * 1988-04-11 1989-10-17 Mitsui Petrochem Ind Ltd Magnetic ribbon and magnetic core
JPH01278002A (en) * 1988-04-28 1989-11-08 Mitsui Petrochem Ind Ltd Magnetic core and manufacture thereof
CN101945528A (en) * 2009-07-03 2011-01-12 日铁住金溶接工业株式会社 Insert chip and plasma torch pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115616A (en) * 1986-10-31 1988-05-20 Nippon Steel Corp Manufacture of toroidal core made of amorphous alloy ribbon
JPH0429442B2 (en) * 1986-10-31 1992-05-19
JPH01259510A (en) * 1988-04-11 1989-10-17 Mitsui Petrochem Ind Ltd Magnetic ribbon and magnetic core
JPH01278002A (en) * 1988-04-28 1989-11-08 Mitsui Petrochem Ind Ltd Magnetic core and manufacture thereof
CN101945528A (en) * 2009-07-03 2011-01-12 日铁住金溶接工业株式会社 Insert chip and plasma torch pipe

Similar Documents

Publication Publication Date Title
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
US4053331A (en) Method of making amorphous metallic alloys having enhanced magnetic properties by using tensile stress
Luborsky Perspective on application of amorphous alloys in magnetic devices
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
US6432226B2 (en) Magnetic glassy alloys for high frequency applications
US6992555B2 (en) Gapped amorphous metal-based magnetic core
Luborsky et al. Amorphous materials—A new class of soft magnetic alloys
JPS61181114A (en) Manufacture of rolled iron core
EP0337716B1 (en) Magnetic ribbon and magnetic core
JP2004519554A (en) Metallic glass alloys for electronic article surveillance
CA2027316C (en) Process for preparing wound core having low core loss
JPS61261451A (en) Magnetic material and its production
JPH0811818B2 (en) Heat treatment method for toroidal amorphous magnetic core
JPH0257683B2 (en)
JP2788248B2 (en) High frequency magnetic core and method of manufacturing the same
JPS62167840A (en) Magnetic material and its manufacture
JPS6137762B2 (en)
JP2693453B2 (en) Winding core
JPH0689438B2 (en) Iron-rich metallic glass with high saturation magnetic induction and excellent soft ferromagnetism at high magnetization rates
JP2835127B2 (en) Magnetic core and manufacturing method thereof
JP2791173B2 (en) Magnetic core
JP2633813B2 (en) Manufacturing method of reactor for switching circuit
JPH05304014A (en) Fe-co soft magnetic material with excellent soft magnetic property and soft magnetic electric part assembled body