JP2918254B2 - Manufacturing method of magnetic core - Google Patents

Manufacturing method of magnetic core

Info

Publication number
JP2918254B2
JP2918254B2 JP1263516A JP26351689A JP2918254B2 JP 2918254 B2 JP2918254 B2 JP 2918254B2 JP 1263516 A JP1263516 A JP 1263516A JP 26351689 A JP26351689 A JP 26351689A JP 2918254 B2 JP2918254 B2 JP 2918254B2
Authority
JP
Japan
Prior art keywords
magnetic
fine powder
ribbon
magnetic core
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1263516A
Other languages
Japanese (ja)
Other versions
JPH03125403A (en
Inventor
孝 松岡
雅人 竹内
和彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17390623&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2918254(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP1263516A priority Critical patent/JP2918254B2/en
Publication of JPH03125403A publication Critical patent/JPH03125403A/en
Application granted granted Critical
Publication of JP2918254B2 publication Critical patent/JP2918254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、トランス用鉄心あるいはモータ用鉄心等に
用いられる磁心の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a magnetic core used for an iron core for a transformer or an iron core for a motor.

〔従来の技術〕[Conventional technology]

この種の技術について記載されている例としては、特
公昭62−37114号公報がある。
Japanese Patent Publication No. Sho 62-37114 discloses an example of this type of technology.

前記公報においては、非晶質磁性鋼帯(磁性リボン)
に対してリン酸塩処理および/またはクロム酸塩処理の
表面処理を行い、絶縁皮膜を付着させた後、酸化性雰囲
気中で焼鈍する技術が記載されている。
In the publication, an amorphous magnetic steel strip (magnetic ribbon)
Describes a technique in which a surface treatment such as a phosphate treatment and / or a chromate treatment is performed on the resultant, an insulating film is attached, and then annealing is performed in an oxidizing atmosphere.

すなわち、この種の予め絶縁皮膜処理を施された磁性
リボンにおいては、酸化雰囲気中で焼鈍を行うことによ
り鉄損特性が向上し、それまでの窒素雰囲気中で焼鈍し
たものに比べて特性上、同等あるいはそれ以上の性能を
示すことが見い出されている。
That is, in a magnetic ribbon which has been subjected to an insulating film treatment of this kind in advance, the iron loss characteristics are improved by performing annealing in an oxidizing atmosphere, and the characteristics are higher than those in the case of annealing in a nitrogen atmosphere. It has been found that they show equal or better performance.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、前記技術においては、焼鈍による透磁率の劣
化については充分に配慮されているとはいえなかった。
However, in the above-mentioned technique, it cannot be said that sufficient consideration is given to deterioration of magnetic permeability due to annealing.

すなわち、磁性リボンとしてアモルファス磁性リボン
を製造する場合、400℃前後で焼鈍することが行われる
が、このような焼鈍が行われると、絶縁膜とリボンとの
線膨張係数の違い、すなわち、ほとんどの場合、絶縁膜
の線膨張係数の方がアモルファスリボンのそれより大き
いので、リボンに圧縮応力が生じ、磁歪の逆効果により
透磁率が劣化する。
That is, when an amorphous magnetic ribbon is manufactured as a magnetic ribbon, annealing is performed at about 400 ° C. When such annealing is performed, the difference in linear expansion coefficient between the insulating film and the ribbon, that is, almost all In this case, since the linear expansion coefficient of the insulating film is larger than that of the amorphous ribbon, a compressive stress is generated in the ribbon, and the magnetic permeability is deteriorated due to the adverse effect of magnetostriction.

また、400℃前後の焼鈍に耐える絶縁膜としては、材
料的に限られるという問題もあり、さらに、絶縁膜を設
けると磁心を構成した場合、磁性体の充填率(占積率)
が低下し、結果として磁心の大型化を招いてしまう。
In addition, there is a problem that the insulating film that can withstand annealing at about 400 ° C. is limited in material, and furthermore, when an insulating film is provided, a magnetic core is formed.
And the size of the magnetic core increases as a result.

本発明は、このような背景の下になされたもので、占
積率の低下を最小限にしてリボン層間の絶縁性を確保し
て、鉄損特性の向上と透磁率の向上とを共に満足する磁
心の製造技術の提供を技術的課題とするものである。
The present invention has been made under such a background, and it has been found that the lowering of the space factor is minimized, the insulation between the ribbon layers is ensured, and both the improvement of the iron loss characteristics and the improvement of the magnetic permeability are satisfied. It is an object of the present invention to provide a technology for manufacturing a magnetic core.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、その理論的前提として、まず、次のような
点に着目してなされた。
The present invention has been made focusing on the following points as its theoretical premise.

すなわち、磁性リボンにおける層間絶縁膜について
は、いかに絶縁性能の良い絶縁膜材料を見い出すかが当
業者間の最大の関心事となっている。
That is, for the interlayer insulating film in the magnetic ribbon, how to find an insulating film material having good insulating performance is the greatest concern among those skilled in the art.

しかし、観点に変えてみると、このような絶縁膜が無
い場合でも層間に空気層があれば、それが絶縁層となっ
て、渦電流を防ぎ、かつ占積率を大きくできると考え
た。
However, from a viewpoint, it is considered that even if there is no insulating film, if there is an air layer between the layers, the air layer becomes an insulating layer, which can prevent eddy current and increase the space factor.

そこで、本発明では、このような空気層を確保するた
めに、磁性リボンの積層体間に、絶縁性を有する酸化性
無機物質からなる非磁性体の微粉を、これらの微粉がス
ペーサとして空気層を形成するように介在させた状態で
焼鈍した。
Therefore, in the present invention, in order to secure such an air layer, fine particles of a non-magnetic material made of an oxidizing inorganic substance having an insulating property are used between the magnetic ribbon laminates, and these fine powders serve as spacers in the air layer. Was annealed in a state of being interposed to form.

同時に本発明では、そのような微粉として酸化性無機
物質を用いたことに特徴がある。
At the same time, the present invention is characterized in that an oxidizing inorganic substance is used as such fine powder.

また、磁性リボン単体の場合は、微粉がリボン表面に
接着していなければならないが、磁性リボンを巻回もし
くは積層した場合は、微粉が接着している必要はなく、
リボン間に介在している状態で足りる。
In addition, in the case of a magnetic ribbon alone, the fine powder must adhere to the ribbon surface, but when the magnetic ribbon is wound or laminated, the fine powder does not need to adhere,
It suffices to be interposed between the ribbons.

〔作用〕[Action]

以下、本発明の作用を述べ、さらに具体的は解決手段
について説明する。
Hereinafter, the operation of the present invention will be described, and more specifically, the solving means will be described.

本発明では、酸化性無機物質からなる微粉を少なくと
も一面に付着させて磁性リボンとしたので、この磁性リ
ボンを巻回し、あるいは、積層して磁心とした場合、微
粉がスペーサとなって、リボンによる各層間に空気層が
形成される。
In the present invention, a fine powder made of an oxidizing inorganic substance is adhered to at least one surface to form a magnetic ribbon. Therefore, when this magnetic ribbon is wound or laminated to form a magnetic core, the fine powder becomes a spacer, and An air layer is formed between each layer.

ここで、本発明における磁性リボンとは、磁性体の薄
帯であり、磁性体材料としては、遷移金属中のFe,Co,Ni
等の強磁性元素単体、あるいは強磁性元素同士の合金、
特性改善を図るために加えられる非強磁性元素と強磁性
元素の合金、フェライト、パーマロイ、アモルファス合
金等を例示できる。アモルファス金属としては、Fe−B,
Fe−B−C,Fe−B−Si,Fe−B−Si−C,Fe−B−Si−Cr,
Fe−Co−B−Si,Fe−Ni−Mo−B等のFe系、Co−B,Co−F
e−Si−B,Co−Fe−Ni−Mo−B−Si,Co−Fe−Ni−B−S
i,Co−Fe−Mn−B−Si,Co−Fe−Mn−Ni,Co−Mn−Ni−B
−Si,Co−Fe−Mn−Ni−B等のCo系等を例示できる。
Here, the magnetic ribbon in the present invention is a thin ribbon of a magnetic material, and the magnetic material is Fe, Co, Ni in a transition metal.
Ferromagnetic elements alone, or alloys of ferromagnetic elements,
Examples thereof include alloys of non-ferromagnetic elements and ferromagnetic elements, ferrite, permalloy, amorphous alloys, and the like, which are added to improve characteristics. As an amorphous metal, Fe-B,
Fe-BC, Fe-B-Si, Fe-B-Si-C, Fe-B-Si-Cr,
Fe-based materials such as Fe-Co-B-Si, Fe-Ni-Mo-B, Co-B, Co-F
e-Si-B, Co-Fe-Ni-Mo-B-Si, Co-Fe-Ni-BS
i, Co-Fe-Mn-B-Si, Co-Fe-Mn-Ni, Co-Mn-Ni-B
-Co, Co-Fe-Mn-Ni-B and the like.

また、本発明では磁性体材料としてアモルファス金属
以外に、Fe−Si−B−Cu−Nb系合金などのFe系微結晶軟
磁性材料も使用できる。
Further, in the present invention, an Fe-based microcrystalline soft magnetic material such as an Fe-Si-B-Cu-Nb-based alloy can be used as the magnetic material in addition to the amorphous metal.

なお、本発明で使用する磁性体としては、以上の他
に、当初はアモルファス状態であるが、加熱処理をする
と組織が微細結晶粒となる磁性体、例えば、Fe−Cu−Nb
−Si−B系合金、具体的な組成としては、Fe73.5−Cu1
−Nb3−Si13.5−B9を例示できる。
In addition, as the magnetic material used in the present invention, in addition to the above, a magnetic material which is initially in an amorphous state, but has a structure of fine crystal grains when subjected to heat treatment, for example, Fe-Cu-Nb
-Si-B-based alloy, as a specific composition, Fe 73.5 -Cu 1
It can be exemplified -Nb 3 -Si 13.5 -B 9.

本発明では、このような磁性リボンの積層体間に、絶
縁性を有する酸化性無機物質からなる非磁性体の微粉を
スペーサとして介在させて空気層を形成する。
In the present invention, an air layer is formed by interposing fine particles of a non-magnetic substance made of an oxidizing inorganic substance having an insulating property as spacers between the laminated bodies of such magnetic ribbons.

本発明で使用される微粉は酸化性の無機物質である。
磁性リボンの表面を酸化し、絶縁性の酸化被膜で覆うた
めである。このような酸化性無機物の例としては、五酸
化二アンチモンもしくは三酸化アンチモンが好適で、こ
れらが同時に存在していてもよい。
The fine powder used in the present invention is an oxidizing inorganic substance.
This is because the surface of the magnetic ribbon is oxidized and covered with an insulating oxide film. Suitable examples of such an oxidizing inorganic substance include diantimony pentoxide or antimony trioxide, which may be present at the same time.

また、酸化性無機物質の微粉としては、非磁性体であ
り、かつ、絶縁性を有することが条件となる。微粉が磁
性体または導電体であると透磁率を劣化させたり、渦電
流を増長させるためである。
The condition is that the fine powder of the oxidizing inorganic substance is a non-magnetic substance and has insulating properties. This is because when the fine powder is a magnetic substance or a conductor, the magnetic permeability is degraded or the eddy current is increased.

これら酸化性無機物質の微粉の粒径についてみると、
微粉をリボンにまんべんなく付着・介在させて絶縁層と
する点を考慮すると、微粉の粒径は小さくてもよいが、
極度に小さくすることは製造を困難にする要因となる。
一方、余り大きいとリボンで磁心を形成した場合、リボ
ン間の間隙の幅が大きくなりすぎて磁性体の占積率が小
さくなる。このような理由から、微粉の粒径は10nm〜2
μmであるのが望ましい。
Looking at the particle size of the fine powder of these oxidizing inorganic substances,
Considering that the fine powder is evenly attached to and interposed on the ribbon to form an insulating layer, the particle size of the fine powder may be small,
Extremely small size is a factor that makes manufacturing difficult.
On the other hand, if it is too large, when the magnetic core is formed by the ribbon, the width of the gap between the ribbons becomes too large, and the space factor of the magnetic material becomes small. For these reasons, the particle size of the fine powder is 10 nm to 2 nm.
μm is desirable.

また、微粉の付着・介在量はリボンの単体面積(1c
m2)当り、微粉が10-7cm3〜2×10-4cm3、さらに好適に
は3×10-6cm3〜10-5cm3となる量だけ付着・介在するよ
うにするとよい。この付着・介在量を単位面積当りの微
粉重量に換算すると、微粉の素材の比重によりその値が
変わるが、五酸化二アンチモンの場合、3.8×10-7g/cm2
〜7.6×10-4g/cm2、さらに好適には1.1×10-5g/cm2〜3.
8×10-5g/cm2である。
In addition, the amount of fine powder adhering and interposing
The amount of fine powder per m 2 ) is preferably 10 −7 cm 3 to 2 × 10 −4 cm 3 , more preferably 3 × 10 −6 cm 3 to 10 −5 cm 3. . When this amount of adhesion / intervention is converted into the weight of the fine powder per unit area, the value changes depending on the specific gravity of the material of the fine powder, but in the case of diantimony pentoxide, 3.8 × 10 −7 g / cm 2
~ 7.6 × 10 -4 g / cm 2 , more preferably 1.1 × 10 -5 g / cm 2 ~ 3.
8 × 10 −5 g / cm 2 .

微粉を磁性リボン間に介在させる手段としては、磁性
リボンを巻回もしくは積層するにあたって、微粉を磁性
リボン上に散布しながら巻回もしくは積層する方法を例
示できる。また他の方法として、前記のような微粉を、
高分子溶液または高分子分散液又は両者の混合液に分散
して得た分散系、とりわけコロイド溶液といた絶縁処理
液を磁性リボンの少なくとも一面に付着させ、それを巻
回もしくは積層する方法を例示できる。
As a means for interposing fine powder between the magnetic ribbons, a method of winding or laminating fine powder while spraying the magnetic ribbon on the magnetic ribbon can be exemplified. As another method, the fine powder as described above is used,
An example of a method in which a dispersion obtained by dispersing in a polymer solution or a polymer dispersion or a mixture of both, particularly a method of attaching an insulation treatment solution as a colloid solution to at least one surface of a magnetic ribbon, and winding or laminating the same. it can.

このような絶縁処理液で用いられる高分子溶液は、揮
発性液体に高分子化合物が溶解して形成されている。揮
発性液体としては、具体的には、例えば、無機溶媒とし
て、水、アンモニア水など、有機溶媒として、トルエ
ン、キシレン、低級アルコール、ガソリン、ケロシン、
ヘキサン、その他にも芳香族、脂肪族有機溶剤などが挙
げられる。なお、これらは単独で用いられてもよく、可
能な範囲で混合されて用いられてもよい。
A polymer solution used in such an insulating solution is formed by dissolving a polymer compound in a volatile liquid. As the volatile liquid, specifically, for example, as an inorganic solvent, water, aqueous ammonia, etc., as an organic solvent, toluene, xylene, lower alcohol, gasoline, kerosene,
Hexane, and aromatic and aliphatic organic solvents and the like are also included. In addition, these may be used independently and may be used in mixture as much as possible.

このような揮発性液体に溶解して用いられる高分子化
合物は、前記微粉を分散系中で実質的に凝結させること
のない非イオン性物質が望ましい。例えば具体的には、
ポリエチレングリコール、カルボキシメチルセルロー
ス、ポリビニルアルコール、ポリアクリル酸、ポリアク
リル酸メチル、アクリル酸・シリコン化合物共重合体な
どが挙げられる。その他にも、アクリル系、ウレタン
系、エポキシ系、酢酸ビニル系などの高分子化合物も挙
げられる。
As the polymer compound used by being dissolved in such a volatile liquid, a nonionic substance which does not substantially coagulate the fine powder in a dispersion system is desirable. For example, specifically,
Examples include polyethylene glycol, carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid, polymethyl acrylate, and acrylic acid / silicon compound copolymer. In addition, high molecular compounds such as acrylic, urethane, epoxy, and vinyl acetate are also used.

ただし、実際に用いられる高分子化合物は、上記の中
でも用いられる揮発性液体に対応して選択され、揮発性
液体が揮散した場合でも、なお、粘着性を有している高
分子化合物がよい。例えば、揮発性液体にトルエンを用
いた場合にはアクリル系、ウレタン系、あるいはエポキ
シ系化合物が挙げられる。揮発性液体に水を用いた場
合、ポリエチレングリコール、ポリビニルアルコールな
どが好ましい。
However, the polymer compound actually used is selected according to the volatile liquid used among the above, and even when the volatile liquid is volatilized, a polymer compound having adhesiveness is still preferable. For example, when toluene is used as the volatile liquid, an acrylic, urethane, or epoxy compound may be used. When water is used as the volatile liquid, polyethylene glycol, polyvinyl alcohol and the like are preferable.

また、高分子化合物の割合は、分散系全体に対し、0.
1重量%〜10重量%であるとよい。高分子化合物の割合
がこの範囲にあると、分散系に適度の粘性が付与されて
よい。
Further, the ratio of the polymer compound is 0.
The content is preferably 1% to 10% by weight. When the proportion of the polymer compound is in this range, the dispersion may have an appropriate viscosity.

絶縁処理液で用いる高分子分散液は、前記高分子溶液
に用いた揮発性液体と同一の液体を分散媒として用いる
ことができる。このような揮発性液体に分散して用いら
れる高分子化合物は、熱可塑性エラストマー、低密度ポ
リオレフィン、アイオノマー、酢酸ビニル系共重合ポリ
オレフィン、低分子量ポリオレフィンなどのポリオレフ
ィン系樹脂の微粉を例示できる。これら樹脂微粉の粒径
は5μm以下が好ましく、揮発性液体への分散量は総量
に対し、0.1〜10重量%程度が好ましい。
As the polymer dispersion liquid used in the insulating treatment liquid, the same liquid as the volatile liquid used in the polymer solution can be used as a dispersion medium. Examples of the polymer compound used by being dispersed in such a volatile liquid include fine powders of a polyolefin-based resin such as a thermoplastic elastomer, a low-density polyolefin, an ionomer, a vinyl acetate-based copolymerized polyolefin, and a low-molecular-weight polyolefin. The particle size of the resin fine powder is preferably 5 μm or less, and the amount of dispersion in the volatile liquid is preferably about 0.1 to 10% by weight based on the total amount.

さらに具体的には、水(95重量%)に平均粒径4μ
mの熱可塑性エラストマー微粉を5重量%分散させた高
分子分散液、水(95重量%)に平均粒径5μmの低密
度ポリオレフィン微粉を5重量%分散させた高分子分散
液、水(95重量%)に平均粒径0.5μm以下のアイオ
ノマー微粉を10重量%分散させた高分子分散液、水
(95重量%)に平均粒径5μm以下の酢酸ビニル系共重
合ポリオレフィン微粉を5重量%分散させた高分子分散
液、水(95重量%)に平均粒径2〜5μmの低分子量
ポリオレフィン微粉を5重量%分散させた高分子分散液
などを例示できる。
More specifically, water (95% by weight) has an average particle size of 4 μm.
polymer dispersion in which 5% by weight of a thermoplastic elastomer fine powder of 5 m is dispersed, 5% by weight of a low-density polyolefin fine powder having an average particle size of 5 μm in water (95% by weight), water (95% by weight) %) And 10% by weight of an ionomer fine powder having an average particle size of 0.5 μm or less, and 5% by weight of a vinyl acetate copolymer polyolefin fine powder having an average particle size of 5 μm or less in water (95% by weight). And a polymer dispersion obtained by dispersing 5% by weight of a low-molecular-weight polyolefin fine powder having an average particle diameter of 2 to 5 μm in water (95% by weight).

そして、以上の高分子溶液、高分子分散液には、界面
活性剤、乳化助剤、分散助剤などの添加物質が含まれて
いてもよい。また、高分子溶液と高分子分散液とが混合
して用いられてもよい。
Further, the above-mentioned polymer solution and polymer dispersion may contain additive substances such as a surfactant, an emulsifying aid, and a dispersing aid. Further, a polymer solution and a polymer dispersion may be used as a mixture.

このような高分子溶液又は高分子分散液もしくはこれ
らの混合液中に分散される微粉の割合は、高分子溶液、
高分子分散液、微粉の種類によっても大きく異なるが、
一般には、分散系全体に対し、0.1重量%〜60重量%で
あるとよい場合が多い。その中でも、例えば微粉が五酸
化二アンチモン、揮発性液体がトルエンの場合、分散系
全体に対し、0.1〜30重量%の比率で五酸化二アンチモ
ンが用いられるとよい。五酸化二アンニモンの割合は例
えば3重量%程度でも十分有効で、このような絶縁処理
液を磁性リボンに塗布して絶縁層の形成される磁心に占
積率の低下はほとんどなく、磁気特性も劣化しない。
The proportion of fine powder dispersed in such a polymer solution or polymer dispersion or a mixture thereof is a polymer solution,
It varies greatly depending on the type of polymer dispersion and fine powder,
In general, it is often preferable that the amount be 0.1% by weight to 60% by weight based on the entire dispersion. Among them, for example, when the fine powder is diantimony pentoxide and the volatile liquid is toluene, diantimony pentoxide is preferably used at a ratio of 0.1 to 30% by weight based on the entire dispersion. The proportion of diannmonium pentoxide, for example, about 3% by weight is sufficiently effective. Such an insulating treatment liquid is applied to a magnetic ribbon, and there is almost no decrease in the space factor of the magnetic core on which the insulating layer is formed. Does not deteriorate.

絶縁処理液の製造にあたって、微粉を分散させる方法
としては、例えば、分散法によってもよく、凝集法によ
ってもよい。分散法の場合、機械的分散法でもよく、電
気的分散法でもよく、解膠法でもよい。凝集法の場合、
還元法、酸化法、複分解法、溶解度低下法のいずれでも
よい。
In producing the insulating treatment liquid, the method for dispersing the fine powder may be, for example, a dispersion method or an aggregation method. In the case of the dispersion method, a mechanical dispersion method, an electric dispersion method, or a peptization method may be used. In the case of the coagulation method,
Any of a reduction method, an oxidation method, a double decomposition method, and a solubility reduction method may be used.

絶縁処理液を得るには、このような分散液の製造にあ
たって、高分子化合物を混合してある高分子溶液あるい
は高分子分散液をあらかじめ用いて分散系を形成し、そ
れを絶縁処理液としてもよく、高分子溶液あるいは高分
子分散液の製造工程の中で上記のような微粉を混合して
もよい。また、微粉を分散した揮発性液体の中に高分子
化合物を溶解もしくは分散してもよい。
In order to obtain the insulation treatment liquid, a dispersion system is formed in advance by using a polymer solution or a polymer dispersion liquid in which a polymer compound is mixed in the production of such a dispersion liquid, and this is used as the insulation treatment liquid. The fine powder as described above may be mixed in the production process of the polymer solution or the polymer dispersion. Further, a polymer compound may be dissolved or dispersed in a volatile liquid in which fine powder is dispersed.

絶縁処理液を、上記のような磁性リボンに塗布する
際、塗布際の厚さは10μm以下にするとよい。この程度
の厚さにすると、磁性リボンに対する微粉付着量が、磁
性リボンの単位面積(1cm2)当り、10-7cm3〜2×10-4c
m3、条件次第では、3×10-6cm3〜10-5cm3となるのでよ
い。
When applying the insulating treatment liquid to the magnetic ribbon as described above, the thickness at the time of application is preferably set to 10 μm or less. With this thickness, the amount of fine powder adhering to the magnetic ribbon is 10 −7 cm 3 to 2 × 10 −4 c per unit area (1 cm 2 ) of the magnetic ribbon.
m 3 , depending on conditions, may be 3 × 10 −6 cm 3 to 10 −5 cm 3 .

通常、上記のように絶縁処理液の塗布された磁性リボ
ンを更に強制的もしくは自然に乾燥し、揮発性液体を揮
散させ、残存する高分子化合物を介して微粉を磁性リボ
ンなどに付着させる。
Usually, the magnetic ribbon coated with the insulating solution as described above is further forcibly or spontaneously dried to volatilize the volatile liquid, and the fine powder is adhered to the magnetic ribbon or the like via the remaining polymer compound.

また、揮発性液体を揮散させるには、好ましくは乾燥
炉を使用し、一般には100℃以下で乾燥するとよい。
Further, in order to volatilize the volatile liquid, a drying furnace is preferably used, and drying is generally performed at 100 ° C. or less.

このような微粉が付着した磁性リボン、リボン間に微
粉を介在させた磁心は、歪取りを主目的として好ましく
は300〜600℃の温度、より好適には380〜410℃で、0.5
〜5時間、より好適には2〜4時間焼鈍を行う。この焼
鈍は、リボンを巻回あるいは積層して磁心とした後に行
ってもよいし、リボンの状態のままで行ってもよい、と
りわけ、キュリー点よりも10〜50℃高い温度で焼鈍する
とき、高周波での特性のよいものが得られる。なお、焼
鈍は磁場中で行ってもよいし、無磁場で行ってもよい。
Such a magnetic ribbon to which fine powder is attached, the magnetic core having fine powder interposed between the ribbons is preferably at a temperature of 300 to 600 ° C, more preferably at 380 to 410 ° C for the main purpose of strain relief, and 0.5 to 0.5 ° C.
Annealing is performed for up to 5 hours, more preferably 2 to 4 hours. This annealing may be performed after winding or laminating the ribbon to form a magnetic core, or may be performed in the state of the ribbon, especially when annealing at a temperature higher by 10 to 50 ° C. than the Curie point, Good characteristics at high frequency can be obtained. Note that annealing may be performed in a magnetic field or without a magnetic field.

前記絶縁処理液が磁性リボンに塗布された場合、その
後焼鈍されると、高分子化合物は焼失し、絶縁性微粉は
磁性リボン層間に介在保持される。
When the insulating treatment liquid is applied to the magnetic ribbon, if annealing is performed thereafter, the polymer compound is burned off, and the insulating fine powder is interposed and held between the magnetic ribbon layers.

そして、巻回もしくは積層したアモルファス磁心を焼
鈍する場合、リボン間に介在する微粉は、粉体であるが
ゆえに線膨張ということが磁心に影響を与えない。むし
ろ、アモルファスリボンの収縮に伴う応力を吸収すると
いう作用を奏する。
When the wound or laminated amorphous magnetic core is annealed, linear expansion does not affect the magnetic core because the fine powder interposed between the ribbons is a powder. Rather, it has the effect of absorbing the stress associated with the shrinkage of the amorphous ribbon.

さらに、磁性リボンもしくは磁心の焼鈍の際に、酸化
性無機物質の存在により、磁性リボンの表面が確実に酸
化されるため、前記公報に記載された技術のように単に
空気、空気と不活性ガスとの混合ガス、酸素と不活性ガ
スとの混合ガス、湿分を含ませた不活性ガス等によって
炉内に酸化雰囲気を形成したのに過ぎない場合に比し
て、酸化膜の生長の制御が容易となり、絶縁性を良好に
することができる。
Furthermore, when the magnetic ribbon or the magnetic core is annealed, the surface of the magnetic ribbon is reliably oxidized due to the presence of the oxidizing inorganic substance. Control of the growth of the oxide film as compared to the case where only an oxidizing atmosphere is formed in the furnace by the mixed gas of oxygen, the mixed gas of oxygen and the inert gas, the inert gas containing moisture, etc. And the insulation can be improved.

もちろん、不活性ガス雰囲気下で焼鈍してもよいが、
酸化性無機物質の存在とともに、酸化性雰囲気下で焼鈍
することも可能で、このようにすることは、酸化被膜の
生成の上でより好ましい。
Of course, annealing may be performed under an inert gas atmosphere,
Annealing can be performed in an oxidizing atmosphere together with the presence of the oxidizing inorganic substance, and this is more preferable in forming an oxide film.

〔実施例〕〔Example〕

以下、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

第3図に示した装置で、アライド社勢のアモルファス
リボン(1a),2605S−2(Fe78−B13−Si9,(原子%)1
0mm幅)を順送りで五酸化二アンチモンのコロイド溶液
(2)中に浸し、引き上げる際に一対のバーコータ
(3)ではさんで余分な溶液を落し、温風乾燥機(4)
で温風を当てて乾燥しつつ微粉付きリボン(1b)を巻取
った。五酸化二アンチモンのコロイド溶液(2)はトル
エンを溶媒とし、トルエン97重量%に対し、五酸化二ア
ンチモンを3重量%分散させたものである。
In the apparatus shown in FIG. 3, Allied activation of amorphous ribbons (1a), 2605S-2 ( Fe 78 -B 13 -Si 9, 1 ( atomic%)
(0 mm width) is immersed in a colloidal solution of diantimony pentoxide (2) in order, and when it is pulled up, the excess solution is dropped with a pair of bar coaters (3), and the hot air dryer (4)
The ribbon with fine powder (1b) was wound up while drying with hot air. The diantimony pentoxide colloid solution (2) uses toluene as a solvent and disperses 3% by weight of diantimony pentoxide in 97% by weight of toluene.

次に、第4図に示したように、微粉付きリボン(1b)
をローラ(5)を介して順送りし、最終段で張力をかけ
つつ巻回し、アモルファス製磁心(6)を形成した。そ
して、同寸法の磁心を複数形成し、そのそれぞれを窒素
中のもと、430℃で2時間焼鈍した。
Next, as shown in FIG. 4, a ribbon with fine powder (1b)
Was sequentially fed through a roller (5), and wound while applying tension at the final stage to form an amorphous magnetic core (6). Then, a plurality of magnetic cores having the same dimensions were formed, and each was annealed at 430 ° C. for 2 hours in nitrogen.

得られた各磁心における鉄損の周波数特性、透磁率の
周波数特性を5ミリエルステッド(mOe)の磁界を印加
した場合について測定した。
The frequency characteristics of the iron loss and the frequency characteristics of the magnetic permeability of each of the obtained magnetic cores were measured when a magnetic field of 5 mOe was applied.

以下の実施例は、前記に基づいたものであり、比較例
は、比較のため、未処理状態の磁性リボンを窒素中で43
0℃で2時間焼鈍した場合を示している。
The following examples are based on the above, and the comparative examples show the untreated magnetic ribbon in nitrogen for comparison.
The case where annealing is performed at 0 ° C. for 2 hours is shown.

<実施例> (a) 磁心;前記の磁性リボンを巻回したトロイダル
コア 内 径=23.0mm 外 径=37.0mm 高 さ=15.0mm 質 量=63.0g 素材の密度=7.18g/cm3 体 積=8.77×10-6(m3) 有効断面積=9.31×10-5(m2) 平均磁路長=9.43×10-2(m) 占 積 率=88.7% (全体積に対するリボンの占める比率) 磁性リボン巻回時の張力=0.8kg (b) 塗布したコロイド溶液; 有機溶媒=水 100重量% 微 粉=五酸化二アンチモン 40wt% (c) 焼鈍処理条件 雰囲気 =窒素中 加熱条件=390℃ 時 間=2(hr) (e) 結果 *鉄損;10kHz,0.1Tにおいて 1.0W/kg 100kHz,0.1Tにおいて 29W/kg *透磁率の周波数特性;第1図に示す コアに巻回した1次巻線の巻数は12 測定磁界=5mOe 測定電流=2.21mA <比較例> (a) 磁心;五酸化二アンチモンの付着していない磁
性リボンを巻回したトロイダルコア 内 径=23.0mm 外 径=37.0mm 高 さ=15.0mm 質 量=63.0g 素材の密度=7.18g/m3 体 積=8.77×10-6(m3) 有効断面積=9.31×10-5(m2) 平均磁路長=9.43×10-2(m) 占 積 率=88.7% (全体積に対するリボンの占める比率) 磁性リボン巻回時の張力=0.8kg (b) 焼鈍処理条件 雰囲気 =窒素中 加熱条件=430℃ 時 間=2(hr) (c) 結果 *鉄損;10kHz,0.1Tにおいて 2.7W/kg 100kHz,0.1Tにおいて 56W/kg *透磁率の周波数特性;第2図に示す コアに巻回した1次巻線の巻数は12 測定磁界=3mOe 測定電流=1.33mA 以上の結果から、10kHzにおける鉄損が比較例の未処
理状態のものは2.7W/kgであるのに対して実施例のもの
は1.0W/kgと低く、100kHzにおける周波数領域では比較
例の場合が56W/kgであるのに対して、実施例の場合が29
W/kgと低い値が選られた。
<Examples> (a) Magnetic core; Toroidal core wound with the above magnetic ribbon Inner diameter = 23.0 mm Outer diameter = 37.0 mm Height = 15.0 mm Mass = 63.0 g Material density = 7.18 g / cm 3 Volume = 8.77 × 10 -6 (m 3 ) Effective area = 9.31 × 10 -5 (m 2 ) Average magnetic path length = 9.43 × 10 -2 (m) Space factor = 88.7% (Ratio of ribbon to total volume) ) Tension when winding magnetic ribbon = 0.8kg (b) Coated solution; organic solvent = 100% by weight of water Fine powder = 40% by weight of diantimony pentoxide (c) Annealing condition Atmosphere = Nitrogen heating condition = 390 ° C Time = 2 (hr) (e) Results * Iron loss: 1.0 W / kg at 10 kHz, 0.1 T 29 W / kg at 100 kHz, 0.1 T * Frequency characteristics of permeability; 1 wound on the core shown in Fig. 1 The number of turns of the secondary winding is 12 Measurement magnetic field = 5 mOe Measurement current = 2.21 mA <Comparative example> (a) Magnetic core: Troy wound with a magnetic ribbon to which diantimony pentoxide is not attached -Core in diameter = 23.0 mm outer diameter = 37.0 mm Height = 15.0 mm Weight = 63.0 g material density = 7.18 g / m 3 body product = 8.77 × 10 -6 (m 3 ) Effective area = 9.31 × 10 - 5 (m 2 ) Average magnetic path length = 9.43 × 10 -2 (m) Space factor = 88.7% (Ratio of ribbon to total volume) Tension when winding magnetic ribbon = 0.8 kg (b) Annealing condition Atmosphere = Heating condition in nitrogen = 430 ° C Time = 2 (hr) (c) Result * Iron loss: 2.7W / kg at 10kHz, 0.1T 56W / kg at 100kHz, 0.1T * Frequency characteristics of permeability; Fig. 2 The number of turns of the primary winding wound on the core shown in Fig. 12 is 12 Measurement magnetic field = 3 mOe Measurement current = 1.33 mA From the results above, the iron loss at 10 kHz in the untreated state of the comparative example is 2.7 W / kg. On the other hand, the case of the embodiment is as low as 1.0 W / kg, and in the frequency region at 100 kHz, the case of the comparative example is 56 W / kg, whereas the case of the embodiment is 29 W / kg.
A low value of W / kg was chosen.

また、透磁率についても第1図と第2図とを比較すれ
ばわかるように、極めて高い値を得ることができた。
Also, as can be seen by comparing FIGS. 1 and 2, extremely high values could be obtained for the magnetic permeability.

〔発明の効果〕〔The invention's effect〕

本発明では、前記構成としたので、占積率の低下を最
小限にしてリボン層間の絶縁性を確保して、鉄損特性の
向上と透磁率の向上とを共に満足する磁心を得ることが
できる。
In the present invention, since the above-described configuration is employed, it is possible to obtain a magnetic core that satisfies both the improvement in iron loss characteristics and the improvement in magnetic permeability while minimizing a decrease in space factor and securing insulation between ribbon layers. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例における実施例の周波数と透磁
率との変化を示すグラフ図、第2図は比較例における周
波数と透磁率との変化を示すグラフ図、第3図は微粉の
付着処理装置を示した概略図、第4図はトライダル型の
磁心の製造手段を示した説明図である。 1a……磁性リボン(無処理),1b……微粉付き磁性リボ
ン,2……微粉のコロイド溶液,3……バーコータ,4……温
風乾燥機,5……ローラ,6……磁心。
FIG. 1 is a graph showing a change in frequency and magnetic permeability in an example of the present invention, FIG. 2 is a graph showing a change in frequency and magnetic permeability in a comparative example, and FIG. FIG. 4 is a schematic view showing an adhesion processing apparatus, and FIG. 4 is an explanatory view showing a means for manufacturing a toroidal magnetic core. 1a: Magnetic ribbon (untreated), 1b: Magnetic ribbon with fine powder, 2 ... Colloidal solution of fine powder, 3 ... Bar coater, 4 ... Hot air dryer, 5 ... Roller, 6 ... Magnetic core.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−110606(JP,A) 特公 昭62−37114(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01F 1/18,41/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-110606 (JP, A) JP-B-62-37114 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) H01F 1 / 18,41 / 02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性リボンの表面に絶縁性を有する酸化性
無機物質からなる非磁性体の微粉を、単位面積(cm2
当たり10-7cm3〜2×10-4cm3の範囲で付着させ、この状
態で焼鈍することにより前記磁性リボンの積層体間に前
記微粉をスペーサとして空気層を形成することを特徴と
する磁心の製造方法。
1. A non-magnetic fine powder made of an oxidizing inorganic substance having an insulating property on the surface of a magnetic ribbon, and the unit area (cm 2 )
Per minute in the range of 10 −7 cm 3 to 2 × 10 −4 cm 3 , and annealing in this state to form an air layer using the fine powder as a spacer between the magnetic ribbon laminates. Manufacturing method of magnetic core.
【請求項2】前記酸化性無機物質として五酸化二アンチ
モン及び三酸化アンチモンのいずれか一方若しくは両方
を用いることを特徴とする請求項1に記載の磁心の製造
方法。
2. The method according to claim 1, wherein one or both of diantimony pentoxide and antimony trioxide are used as the oxidizing inorganic substance.
【請求項3】磁性リボンがアモルファス金属からなる請
求項1に記載の磁心の製造方法。
3. The method according to claim 1, wherein the magnetic ribbon is made of an amorphous metal.
【請求項4】前記微粉の径が10nm〜2μmである請求項
1〜3のいずれかに記載の磁心の製造方法。
4. The method for producing a magnetic core according to claim 1, wherein the diameter of the fine powder is 10 nm to 2 μm.
【請求項5】酸化雰囲気下において、300〜600℃の温度
で、0.5〜5時間焼鈍した請求項1〜4のいずれかに記
載の磁心の製造方法。
5. The method according to claim 1, wherein the magnetic core is annealed in an oxidizing atmosphere at a temperature of 300 to 600 ° C. for 0.5 to 5 hours.
JP1263516A 1989-10-09 1989-10-09 Manufacturing method of magnetic core Expired - Fee Related JP2918254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263516A JP2918254B2 (en) 1989-10-09 1989-10-09 Manufacturing method of magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263516A JP2918254B2 (en) 1989-10-09 1989-10-09 Manufacturing method of magnetic core

Publications (2)

Publication Number Publication Date
JPH03125403A JPH03125403A (en) 1991-05-28
JP2918254B2 true JP2918254B2 (en) 1999-07-12

Family

ID=17390623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263516A Expired - Fee Related JP2918254B2 (en) 1989-10-09 1989-10-09 Manufacturing method of magnetic core

Country Status (1)

Country Link
JP (1) JP2918254B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462456B1 (en) * 1998-11-06 2002-10-08 Honeywell International Inc. Bulk amorphous metal magnetic components for electric motors
US6331363B1 (en) * 1998-11-06 2001-12-18 Honeywell International Inc. Bulk amorphous metal magnetic components

Also Published As

Publication number Publication date
JPH03125403A (en) 1991-05-28

Similar Documents

Publication Publication Date Title
DE3909747C2 (en)
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US4451876A (en) Switching regulator
EP0401805B1 (en) Magnetic core
US5242760A (en) Magnetic ribbon and magnetic core
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JP3068156B2 (en) Soft magnetic alloy
DE102004024337A1 (en) Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same
JP2918254B2 (en) Manufacturing method of magnetic core
CA1340795C (en) Magnetic ribbon and magnetic core
US7138188B2 (en) Magnetic implement using magnetic metal ribbon coated with insulator
EP1129459A1 (en) Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
JP2918255B2 (en) Manufacturing method of magnetic core
JP3222458B2 (en) Manufacturing method of magnetic core
WO2020074718A1 (en) Method for producing a ceramic material having permeability gradients that can be set locally, use of said ceramic material in a coating method, and use of said coating method
JPH0536513A (en) Soft magnetic metal alloy powder and dust core using the same
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JPH03125409A (en) Magnetic amplifier core and its manufacture
JP3638291B2 (en) Low loss core
JP2788248B2 (en) High frequency magnetic core and method of manufacturing the same
JPH03125407A (en) Inductor core and its manufacture
JPH03125406A (en) Transformer core and its manufacture
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2760561B2 (en) Magnetic core
JPS61208811A (en) Amorphous alloy bonding laminate with good magnetic property

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees