JP2561573B2 - Amorphous ribbon saturable core - Google Patents

Amorphous ribbon saturable core

Info

Publication number
JP2561573B2
JP2561573B2 JP3143603A JP14360391A JP2561573B2 JP 2561573 B2 JP2561573 B2 JP 2561573B2 JP 3143603 A JP3143603 A JP 3143603A JP 14360391 A JP14360391 A JP 14360391A JP 2561573 B2 JP2561573 B2 JP 2561573B2
Authority
JP
Japan
Prior art keywords
ribbon
magnetic core
amorphous
magnetic
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3143603A
Other languages
Japanese (ja)
Other versions
JPH04367201A (en
Inventor
健一 馬場
駿 佐藤
利男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3143603A priority Critical patent/JP2561573B2/en
Publication of JPH04367201A publication Critical patent/JPH04367201A/en
Application granted granted Critical
Publication of JP2561573B2 publication Critical patent/JP2561573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスイッチング電源に使用
されるマグアンプ(磁気増幅器)など高周波帯域で動作
する非晶質薄帯可飽和磁心に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous ribbon saturable magnetic core which operates in a high frequency band such as a mag amplifier (magnetic amplifier) used for a switching power supply.

【0002】[0002]

【従来の技術】電子計算機やその周辺機器、通信機器な
どの小型化にともない、これらの機器に電力を供給する
電源に対して小型化要請が年々高まっている。現在、こ
れらの電源には主としてスイッチング電源が用いられて
おり、小型化対策としては回路の集積化やスイッチング
周波数の高周波化によるコンデンサや磁性部品の小型化
などが有効である。しかし、スイッチング周波数を上げ
ると磁性部品では磁心損失が大きくなるため、結果とし
て磁心冷却のための冷却ファンや放熱板のスペース増加
を招く。このため、高周波で損失の少ない磁性材料が求
められている。
2. Description of the Related Art With the miniaturization of electronic computers, their peripheral devices, communication devices, etc., there is an increasing demand for miniaturization of power sources for supplying power to these devices. Currently, switching power supplies are mainly used for these power supplies, and miniaturization measures such as circuit integration and miniaturization of capacitors and magnetic parts by increasing the switching frequency are effective. However, if the switching frequency is increased, the magnetic core loss increases in the magnetic component, resulting in an increase in the space for the cooling fan and the heat dissipation plate for cooling the magnetic core. Therefore, there is a demand for a magnetic material with high frequency and low loss.

【0003】高周波において損失の少ない磁心材料とし
て注目されているのは非晶質合金である。非晶質合金は
従来の軟磁性金属に比べて電気抵抗が大きく、板厚の薄
い材料が容易に製造できるため、高周波での磁心損失の
大部分を占める渦電流損失の増加が少ない。なかでも、
ゼロ磁歪Co基非晶質合金は磁心損失の残り部分である
ヒステリシス損失も小さいため、高周波損失が非常に小
さいという優れた特性を持っており、マグアンプやノイ
ズアブソーバ等の可飽和磁心として既に実用化されてい
る。
Amorphous alloys have been attracting attention as magnetic core materials with low loss at high frequencies. Amorphous alloys have a higher electric resistance than conventional soft magnetic metals, and a material with a thin plate thickness can be easily manufactured. Therefore, an increase in eddy current loss, which accounts for most of the core loss at high frequencies, is small. Above all,
The zero magnetostriction Co-based amorphous alloy has a small hysteresis loss, which is the rest of the magnetic core loss, so it has an excellent characteristic that the high-frequency loss is very small, and it has already been put to practical use as a saturable magnetic core such as a mag-amp or noise absorber Has been done.

【0004】可飽和磁心に必要な磁気特性は、一般に低
鉄損と高角形比(飽和磁束密度に対して残留磁束密度の
比が高いこと)の2つである。ゼロ磁歪Co基非晶質合
金は磁界中アニールによって高い角形比が得られること
から、この点からも優れた材料といえる。今日知られて
いるゼロ磁歪Co基非晶質合金はいずれも菊地らの提案
したCoFeSiB合金をベースに各種の補助元素を含
むものである。特公昭63−28483号公報に記載の
合金がその代表である。これは、非晶質CoXSiB合
金薄帯のトロイダルコアを周方向に平行な磁場中でアニ
ールして角形比の高いコアを製造する方法である。ただ
し、XはTi,V,Cr,Mn,Ni,Zr,Nb,M
o,Ru,Hf,Ta,W,Re,Fe,Y,Ce,P
r,Nd,Sm,Eu,Gd,Tb,Dyの1種または
2種以上である。
Generally, two magnetic characteristics required for a saturable magnetic core are low iron loss and high squareness ratio (high ratio of residual magnetic flux density to saturated magnetic flux density). Since the zero magnetostrictive Co-based amorphous alloy can obtain a high squareness ratio by annealing in a magnetic field, it can be said that it is also an excellent material from this point of view. All of the zero magnetostrictive Co-based amorphous alloys known to date are based on the CoFeSiB alloy proposed by Kikuchi et al. And contain various auxiliary elements. The alloy described in JP-B-63-28483 is a typical example. This is a method of manufacturing a core having a high squareness ratio by annealing a toroidal core of an amorphous CoXSiB alloy ribbon in a magnetic field parallel to the circumferential direction. However, X is Ti, V, Cr, Mn, Ni, Zr, Nb, M
o, Ru, Hf, Ta, W, Re, Fe, Y, Ce, P
One or more of r, Nd, Sm, Eu, Gd, Tb and Dy.

【0005】現在マグアンプとして実用化されている磁
心は、上記組成を持つ厚さ20μm前後の非晶質合金薄
帯を使用したもので、低損失特性を活かすため主として
スイッチング周波数が50kHz以上の電源で使用され
ている。しかし、300kHz以上の高い周波数で使用
する場合は、動作磁束密度にもよるが一般に損失の増加
による発熱が大きく、冷却ファンや放熱板などによる温
度上昇防止対策が必要となる。磁心の発熱を抑えるに
は、薄帯厚みの減少による渦電流損低減が有効と考えら
れるが、薄帯厚みが15μmを下回ると板厚の減少に伴
って角形比が低下するという問題が生じた。このため、
このような高い周波数において低鉄損且つ角形比の高い
非晶質薄帯可飽和磁心を得ることは困難であった。
The magnetic core currently put into practical use as a mag-amplifier uses an amorphous alloy ribbon having a thickness of about 20 μm and having the above composition, and is mainly used in a power supply with a switching frequency of 50 kHz or more in order to take advantage of low loss characteristics. in use. However, when it is used at a high frequency of 300 kHz or higher, heat generation due to an increase in loss is generally large depending on the operating magnetic flux density, and it is necessary to take measures to prevent a temperature rise by a cooling fan or a heat sink. In order to suppress the heat generation of the magnetic core, it is considered effective to reduce the eddy current loss by reducing the ribbon thickness. However, if the ribbon thickness is less than 15 μm, there is a problem that the squareness ratio decreases as the sheet thickness decreases. . For this reason,
It has been difficult to obtain an amorphous ribbon saturable magnetic core having a low iron loss and a high squareness ratio at such a high frequency.

【0006】[0006]

【発明が解決しようとする課題】本発明は300kHz
以上の高周波においても低鉄損、高角形比の要求を満足
する非晶質薄帯可飽和磁心を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention is 300 kHz.
It is an object of the present invention to provide an amorphous ribbon saturable magnetic core that satisfies the requirements of low iron loss and high squareness ratio even at the above high frequencies.

【0007】[0007]

【課題を解決するための手段および作用】本発明の要旨
とするところは、磁歪の小さいCo基非晶質合金からな
る可飽和磁心において、組成がCoa Feb Moc Sn
d Sie fであり、且つ磁歪が−0.1×10-6〜−
1×10-6の範囲にある厚み15μm以下の非晶質合金
薄帯を使用したことを特徴とする非晶質薄帯可飽和磁心
にある。ここで、a=67〜72(原子%、以下同
じ)、b=3〜5、c=1〜3、d=0.05〜1.
0、e=5〜19、f=7〜16、且つa+b+c+d
+e+f=100である。
SUMMARY OF THE INVENTION The gist of the present invention is that a saturable magnetic core made of a Co-based amorphous alloy having a small magnetostriction has a composition of Co a Fe b Mo c Sn.
d Si e B is f, and magnetostriction -0.1 × 10 -6 ~ -
An amorphous ribbon saturable magnetic core is characterized by using an amorphous alloy ribbon having a thickness of 15 μm or less in the range of 1 × 10 −6 . Here, a = 67 to 72 (atomic%, the same applies hereinafter), b = 3 to 5, c = 1 to 3, d = 0.05 to 1.
0, e = 5 to 19, f = 7 to 16, and a + b + c + d
+ E + f = 100.

【0008】すなわち、本発明の骨子は従来から知られ
ているCoFeSiB合金をベースにMoとSnを複合
添加し、且つ磁歪を−0.1×10-6〜−1×10-6
範囲にすることにより、15μm以下という薄い非晶質
合金薄帯を使用しながら、高い角形比の可飽和磁心を得
ることにある。以下に本発明についてさらに詳細に説明
する。
That is, the essence of the present invention is to add a composite of Mo and Sn based on a conventionally known CoFeSiB alloy, and to set the magnetostriction in the range of -0.1 × 10 -6 to -1 × 10 -6 . By doing so, it is possible to obtain a saturable magnetic core having a high squareness ratio while using a thin amorphous alloy ribbon of 15 μm or less. The present invention will be described in more detail below.

【0009】一般に、非晶質薄帯磁心の鉄損の大部分を
占める渦電流損失低減には、薄帯の薄手化が有効である
ことが知られている。しかし、本発明者らは従来の磁心
では薄帯をある板厚以下に薄くすると板厚減少とともに
角形比が低下するという現象に遭遇した。その具体例を
図1に示す。この図は、組成が(CoFe)72 Mo
2 (SiB)26 で磁歪が0.2×10-6の薄帯を巻回
し、周方向磁場中でアニールして作製した可飽和磁心に
ついて、薄帯厚みを変えた場合の保磁力Hcと角形比の
測定結果を示したものである。この図から、鉄損の指標
となる保磁力Hcは薄帯厚みにほぼ比例的に減少し、薄
手化が鉄損低減に有効であることがわかる。しかし、1
5μm以下の厚みでは角形比が低下するため、低鉄損と
高角形比を同時に達成することはできない。この角形比
低下の原因は明らかではないが、表面の薄い酸化層また
は部分結晶化層による応力効果あるいは表面の凹凸の影
響が板厚が薄くなると顕著になるためと推察される。そ
こで、本発明者らは低鉄損と高角形比を同時に達成する
ことを目的に種々検討を行った結果、合金組成の選択と
磁歪の適正化により上記の問題点の解決が可能であるこ
とを見出し、本発明の完成に到ったのである。
In general, it is known that thinning the thin ribbon is effective for reducing the eddy current loss, which accounts for most of the iron loss of the amorphous thin ribbon magnetic core. However, the present inventors have encountered a phenomenon in which, in the conventional magnetic core, when the ribbon is thinned to a certain plate thickness or less, the squareness decreases as the plate thickness decreases. A specific example thereof is shown in FIG. This figure shows that the composition is (CoFe) 72 Mo.
The coercive force Hc and the squareness of the saturable magnetic core prepared by winding a ribbon of magnetostriction of 0.2 × 10 −6 with 2 (SiB) 26 and annealing in a circumferential magnetic field when the ribbon thickness is changed. It shows the measurement results of the ratio. From this figure, it is understood that the coercive force Hc, which is an index of iron loss, decreases almost proportionally to the ribbon thickness, and that thinning is effective in reducing iron loss. However, 1
If the thickness is 5 μm or less, the squareness ratio decreases, so that it is not possible to simultaneously achieve low iron loss and high squareness ratio. The cause of this decrease in the squareness ratio is not clear, but it is presumed that the stress effect due to the thin oxide layer or the partially crystallized layer on the surface or the effect of the surface unevenness becomes remarkable as the plate thickness becomes thinner. Therefore, the inventors of the present invention have conducted various studies for the purpose of simultaneously achieving a low iron loss and a high squareness ratio, and as a result, it is possible to solve the above-mentioned problems by selecting an alloy composition and optimizing magnetostriction. Therefore, the present invention has been completed.

【0010】次に、本発明の合金組成を限定する理由に
ついて述べる。Snは本発明の目的とする薄手材での高
角形特性を付与するための必須元素で、0.05〜1.
0%(原子%、以下同じ)の範囲に限定した。その理由
は0.05%未満では本発明が目的とするSnの効果が
顕著に発現せず、また1.0%を超えて添加しても著し
い効果は認められないからである。なお、Sn添加のも
たらす効果はSnの表面改質作用のためと思われる。そ
の根拠として、図2に示すようにSn添加非晶質合金薄
帯の表面にSiが異常に濃縮されるという本発明者ら自
身が見出した現象がある。すなわち、Siの異常な表面
偏析が薄帯表面の状態を変化させ、後述する磁歪の範囲
において表面部分の影響による角形比低下を抑制してい
るものと推察される。
Next, the reasons for limiting the alloy composition of the present invention will be described. Sn is an essential element for imparting high polygonal properties in thin materials, which is the object of the present invention, and is 0.05 to 1.
The range was limited to 0% (atomic%, the same applies hereinafter). The reason is that if it is less than 0.05%, the effect of Sn, which is the object of the present invention, does not remarkably appear, and if it is added in excess of 1.0%, no significant effect is observed. The effect brought about by the addition of Sn seems to be due to the surface modification action of Sn. The basis for this is the phenomenon found by the present inventors that Si is abnormally concentrated on the surface of the Sn-doped amorphous alloy ribbon as shown in FIG. That is, it is presumed that the abnormal surface segregation of Si changes the state of the ribbon surface, and suppresses the reduction of the squareness ratio due to the influence of the surface portion in the range of magnetostriction described later.

【0011】Moは非晶質合金の熱的安定性、非晶質形
成能を高めるとともに、高周波における磁気特性を改善
する効果を持つ元素で、その範囲を1〜3%に限定し
た。1%を下回ると上記の添加効果が不十分なため下限
を1%とし、3%を超えると飽和磁束密度が低下するの
で上限を3%とした。Co、Fe、Si、Bの4元素の
組成範囲は添加するSnとMoの量を考慮して次の条件
を満足するように決められた。第1の条件は磁歪が−
0.1×10-6〜−1×10-6、第2の条件は飽和磁束
密度が0.45T以上、第3の条件は磁心の周方向に印
加した磁場中アニール後の100kHzにおける交流磁
気特性が10μmの薄帯を使用した場合に角形比Br/
Bm>0.95、保磁力Hc<12A/m、好ましくは
角形比Br/Bm>0.97、保磁力Hc<10A/m
である(Br=残留磁束密度、Bm=印加最大磁場にお
ける磁束密度)。本発明においてはCoを67〜72
%、Fe3〜5%、Si5〜19%、B7〜16%に規
定する。Co、Feは規定した範囲を外れると磁歪およ
び飽和磁束密度に対する条件を満足しなくなる。また、
SiとBが規定した範囲を外れると非晶質合金の形成が
困難になるとともに所定の交流磁気特性を満足しなくな
る。
Mo is an element having the effect of improving the thermal stability and amorphous forming ability of the amorphous alloy and improving the magnetic characteristics at high frequencies, and its range is limited to 1 to 3%. If it is less than 1%, the above addition effect is insufficient, so the lower limit is 1%, and if it exceeds 3%, the saturation magnetic flux density decreases, so the upper limit was made 3%. The composition range of the four elements Co, Fe, Si and B was determined so as to satisfy the following conditions in consideration of the amounts of Sn and Mo to be added. The first condition is magnetostriction-
0.1 × 10 −6 to −1 × 10 −6 , the second condition is a saturation magnetic flux density of 0.45 T or more, and the third condition is AC magnetic field at 100 kHz after annealing in a magnetic field applied in the circumferential direction of the magnetic core. Squareness ratio Br / when using a thin strip with characteristics of 10 μm
Bm> 0.95, coercive force Hc <12 A / m, preferably squareness ratio Br / Bm> 0.97, coercive force Hc <10 A / m
(Br = residual magnetic flux density, Bm = magnetic flux density at maximum applied magnetic field). In the present invention, Co is 67 to 72
%, Fe 3 to 5%, Si 5 to 19%, and B 7 to 16%. If Co and Fe deviate from the specified ranges, the conditions for magnetostriction and saturation magnetic flux density will not be satisfied. Also,
If Si and B deviate from the specified range, it becomes difficult to form an amorphous alloy and the predetermined AC magnetic characteristics are not satisfied.

【0012】次に磁歪を限定した理由を述べる。図3は
組成が(CoFe)72 Mo2 Sn0.2(SiB)25.8 の合
金についてCoとFeのバランスを変えて磁歪の異なる
非晶質合金薄帯を板厚約10μmで作製し、巻き磁心に
加工して角形比を測定した結果である。この図から明ら
かなように、磁歪が正の場合に比較して負の場合には角
形比の低下現象が軽減されている。このことから、磁歪
の上限を−0.1×10-6とした。また、−1×10-6
より負側になると保磁力Hcが大きくなり鉄損の増大を
招くため下限を−1×10 -6とした。
Next, the reason for limiting the magnetostriction will be described. Figure 3
Composition is (CoFe)72Mo2Sn0.2(SiB)25.8Of
For gold, the balance between Co and Fe is changed, and the magnetostriction is different.
Amorphous alloy ribbon with a plate thickness of about 10 μm
It is the result of processing and measuring the squareness ratio. Revealed from this figure
As you can see, when the magnetostriction is positive, the angle is negative when it is negative.
The phenomenon that the form ratio is reduced is reduced. From this, magnetostriction
The upper limit of −0.1 × 10-6And Also, -1 x 10-6
On the negative side, the coercive force Hc increases and the iron loss increases.
Lower limit -1 x 10 -6And

【0013】次に本発明の実施態様について述べる。ま
ず、上述の組成範囲となるように配合した原料あるいは
母合金を溶解し、通常の液体急冷法で非晶質の連続薄帯
とする。このとき使用するノズルは、薄手材の製造に適
する単一スリットノズルが望ましい。鋳造する雰囲気は
大気中、不活性ガス中、真空中のいずれでもよい。以上
説明した非晶質薄帯の製造方法は特に限定するものでは
なく、他の方法を採用することもできる。
Next, embodiments of the present invention will be described. First, a raw material or a mother alloy compounded so as to have the above composition range is melted, and an amorphous continuous ribbon is formed by an ordinary liquid quenching method. The nozzle used at this time is preferably a single slit nozzle suitable for manufacturing thin materials. The atmosphere for casting may be air, inert gas, or vacuum. The method for producing the amorphous ribbon described above is not particularly limited, and other methods can be adopted.

【0014】非晶質薄帯は所定の寸法の巻き磁心に成形
された後、周方向の磁場中でアニールされる。磁界の強
さは合金の保磁力の10倍あれば十分である。アニール
温度は合金の結晶化開始温度をTxとするとき、Tx−
120℃からTx−20℃の範囲、保持時間は30〜1
20分が適当である。
The amorphous ribbon is formed into a wound magnetic core having a predetermined size and then annealed in a circumferential magnetic field. A magnetic field strength of 10 times the coercive force of the alloy is sufficient. When the crystallization start temperature of the alloy is Tx, the annealing temperature is Tx-
Range of 120 ° C to Tx-20 ° C, holding time 30 to 1
20 minutes is appropriate.

【0015】[0015]

【実施例】表1に示す化学組成の薄帯を単ロール急冷法
を用いて作製した。薄帯の幅は5mm、板厚は約10〜
20μmである。作製した薄帯はX線回折法により非晶
質であることが確認された。また、磁歪は三端子静電容
量法によって測定した。この薄帯をそれぞれ内径12m
m、外径18mmの巻き磁心に成形した後、約400A
/mの直流磁界をかけながらAr気流中でアニールし
た。アニール条件は、保持時間を1時間に固定し、温度
は400〜480℃の範囲で変化させた。アニールした
磁心は樹脂コーティングした後、交流磁気特性を測定し
た。表1に各々の最適アニール温度における磁気特性を
示した。この表から明らかなように本発明による磁心は
板厚に関係なく高い角形比が得られている。これに対し
て、比較材の場合は15μm以下で角形比が低下してお
り、目標特性を満足できないことが判る。
Example A ribbon having the chemical composition shown in Table 1 was produced by a single roll quenching method. The width of the ribbon is 5 mm and the thickness is about 10
It is 20 μm. It was confirmed by X-ray diffractometry that the produced ribbon was amorphous. Magnetostriction was measured by the three-terminal capacitance method. These thin strips each have an inner diameter of 12 m
m after forming into a wound magnetic core with an outer diameter of 18 mm, then about 400 A
Annealing was performed in an Ar stream while applying a DC magnetic field of / m. Regarding the annealing conditions, the holding time was fixed to 1 hour, and the temperature was changed in the range of 400 to 480 ° C. The annealed magnetic core was coated with resin, and then the AC magnetic characteristics were measured. Table 1 shows the magnetic characteristics at each optimum annealing temperature. As is clear from this table, the magnetic core according to the present invention has a high squareness ratio regardless of the plate thickness. On the other hand, in the case of the comparative material, the squareness ratio decreases at 15 μm or less, and it can be seen that the target characteristics cannot be satisfied.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明による非晶質薄帯可飽和磁心は、
高周波においても低鉄損と高角形比という要求をともに
満足できる。このため、300kHz以上のスイッチン
グ電源においてマグアンプなどに使用した場合、従来の
ものに比較して磁心発熱が小さく、電源の小型化や冷却
方法の簡素化が可能となり、その工業的価値は大きい。
The amorphous ribbon saturable magnetic core according to the present invention comprises:
Both the requirements of low iron loss and high squareness can be satisfied even at high frequencies. Therefore, when used in a mag amplifier or the like in a switching power supply of 300 kHz or more, heat generation in the magnetic core is smaller than that of a conventional power supply, the power supply can be downsized and the cooling method can be simplified, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のSn添加なしの組成の非晶質合金薄帯で
作製した巻き磁心について薄帯厚みと保磁力Hc、角形
比Br/Bmの関係を示す図である。
FIG. 1 is a diagram showing a relationship between a ribbon thickness, a coercive force Hc, and a squareness ratio Br / Bm of a conventional wound magnetic core made of an amorphous alloy ribbon having a composition without addition of Sn.

【図2】グロー放電発光分析法(GDS)で分析した、
薄帯表面深さ方向の元素濃度を比較する図(ただし、
(a)は本発明のSnを含有する非晶質合金、(b)は
Snを含まない非晶質合金)である。
FIG. 2 was analyzed by glow discharge emission spectrometry (GDS),
Figure comparing the element concentrations in the depth direction of the ribbon (however,
(A) is an amorphous alloy containing Sn of the present invention, (b) is an amorphous alloy containing no Sn).

【図3】本発明磁心(Snを添加した組成の非晶質合金
薄帯で作製)についての角形比の磁歪依存性を示す図で
ある。
FIG. 3 is a diagram showing the magnetostriction dependence of the squareness ratio of the magnetic core of the present invention (prepared from an amorphous alloy ribbon having a composition containing Sn).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁歪の小さいCo基非晶質合金からなる
可飽和磁心において、組成がCoa Feb Moc Snd
Sie f であり、且つ磁歪が−0.1×10-6〜−1
×10-6の範囲にある厚み15μm以下の非晶質合金薄
帯を使用したことを特徴とする非晶質薄帯可飽和磁心。
ここで、a=67〜72(原子%、以下同じ)、b=3
〜5、c=1〜3、d=0.05〜1.0、e=5〜1
9、f=7〜16、且つa+b+c+d+e+f=10
0である。
1. A saturable magnetic core made of a Co-based amorphous alloy having a small magnetostriction has a composition of Co a Fe b Mo c Sn d.
Si e B f and has magnetostriction of −0.1 × 10 −6 to −1.
An amorphous ribbon saturable magnetic core comprising an amorphous alloy ribbon having a thickness of 15 μm or less in the range of × 10 −6 .
Here, a = 67 to 72 (atomic%, the same applies hereinafter), b = 3
-5, c = 1-3, d = 0.05-1.0, e = 5-1
9, f = 7 to 16, and a + b + c + d + e + f = 10
0.
JP3143603A 1991-06-14 1991-06-14 Amorphous ribbon saturable core Expired - Lifetime JP2561573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143603A JP2561573B2 (en) 1991-06-14 1991-06-14 Amorphous ribbon saturable core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3143603A JP2561573B2 (en) 1991-06-14 1991-06-14 Amorphous ribbon saturable core

Publications (2)

Publication Number Publication Date
JPH04367201A JPH04367201A (en) 1992-12-18
JP2561573B2 true JP2561573B2 (en) 1996-12-11

Family

ID=15342568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143603A Expired - Lifetime JP2561573B2 (en) 1991-06-14 1991-06-14 Amorphous ribbon saturable core

Country Status (1)

Country Link
JP (1) JP2561573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983112B (en) * 2019-12-30 2021-11-02 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858707A (en) * 1981-08-24 1983-04-07 Hitachi Metals Ltd Heat treatment for magnetic material
JPS61292301A (en) * 1985-06-20 1986-12-23 Hitachi Metals Ltd Winding magnetic core

Also Published As

Publication number Publication date
JPH04367201A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
JPH0734207A (en) Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP2561573B2 (en) Amorphous ribbon saturable core
JPH08153614A (en) Magnetic core
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2698769B2 (en) Manufacturing method of high permeability core
JP2704157B2 (en) Magnetic parts
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP3638291B2 (en) Low loss core
JPH06163235A (en) Transformer
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JPH0747800B2 (en) Amorphous alloy for high frequency magnetic core
JPH05117821A (en) Amorphous alloy for high-frequency magnetic core and core
JP3121641B2 (en) Switching power supply
JP2790277B2 (en) Manufacturing method of ultra-thin amorphous alloy
JP3533237B2 (en) Saturable core and magnetic amplifier using the same
JPH0645128A (en) Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core
JPH0257683B2 (en)
JP3372049B2 (en) Switching power supply
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JP2791173B2 (en) Magnetic core
JP2835127B2 (en) Magnetic core and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15