JPS6265343A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6265343A
JPS6265343A JP20420785A JP20420785A JPS6265343A JP S6265343 A JPS6265343 A JP S6265343A JP 20420785 A JP20420785 A JP 20420785A JP 20420785 A JP20420785 A JP 20420785A JP S6265343 A JPS6265343 A JP S6265343A
Authority
JP
Japan
Prior art keywords
wiring
unit cell
integrated circuit
semiconductor integrated
unit cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20420785A
Other languages
Japanese (ja)
Inventor
Makoto Takechi
武智 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20420785A priority Critical patent/JPS6265343A/en
Publication of JPS6265343A publication Critical patent/JPS6265343A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the number of undistributed wirings and to improve a design operation efficiency by a method wherein the space between the unit cells of each unit cell row or the space between the unit cells of every prescribed number unit cells and the areas of the wiring areas are increased as the unit cell rows and the wiring areas are near the central part of a chip. CONSTITUTION:A device 1 is constituted in such a way that the number of the unit cells 4 of each unit cell block 4a and 4b is increased according as the blocks approach the central part of the device 1, whereby the wiring density at the central part can be reduced. Moreover, the device is constituted in such a way that the area of each wiring region 5a and 5b is increased according as the regions approach the central part of the device 1, whereby the number of the wirings which are connected to the logic circuit can be increased according as the wiring areas approach the central part, the wiring density at the central part can be reduced, in particular, the wiring density of the wirings which are formed extendedly in the line direction can be reduced. Furthermore, the device is constituted in such a way that the areas of wiring regions 5A-5C are increased according as the regions approach the central part of the device 1, whereby the number of the wirings which are connected to the logic circuit can be increased according as the wiring regions approach the central part, the wiring density at the central part can be reduced, in particular, the wiring density of the wirings which are formed extendedly in the column direction can be reduced.

Description

【発明の詳細な説明】 [技術分野] 本発明は、半導体集積回路装置に関するものであり、特
に、マスタスライス方式を採用する半導体集積回路装置
に適用して有効な技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor integrated circuit device, and particularly to a technique that is effective when applied to a semiconductor integrated circuit device that employs a master slice method.

[背景技術] 短時間に少量で多品種の設計ができるマスクスライス方
式を採用する半導体集積回路装置が知られている。この
半導体集積回路装置は、基本設計によってなされた単位
セルを行列状に規則的に配置している。論理回路は、単
位セル内及び単位セル間に配線を施すことで構成される
。このように構成される半導体集積回路装置では、単位
セルの配置形態を変更しないで、配線形成工程における
配線パターンの変更のみで種々の論理回路を構成できる
特徴がある。また、単位セルを規則的に配置することで
、コンピュータによる論理回路の配置設計及び論理回路
内外の配線設計を自動的に行う所謂自動設計が容易に行
える特徴がある。
[Background Art] Semiconductor integrated circuit devices are known that employ a mask slicing method that allows designing of a wide variety of products in small quantities in a short time. In this semiconductor integrated circuit device, unit cells made according to a basic design are regularly arranged in a matrix. A logic circuit is constructed by wiring within and between unit cells. The semiconductor integrated circuit device configured in this manner has the feature that various logic circuits can be configured by simply changing the wiring pattern in the wiring forming process without changing the arrangement form of the unit cells. Further, by regularly arranging the unit cells, it is possible to easily perform so-called automatic design in which a computer automatically designs the layout of the logic circuit and the wiring inside and outside the logic circuit.

しかしながら、かかる技術における検討の結果。However, the results of considerations in such technology.

本発明者は、次のような問題点が生じることを見出した
。この種の半導体集積回路装置は、有効に単位セルを使
用するように設計されるため、チップ全体に一様に分布
するように論理回路を配置している。この論理回路に接
続される配線は四方に延在すると考えられ、チップ中央
部を通過する配線数が多くなるので、チップ中央部の配
線密度がチップ周辺部に比べて著しく高くなる。このた
め。
The present inventor discovered that the following problems occur. Since this type of semiconductor integrated circuit device is designed to effectively use unit cells, logic circuits are arranged so as to be uniformly distributed over the entire chip. The wires connected to this logic circuit are thought to extend in all directions, and the number of wires passing through the center of the chip increases, so the wire density at the center of the chip becomes significantly higher than at the periphery of the chip. For this reason.

自動設計では配線領域に配線を設けることができない未
配線が多く生じ、設計者が人為的に配線設計を行う必要
が生じる。すなわち、マスタスライス方式を採用する半
導体集積回路装置において、設計の作業効率が極めて悪
くなる。
In automatic design, there are many unwired areas in which wiring cannot be provided, and the designer has to manually design the wiring. That is, in a semiconductor integrated circuit device that employs the master slice method, the efficiency of design work becomes extremely poor.

なお、マスタスライス方式を採用する半導体集積回路装
置については、例えば、特開昭57−211248号に
記載されている。
Note that a semiconductor integrated circuit device employing the master slice method is described in, for example, Japanese Patent Laid-Open No. 57-211248.

[発明の目的] 本発明の目的は、マスタスライス方式を採用する半導体
集積回路装置において、設計の作業効率を向上すること
が可能な技術を提供することにある。
[Object of the Invention] An object of the present invention is to provide a technique that can improve the efficiency of design work in a semiconductor integrated circuit device that employs a master slice method.

本発明の他の目的は、チップ中央部の配線密度を低減し
、自動設計による未配線数を低減することが可能な技術
を提供することにある。
Another object of the present invention is to provide a technique that can reduce the wiring density in the central part of a chip and reduce the number of unwired lines through automatic design.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] 本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、マスタスライス方式を採用する半導体集積回
路装置において、単位セル列の単位セル間又は単位セル
列の所定数毎の単位セル間及び配線領域の面積を、チッ
プ中央部に近づくほど大きく構成する。
That is, in a semiconductor integrated circuit device that employs the master slicing method, the area between unit cells in a unit cell row or between unit cells for each predetermined number of unit cell rows and the area of the wiring region is configured to be larger as it approaches the center of the chip.

これにより、チップ中央部に施せる配線数を多くシ、チ
ップ中央部の配線密度を低減できるので。
This increases the number of wires that can be placed in the center of the chip and reduces the wiring density in the center of the chip.

自動設計による未配線数を低減することができる。The number of unwired wires can be reduced by automatic design.

この結果1人為的な配線設計を低減できるので、作業効
率を向上することができる。
As a result, artificial wiring design can be reduced, and work efficiency can be improved.

以下、本発明の構成について、CMO5を単位セルとす
るマスタスライス方式を採用する半導体集積回路装置に
本発明を適用した実施例とともに説明する。
The configuration of the present invention will be described below along with an embodiment in which the present invention is applied to a semiconductor integrated circuit device that employs a master slicing method using a CMO 5 as a unit cell.

なお、実施例の全図において、同一機能を有するものは
同一符号を付け、そのくり返しの説明は省略する。
In addition, in all the figures of the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

[実施例] 本発明の実施例であるマスタスライス方式を採用する半
導体集積回路装置を第1図の概略構成図で示す。
[Embodiment] FIG. 1 is a schematic configuration diagram showing a semiconductor integrated circuit device employing a master slice method as an embodiment of the present invention.

第1図において、lはマスタスライス方式を採用する半
導体集積回路装置である。2は半導体集積回路装置lの
最つども周辺部に設けられた外部端子(ボンディングバ
ット)、3は半導体集積回路装置1の周辺部に設けられ
た人出力バッファ回路である。
In FIG. 1, l is a semiconductor integrated circuit device that employs a master slice method. Reference numeral 2 denotes an external terminal (bonding butt) provided at the periphery of the semiconductor integrated circuit device 1, and 3 an output buffer circuit provided at the periphery of the semiconductor integrated circuit device 1.

4は単位セルであり、半導体集積回路袋[1の中央部に
規則的に複数設けられている。基本セル4は、NAND
、AND、F、F等の論理回路を構成するようになって
いる。
A plurality of unit cells 4 are regularly provided in the center of the semiconductor integrated circuit bag [1. Basic cell 4 is NAND
, AND, F, F, etc. are configured.

前記基本セル4は、第2図の配線形成工程前の要部拡大
平面図で示すように、3人力NANDゲート回路を構成
し得る0MO3(相補型MO8FET)で構成されてい
る−0すなわち、基本セル4は、3つのpチャネルMI
SFETQpと、3つのnチャネルM I S F E
 T Q nとで構成されている。3つのMISFET
Qp又はQnは、一方のソース領域又はドレイン領域を
共有する直列回路で構成されている。
The basic cell 4, as shown in the enlarged plan view of the main part before the wiring forming process in FIG. Cell 4 has three p-channel MIs
SFETQp and three n-channel M I S F E
It is composed of TQn. 3 MISFETs
Qp or Qn is constituted by a series circuit that shares one source region or drain region.

MISFETQpは、単結晶シリコンからなるn−型の
半導体基板IAに構成されている。MISFETQnは
、P−型のウェル領域IBに構成されている。
MISFETQp is configured on an n-type semiconductor substrate IA made of single crystal silicon. MISFETQn is configured in a P-type well region IB.

単位セル4は、前記第1図に示すように1列方向に複数
配置して単位セルブロック4 a r 4 bを構成し
ている。この単位セルブロック4 a + 4 bは、
それらの間に設けられた配線領域5a、5bを介在させ
、列方向に複数配置して単位セル列4Aを構成している
。この単位セル列4Aは、配線領域5A、5B及び5C
を介在させて、行方向に複数配置されている。
As shown in FIG. 1, a plurality of unit cells 4 are arranged in one column to form a unit cell block 4 a r 4 b. This unit cell block 4a + 4b is
A plurality of unit cell columns 4A are arranged in the column direction with wiring regions 5a and 5b provided between them. This unit cell column 4A has wiring areas 5A, 5B, and 5C.
A plurality of them are arranged in the row direction with

前記単位セルブロック4a、4bの単位セル4数は、そ
の周辺部に比べて、半導体集積回路装置(チップ)1の
中央部に近づくほど太くなるように構成されている。こ
のように構成することにより。
The number of unit cells 4 in the unit cell blocks 4a, 4b is configured to become thicker as it approaches the center of the semiconductor integrated circuit device (chip) 1 compared to its periphery. By configuring it like this.

単位セル4で構成される論理回路数及びそれに接続され
る配線数を中央部に近づくほど少なくできるので、前記
中央部の配線密度を低減することができる。
Since the number of logic circuits constituted by the unit cell 4 and the number of wires connected thereto can be decreased as the distance from the central portion approaches, the wiring density in the central portion can be reduced.

前記配線領域5a、5bの面積は、半導体集積回路装置
1の中央部に近づくほど大きくなるように構成されてい
る。このように構成することにより、論理回路に接続さ
れる配線数を中央部に近づくほど多くできるので、前記
中央部の配線密度を低減することができる。特に、行方
向に延在して形成される配線の配線密度を低減すること
ができる1例えば、2層のアルミニウム配線を使用する
半導体集積回路装置1では、行方向に延在する2層目の
アルミニウム配線の配線密度を低減することができる。
The areas of the wiring regions 5a and 5b are configured to increase as they approach the center of the semiconductor integrated circuit device 1. With this configuration, the number of wires connected to the logic circuit can be increased closer to the center, so that the wire density in the center can be reduced. In particular, the wiring density of wiring formed extending in the row direction can be reduced.1 For example, in a semiconductor integrated circuit device 1 using two layers of aluminum wiring, the wiring density of the wiring extending in the row direction can be reduced. The wiring density of aluminum wiring can be reduced.

前記配線領域5A、5B、5Cの面積は、半導体集積回
路装置1の中央部に近づくほど大きくなるように構成さ
れている。このように構成することにより、論理回路に
接続される配線数を中央部に近づくほど多くできるので
、前記中央部の配線密度を低減することができる。特に
1列方向に延在して形成される配線の配線密度を低減す
ることができる0例えば、2層のアルミニウム配線を使
用する半導体集積回路袋Wtlでは列方向に延在する1
層目のアルミニウム配線(単位セル4内にも施される)
の配線密度を低減することができる。
The areas of the wiring regions 5A, 5B, and 5C are configured to increase as they approach the center of the semiconductor integrated circuit device 1. With this configuration, the number of wires connected to the logic circuit can be increased closer to the center, so that the wire density in the center can be reduced. In particular, it is possible to reduce the wiring density of wiring formed extending in one column direction.For example, in a semiconductor integrated circuit bag Wtl using two layers of aluminum wiring, one
Layered aluminum wiring (also installed inside unit cell 4)
wiring density can be reduced.

なお、本発明は、配線領域5a、5bを介在させた単位
セルブロック4a、4bで単位セル列4Aを構成する代
わりに、単位セル4を所定間隔で行方向に複数配置して
単位セル列を構成してもよい、この場合、単位セル4間
の面積は、半導体集積回路装置!!1の中央部に近づく
ほど大きくなるように構成する。そして、この単位セル
4間は、配線領域として使用できるようにする。
In addition, in the present invention, instead of configuring the unit cell column 4A with unit cell blocks 4a and 4b with wiring regions 5a and 5b interposed therebetween, a unit cell column is formed by arranging a plurality of unit cells 4 in the row direction at predetermined intervals. In this case, the area between unit cells 4 is equal to that of a semiconductor integrated circuit device! ! The structure is configured so that the closer to the center of 1, the larger the size becomes. The space between these unit cells 4 can be used as a wiring area.

また、本発明は、3人力NANDゲート回路を構成し得
る単位セル4に代えて、インバータ回路、2人力又は4
人力NANDゲート回路を構成し得る単位セルで構成し
てもよい。
In addition, the present invention provides an inverter circuit, a two-man power or a four-man power NAND gate circuit in place of the unit cell 4 that can constitute a three-man power NAND gate circuit.
It may be composed of unit cells that can constitute a human-powered NAND gate circuit.

また、本発明は、0MO3の単位セル4に代えて、単チ
ャネルM E S FETで単位セルを構成してもよい
Further, in the present invention, the unit cell may be configured with a single channel ME S FET instead of the 0MO3 unit cell 4.

また、本発明は、配線領域5a、5b又は配線領域5A
、5B、5Gに埋込用の半導体素子(例えば、MISF
ET、バイポーラトランジスタ)を設けてもよい。
Further, the present invention provides wiring areas 5a, 5b or wiring area 5A.
, 5B, 5G for embedded semiconductor elements (for example, MISF
ET, bipolar transistor) may be provided.

また、本発明は、半導体集積回路装置11の所定部に記
憶機能(ROM、RAM)を構成できる半導体素子を設
けてもよい。
Further, in the present invention, a semiconductor element capable of forming a memory function (ROM, RAM) may be provided in a predetermined portion of the semiconductor integrated circuit device 11.

[効果] 以上説明したように、本願において開示された新規な技
術によれば、以下に述べる効果を得ることができる。
[Effects] As explained above, according to the novel technology disclosed in this application, the following effects can be obtained.

(1)マスタスライス方式を採用する半導体集積回路装
置において、単位セル列の単位セル間又は単位セル列の
所定数毎の単位セル間の面積を、チップ中央部に近づく
ほど大きく構成することにより、チップ中央部に施せる
行方向に延在する配線数を多くできるので、チップ中央
部の配線密度を低減することができる。
(1) In a semiconductor integrated circuit device that adopts the master slicing method, by configuring the area between unit cells in a unit cell row or between unit cells in each predetermined number of unit cell rows to be larger as the area approaches the center of the chip, Since the number of lines extending in the row direction that can be provided at the center of the chip can be increased, the wiring density at the center of the chip can be reduced.

(2)マスタスライス方式を採用する半導体集積回路装
置において、単位セル列間の配線領域の面積を、チップ
中央部に近づくほど大きく構成することにより、チップ
中央部に施せる列方向に延在する配線数を多くできるの
で、チップ中央部の配線密度を低減することができる。
(2) In a semiconductor integrated circuit device that adopts the master slicing method, by configuring the area of the wiring area between unit cell columns to be larger as it approaches the center of the chip, wiring extending in the column direction can be provided at the center of the chip. Since the number can be increased, the wiring density at the center of the chip can be reduced.

(3)前記(1)及び(2)により、自動設計による未
配線数を低減することができるので、人為的な配線の設
計配置を低減し、半導体集積回路装置の設計における作
業効率を向上することができる。
(3) With (1) and (2) above, it is possible to reduce the number of unwired lines through automatic design, which reduces the need for artificial wiring design placement and improves work efficiency in designing semiconductor integrated circuit devices. be able to.

以上、本発明者によってなされた発明を、前記実施例に
もとづき具体的に説明したが、本発明は。
The invention made by the present inventor has been specifically explained above based on the above embodiments, but the present invention is as follows.

前記実施例に限定されるものではなく、その要旨を逸脱
しない範囲において、種々変形し得ることは勿論である
It goes without saying that the invention is not limited to the embodiments described above, and that various modifications may be made without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例であるマスタスライス方式を
採用する半導体集積回路装置の概略構成図、 第2図は、第1図の要部拡大平面図である。 図中、1・・・半導体集積回路袋!(チップ)、4・・
・単位セル、Qp、Qn−MISFET、4a、4b・
・・単位セルブロック、4A・・・単位セル列、5a。 5b、5A、5B、5C・・・・・・配線領域である。 第  1  図
FIG. 1 is a schematic configuration diagram of a semiconductor integrated circuit device employing a master slice method according to an embodiment of the present invention, and FIG. 2 is an enlarged plan view of the main part of FIG. In the figure, 1...Semiconductor integrated circuit bag! (chip), 4...
・Unit cell, Qp, Qn-MISFET, 4a, 4b・
...Unit cell block, 4A...Unit cell row, 5a. 5b, 5A, 5B, 5C... wiring areas. Figure 1

Claims (1)

【特許請求の範囲】 1、複数の半導体素子で構成される単位セルを規則的に
配置し、該単位セル及び単位セル間に施す配線パターン
の変更で多種類の機能を得ることができる半導体集積回
路装置であって、前記単位セルを列方向に複数配置して
単位セル列を構成し、該単位セル列を配線領域を介在さ
せて行方向に複数配置してなり、前記単位セル列の単位
セル間の面積又は単位セル列の所定数毎の単位セル間の
面積及び前記配線領域の面積が、チップ中央部に近づく
ほど大きく構成されてなることを特徴とする半導体集積
回路装置。 2、前記単位セル列の単位セル間は、配線領域として使
用されてなることを特徴とする特許請求の範囲第1項に
記載の半導体集積回路装置。 3、前記単位セル列の所定数毎の単位セルは単位セルブ
ロックを構成し、該単位セルブロックの単位セルの数は
、チップ中央部に近づくほど少なくなることを特徴とす
る特許請求の範囲第1項に記載の半導体集積回路装置。 4、前記単位セル列の単位セル間又は配線領域には、半
導体素子が設けられてなることを特徴とする特許請求の
範囲第1項に記載の半導体集積回路装置。
[Claims] 1. A semiconductor integrated circuit in which unit cells composed of a plurality of semiconductor elements are arranged regularly and various functions can be obtained by changing the unit cells and wiring patterns between the unit cells. A circuit device, wherein a plurality of the unit cells are arranged in a column direction to form a unit cell column, and a plurality of the unit cell columns are arranged in a row direction with a wiring area interposed therebetween, and the unit of the unit cell column is 1. A semiconductor integrated circuit device, wherein the area between cells or the area between unit cells in each predetermined number of unit cell rows and the area of the wiring region increase as the area approaches the center of the chip. 2. The semiconductor integrated circuit device according to claim 1, wherein the space between the unit cells in the unit cell row is used as a wiring area. 3. A predetermined number of unit cells in the unit cell row constitute a unit cell block, and the number of unit cells in the unit cell block decreases as it approaches the center of the chip. The semiconductor integrated circuit device according to item 1. 4. The semiconductor integrated circuit device according to claim 1, wherein a semiconductor element is provided between unit cells of the unit cell row or in a wiring area.
JP20420785A 1985-09-18 1985-09-18 Semiconductor integrated circuit device Pending JPS6265343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20420785A JPS6265343A (en) 1985-09-18 1985-09-18 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20420785A JPS6265343A (en) 1985-09-18 1985-09-18 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6265343A true JPS6265343A (en) 1987-03-24

Family

ID=16486603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20420785A Pending JPS6265343A (en) 1985-09-18 1985-09-18 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6265343A (en)

Similar Documents

Publication Publication Date Title
US4589007A (en) Semiconductor integrated circuit device
JPH0114707B2 (en)
US4766475A (en) Semiconductor integrated circuit device having an improved buffer arrangement
JP2580301B2 (en) Semiconductor integrated circuit device
JPH03165061A (en) Semiconductor integrated circuit device
JPH0480538B2 (en)
JPH01211945A (en) Semiconductor device
JPS6265343A (en) Semiconductor integrated circuit device
JPS6329545A (en) Semiconductor integrated circuit device
JPH01152642A (en) Semiconductor integrated circuit
JPS63152163A (en) Semiconductor integrated circuit device
JPH0362551A (en) Standard cell and standard cell row
JPS628538A (en) Semiconductor integrated circuit device
JPS6329543A (en) Semiconductor integrated circuit device
KR920005798B1 (en) Borderless master slice semiconductor device
JPS6223618A (en) Logic integrated circuit
JP3022563B2 (en) Semiconductor device
JPH0815258B2 (en) Programmable CMOS logic array
JPH0563165A (en) Semiconductor device
JPS6276735A (en) Semiconductor integrated circuit device
JPS61107741A (en) Semiconductor integrated circuit device
JPS63306641A (en) Semiconductor integrated circuit
JPH03145743A (en) Semiconductor integrated circuit device
JPH06232267A (en) Method of designing semiconductor integrated circuit device
JPH07153926A (en) Semiconductor integrated circuit device