JPH06232267A - Method of designing semiconductor integrated circuit device - Google Patents

Method of designing semiconductor integrated circuit device

Info

Publication number
JPH06232267A
JPH06232267A JP1624693A JP1624693A JPH06232267A JP H06232267 A JPH06232267 A JP H06232267A JP 1624693 A JP1624693 A JP 1624693A JP 1624693 A JP1624693 A JP 1624693A JP H06232267 A JPH06232267 A JP H06232267A
Authority
JP
Japan
Prior art keywords
cell
basic
cells
chip
basic cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1624693A
Other languages
Japanese (ja)
Inventor
Noriyuki Oshima
敬之 大嶋
Toshiro Takahashi
敏郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1624693A priority Critical patent/JPH06232267A/en
Publication of JPH06232267A publication Critical patent/JPH06232267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PURPOSE:To provide a designing method wherein it reduces the occupied area of an I/O cell for a logic LSI and it makes the multi-pin structure of an LSI package easy. CONSTITUTION:When I/O cells SL1, SL2,... constituting a buffer circuit for input/output on a semiconductor chip 1 are arranged and installed, a plurality of first basic cells 101, 102,... and second basic cells 201, 202,... are lined up and installed in prescribed regions on the chip. According to the number of transistors required to constitute desired I/O cells, one or two or more basic cells are selected from the plurality of basic cells, and I/O cell regions S1, S2,... are partitioned. By using elements inside the partitioned I/O cell regions S1, S2,..., a wiring pattern forming the I/O cells is designed. Bonding pads 2, 2,..., are formed on the chip 1 at a definite ratio with reference to the plurality of first and second basic cells, and a multi-pin structure can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体技術さらには半
導体集積回路装置の回路設計技術に適用して特に有効な
技術に関し、例えばゲートアレイ方式の論理LSIの入
・出力用のバッファ回路の設計に利用して有用な技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor technology and a technology particularly effective when applied to a circuit design technology of a semiconductor integrated circuit device, for example, designing a buffer circuit for input / output of a gate array type logic LSI. Related to useful technology.

【0002】[0002]

【従来の技術】ゲートアレイ方式の論理LSIにあって
は、ボンディングパッドと、内部回路を構成する論理セ
ルとの間に、入力バッファ,出力バッファ,双方向性バ
ッファ等として機能するI/Oセルが介在され、これに
より当該LSIとそれ以外の機器との間の安定した信号
の遣り取りが行われるようになっている。そして、上記
論理LSIでは、1つのボンディングパッドに対応させ
て1つのI/Oセル形成領域(基本セル領域)が決定さ
れ、この基本セル領域内に設けられた複数のトランジス
タを配線パターンにて必要なだけ互いに導電接続させ
て、1つのI/Oセルを形成していた。従来の論理LS
IのI/Oセルの代表的な構造を図3に示す。この図に
示すように、1つのI/Oセルが形成される基本セル領
域(21,22…)は、出力MOS部と、プリバッファ
部とからなり、これら出力MOS部、プリバッファ部内
には、同一の素子パターン(基礎パターン)が繰り返し
配設されている(図示例では出力MOS部が6つの基礎
パターン20a〜20f、プリバッファ部が6つの基礎
パターン20a’〜20f’によって構成されてい
る)。そして各々の基本セル領域21,22…1つに対
して1つの割合でボンディングパッド31,32…が設
けられている。このようなI/Oセルのレイアウトパタ
ーンでは、I/Oセルの種類(大きさ)に係わらず、ボ
ンディングパッド31,32が、例えばチップ周辺部に
等間隔に設けられ、実装時にリードフレーム側の電極部
と、該ボンディングパッドとの接続が容易となる。
2. Description of the Related Art In a gate array type logic LSI, an I / O cell which functions as an input buffer, an output buffer, a bidirectional buffer, etc., between a bonding pad and a logic cell forming an internal circuit. Is provided, whereby stable signal exchange between the LSI and other devices is performed. In the logic LSI, one I / O cell formation region (basic cell region) is determined corresponding to one bonding pad, and a plurality of transistors provided in this basic cell region are required in the wiring pattern. One I / O cell was formed by conducting conductive connection as much as possible. Conventional logical LS
A typical structure of an I / O cell is shown in FIG. As shown in this figure, the basic cell region (21, 22 ...) In which one I / O cell is formed is composed of an output MOS section and a pre-buffer section. , The same element pattern (basic pattern) is repeatedly arranged (in the illustrated example, the output MOS section is composed of six basic patterns 20a to 20f, and the pre-buffer section is composed of six basic patterns 20a 'to 20f'. ). The bonding pads 31, 32, ... Are provided in a ratio of one for each of the basic cell regions 21, 22 ,. In such an I / O cell layout pattern, the bonding pads 31 and 32 are provided at equal intervals, for example, in the peripheral portion of the chip regardless of the type (size) of the I / O cell, and are mounted on the lead frame side during mounting. Connection between the electrode portion and the bonding pad becomes easy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た技術には、次のような問題のあることが本発明者らに
よってあきらかとされた。即ち、I/Oセルの設計に実
際に使用されるトランジスタ数は、その機能(例えば入
力バッファ/出力バッファ/双方向性バッファの別、高
速用/低速用の別等)によって異なり、従って当該I/
Oセルの形成に必要な面積も異なってくる。即ち、図4
に示すように、I/Oセル(図には領域21に形成され
るI/OセルSL1が示されている)は、基本セル領域
(21)の一部分、即ち基本パターンのうちパターン2
0a〜20c,20a’〜20c’に設けられた一部の
トランジスタを、配線L20によって互いに導電接続さ
せるだけで形成されるため、基本セル領域内に使用され
ない素子が残っている余領域が生じ、チップ面積が有効
利用されていない。これは、ゲートアレイ方式のLSI
のI/Oセルでは、基本セル領域21,22…の大きさ
を、実際に形成されるI/Oセルの大きさと関係なく、
占有面積が最大のI/Oセル(トランジスタ数が最大の
セル)に合わせて決めているからである(図3,図4の
例では、夫々6つの基礎パターンで、1つのI/Oセル
の出力MOS部、プリバッファ部が構成されている)。
However, the present inventors have clarified that the above-mentioned technique has the following problems. That is, the number of transistors actually used for designing an I / O cell depends on its function (for example, input buffer / output buffer / bidirectional buffer, high-speed / low-speed, etc.). /
The area required to form an O cell also differs. That is, FIG.
As shown in FIG. 3, the I / O cell (I / O cell SL 1 formed in the region 21 is shown in the figure) is a part of the basic cell region (21), that is, the pattern 2 of the basic pattern.
Since some transistors provided in 0a to 20c and 20a 'to 20c' are formed only by conductively connecting them to each other by the wiring L20, there is an extra area in which an unused element remains in the basic cell area, The chip area is not being effectively used. This is a gate array type LSI
, The basic cell regions 21, 22 ... Are irrelevant to the size of the I / O cells actually formed,
This is because it is determined according to the I / O cell that occupies the largest area (the cell that has the largest number of transistors) (in the example of FIGS. 3 and 4, there are six basic patterns, and one I / O cell The output MOS section and the pre-buffer section are configured).

【0004】従って、半導体チップ上に、出力MOS部
/プリバッファ部共に基礎パターン2つ宛で構成できる
I/OセルSL1,3つ宛で構成できるI/OセルS
2,5つ宛で構成できるI/OセルSL3,6つ宛で構
成できるI/OセルSL4…を形成するのであれば、夫
々のセルの大きさに拘らず、図3に示すように、6つ宛
の基礎パターンを有する基本セル領域21,22,2
3,24…に、夫々のI/Oセルを形成することとな
り、I/Oセルの構成に関与しない余領域が多数存在す
ることとなる。
Therefore, on the semiconductor chip, both the output MOS section / pre-buffer section can be composed of two basic patterns I / O cells SL 1 , and three can be composed I / O cells S.
As long as L 2 and I / O cells SL 3 that can be configured for 5 cells and I / O cells SL 4 that can be configured for 6 cells are formed, they are shown in FIG. 3 regardless of the size of each cell. , The basic cell regions 21, 22, 2 having the basic patterns for six
Each I / O cell is formed in 3, 24 ..., and a large number of extra regions that are not involved in the configuration of the I / O cell exist.

【0005】又、上記のように基本セル領域を、最大の
セルに合わせて大きく形成しておく必要があるため、こ
れに対応して設けられるボンディングパッドの数も限ら
れてしまい、チップサイズを増大させずに、製品LSI
の多ピン化を図ることが困難であった。本発明は、かか
る事情に鑑みてなされたもので、論理LSIのI/Oセ
ル1つ当りの占有面積を縮小し、もって、LSIパッケ
ージの多ピン化構造を容易ならしめる半導体集積回路装
置の設計方法を提供することをその主たる目的とする。
Further, since it is necessary to make the basic cell region large in accordance with the maximum cell as described above, the number of bonding pads provided corresponding to this is limited, and the chip size is reduced. Product LSI without increasing
It was difficult to increase the number of pins. The present invention has been made in view of such circumstances, and a design of a semiconductor integrated circuit device that reduces an occupied area per I / O cell of a logic LSI and thus facilitates a multi-pin structure of an LSI package. Its main purpose is to provide a method.

【0006】[0006]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を説明すれば、下記のと
おりである。即ち、半導体チップ上に入・出力用のバッ
ファ回路を構成するI/Oセルを配設するに当り、チッ
プの所定領域に整列して設けられた複数の基本セルか
ら、当該所望のI/Oセルを構成するのに必要なトラン
ジスタ数に応じて1又は2以上の基本セルを選択し、該
選択した基本セルによってI/Oセル領域を区画し、こ
のように区画したI/Oセル領域の素子を使用して当該
I/Oセルを形成する配線パターンを設計するようにし
た。
The typical ones of the inventions disclosed in the present application will be outlined below. That is, when arranging the I / O cells constituting the input / output buffer circuit on the semiconductor chip, the desired I / O is selected from a plurality of basic cells arranged in a predetermined region of the chip. One or more basic cells are selected according to the number of transistors required to form a cell, the I / O cell area is partitioned by the selected basic cells, and the I / O cell area partitioned in this way is selected. A wiring pattern for forming the I / O cell is designed by using the element.

【0007】[0007]

【作用】I/Oセルが形成される領域の大きさを、当該
セルの実際の大きさに応じて決定することができるの
で、余領域が少なくなり、チップの周辺部にI/Oセル
を効率良く配設することができる。
Since the size of the area where the I / O cell is formed can be determined according to the actual size of the cell, the extra area is reduced, and the I / O cell is provided in the peripheral portion of the chip. It can be arranged efficiently.

【0008】[0008]

【実施例】以下、本発明の一実施例を添付図面を参照し
て説明する。図1は、本発明が適用されたゲートアレイ
方式の論理LSIが形成された半導体チップ1の周辺部
分を示す拡大図であり、図2は当該チップ1全体のレイ
アウトを示す平面図である。これらの図に示すように、
チップ1の外周部分には多数のボンディングパッド2,
2…が等間隔で設けられている。ボンディングパッド
2,2…の内側(図1では下側)の領域には、これに沿
って出力MOS部(第1のバッファ部)3が設けられ、
更にその内側に、プリバッファ部(第2のバッファ部)
4が該出力MOS部3から所定間隔dだけ隔てて設けら
れている。そして出力MOS部3、プリバッファ部4間
は、配線L1,L2…にて互いに導電接続されて、所望の
機能を有するI/Oセルを構成するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an enlarged view showing a peripheral portion of a semiconductor chip 1 in which a gate array type logic LSI to which the present invention is applied is formed, and FIG. 2 is a plan view showing a layout of the entire chip 1. As shown in these figures,
A large number of bonding pads 2, on the outer periphery of the chip 1.
2 ... Are provided at equal intervals. In the region inside (the lower side in FIG. 1) of the bonding pads 2, 2, ... An output MOS section (first buffer section) 3 is provided along the area.
Further inside, a pre-buffer section (second buffer section)
4 is provided at a predetermined distance d from the output MOS section 3. The output MOS section 3 and the pre-buffer section 4 are conductively connected to each other by the wirings L 1 , L 2, ... And constitute an I / O cell having a desired function.

【0009】具体的には、前記出力MOS部3には、入
力保護回路や、信号伝達経路を切り換えるためのゲート
部を構成するnMOSトランジスタが多数形成されてい
る。一方、上記プリバッファ部4には多数のn形MOS
トランジスタやp形MOSトランジスタが形成され、こ
の部分の配線パターン(図示省略)を変えることによっ
て、I/Oセル内に、入力バッファ回路,出力バッファ
回路,双方向性バッファ回路の何れかが構成可能とされ
ている。
Specifically, the output MOS section 3 is provided with a large number of nMOS transistors forming an input protection circuit and a gate section for switching a signal transmission path. On the other hand, the prebuffer unit 4 has a large number of n-type MOSs.
A transistor or p-type MOS transistor is formed, and by changing the wiring pattern (not shown) in this part, any of an input buffer circuit, an output buffer circuit, and a bidirectional buffer circuit can be configured in the I / O cell. It is said that.

【0010】ところで、本実施例のI/Oセルは、上記
出力MOS部3を構成する多数の基本セル(第1の基本
セル)101,102,103,104…、及び、プリ
バッファ部4を構成する多数の基本セル(第2の基本セ
ル)201,202,203,204…の、所定個数宛
の組合せによって構成されたセル領域内のトランジスタ
等の素子を使用して構成される。今、当該LSIチップ
内で面積最大のI/Oセルを形成するのに、上記第1の
基本セル,第2の基本セルを6つ宛必要とすると仮定す
る。前述した従来の論理LSIの設計方法では、各基本
セル領域を、この最大のI/Oセルが形成できる大きさ
(図1の第1基本セル6つ分,第2基本セル6つ分に相
当)とし、この中に実際に1つのI/Oセルを形成して
いた(図3,図4)。これに対し、本実施例の論理LS
Iでは、実際に形成されるI/Oセルの大きさに応じ
て、以下のように基本セルを選択してI/Oセルを形成
している。
By the way, the I / O cell of this embodiment has a large number of basic cells (first basic cells) 101, 102, 103, 104 ... .. are formed by using elements such as transistors in a cell region formed by a combination of a large number of basic cells (second basic cells) 201, 202, 203, 204, ... Now, it is assumed that the first basic cell and the second basic cell are required to form six I / O cells having the largest area in the LSI chip. In the above-described conventional logic LSI design method, each basic cell area has a size capable of forming this maximum I / O cell (corresponding to six first basic cells and six second basic cells in FIG. 1). ), And one I / O cell was actually formed therein (FIGS. 3 and 4). On the other hand, the logical LS of this embodiment
In I, a basic cell is selected and an I / O cell is formed as follows according to the size of the I / O cell actually formed.

【0011】先ず、当該論理LSIに形成されるI/O
セルの平均的な大きさより若干大きいセル面積(例えば
4個の第1,4個の第2の基本セル)を1つの基本セル
群(図中2点鎖線で示す)とし、このセル群1つに対し
て1つ宛ボンディングパッド2,2,…を配置してお
く。そして、実際に形成されるI/Oセル(図1中のS
1,SL2…)の大きさに合わせて、前記多数の基本セ
ル101,102,103,…から1又は2以上の隣接
する基本セルを、各I/Oセル毎に所定個数宛選択し、
選択した基本セルによって、I/Oセル毎の領域(セル
領域S1,S2…)を区画し、斯く区画した領域内のトラ
ンジスタ等の素子を使用して、夫々のI/Oセルを形成
する配線パターンを設計するようにした。
First, the I / O formed in the logic LSI
A cell area slightly larger than the average size of cells (for example, four first and fourth second basic cells) is defined as one basic cell group (indicated by a chain double-dashed line in the figure), and one cell group is provided. , One bonding pad 2, 2, ... Is arranged. Then, the I / O cell that is actually formed (S in FIG.
L 1 , SL 2 ...) According to the size of L 1 , SL 2 , ..., One or two or more adjacent basic cells are selected from the large number of basic cells 101, 102, 103 ,. ,
Regions (cell regions S 1 , S 2, ...) Are divided for each I / O cell by the selected basic cell, and each I / O cell is formed by using elements such as transistors in the divided region. I designed the wiring pattern.

【0012】一例として、半導体チップ1上に、例え
ば、第1,第2の基本セルが2つで構成可能なI/Oセ
ルSL1,3つで構成可能なI/OセルSL2,5つで構
成可能なI/OセルSL3,……と云う具合いに順次形
成する場合を考える。このとき、第1,第2の基本セル
101,102,201,202でセル領域S1を区画
しこの中のトランジスタを用いてI/OセルS1を構成
する。又、第1,第2の基本セル104,105,10
6,204,205,206でセル領域S2を区画し、
第1,第2の基本セル108〜112,208〜212
でセル領域S3を区画し、夫々のセル領域S2,S3内の
トランジスタを用いてI/OセルSL2,SL3を構成す
る。以下同様に、そのI/Oセルの大きさ(例えばトラ
ンジスタ数)に応じてセル領域を区画し、その中の素子
を所望の配線パターンでつないで当該I/Oセルを構成
していく。そして、ボンディングパッド2,2…とI/
Oセルが、配線L11,L12,L13…により1対1の関係
で導電接続される。尚、上記のようにI/Oセル間に未
使用の基本セルS0を介在しておくことによって、各セ
ル間で電源用の配線を分離することができるようにな
る。
As an example, on the semiconductor chip 1, for example, an I / O cell SL 1 which can be constituted by two first and second basic cells, and an I / O cell SL 2 , 5 which can be constituted by three basic cells. Consider a case of sequentially forming I / O cells SL 3 , ... At this time, the cell area S 1 is divided by the first and second basic cells 101, 102, 201, 202, and the I / O cell S 1 is formed by using the transistors in the cell area S 1 . In addition, the first and second basic cells 104, 105, 10
The cell area S 2 is divided by 6, 204, 205 and 206,
First and second basic cells 108 to 112, 208 to 212
In the cell area S 3 to partition, constituting an I / O cell SL 2, SL 3 using transistors in the cell region S 2, S 3 each. Similarly, the cell region is divided according to the size of the I / O cell (for example, the number of transistors), and the elements in the cell region are connected by a desired wiring pattern to form the I / O cell. Then, the bonding pads 2, 2 ... and I /
The O cells are conductively connected in a one-to-one relationship by the wirings L11, L12, L13 .... By interposing the unused basic cell S 0 between the I / O cells as described above, the power supply wiring can be separated between the cells.

【0013】このようなレイアウトでI/Oセルを構成
すると、従来の手法ではI/Oセルの構成に関与しなか
った素子領域を、有効に利用することができ、チップの
入・出力段の高集積化が図られ、当該LSIの多ピン化
が達成される。尚、個々の第1,第2基本セルは、互い
に隣接する基本セルと同一パターン、若くは、ミラー反
転したパターンとなるようにすれば、その設計効率がよ
い。
When the I / O cell is constructed with such a layout, the element region which has not been involved in the construction of the I / O cell by the conventional method can be effectively utilized, and the input / output stages of the chip can be effectively used. High integration is achieved and the number of pins of the LSI is increased. The design efficiency is good if each of the first and second basic cells has the same pattern as the basic cells adjacent to each other, that is, the mirror-inverted pattern.

【0014】以上説明したように、本実施例の論理LS
Iでは、I/Oセルを構成する基本セルの数を、固定値
とせずに、該I/Oセルの大きさ(例えばトランジスタ
数)によって適宜選択し得るようにしたので、I/Oセ
ルの構成に寄与しない基本セルの数が低減される。又、
I/Oセルが形成される領域の高集積化を見越して、パ
ッドの数を増やしておくことができ、チップの多ピン化
が図られる。
As described above, the logical LS of this embodiment is
In I, since the number of basic cells constituting an I / O cell is not fixed and can be appropriately selected according to the size of the I / O cell (for example, the number of transistors), the number of I / O cells The number of basic cells that do not contribute to the configuration is reduced. or,
The number of pads can be increased in anticipation of higher integration in the region where the I / O cells are formed, and the number of pins on the chip can be increased.

【0015】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。例えば、上
記実施例では、ボンディングパッドを、4つの基本セル
に対して1つ設けるようにしたが、当該LSIチップ上
に設置されるI/Oセルの種類やその比率等に応じて、
これらの比を変更してもよい。又、本実施例では、基本
セルを、出力MOS部と、プリバッファ部とに分けて構
成した例を示したが、これらを合わせて1つの基本セル
として単純化してもよい。又、本実施例では、ボンディ
ングパッドが半導体チップの周辺部に形成されている論
理LSIを例に説明したが、チップはこれに限ることは
なく、例えば、ボンディングパッドが、論理セルが整列
している格子上に点在するLSIチップにも本発明は適
用可能である。以上の説明では主として本発明者によっ
てなされた発明をその背景となった利用分野である論理
LSIの設計技術に適用した場合について説明したが、
この発明はそれに限定されるものでなく、半導体集積回
路装置の設計技術一般に利用することができる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, in the above embodiment, one bonding pad is provided for each of the four basic cells, but according to the type and ratio of I / O cells installed on the LSI chip,
You may change these ratios. Further, in the present embodiment, an example in which the basic cell is divided into the output MOS section and the pre-buffer section is shown, but these may be combined to be simplified as one basic cell. Further, although the present embodiment has been described by taking a logic LSI in which the bonding pads are formed in the peripheral portion of the semiconductor chip as an example, the chip is not limited to this, and, for example, the bonding pads may be arranged with the logic cells aligned. The present invention can be applied to LSI chips scattered on the existing grid. In the above description, the case where the invention made by the present inventor is mainly applied to the design technology of the logic LSI which is the field of application which is the background of the invention has been described.
The present invention is not limited to this, and can be used in general design technology of semiconductor integrated circuit devices.

【0016】[0016]

【発明の効果】論理LSIのI/Oセル1つ当りの占有
面積が縮小され、LSIパッケージの多ピン化構造が可
能になる。
The occupying area per I / O cell of the logic LSI is reduced, and the multi-pin structure of the LSI package becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されたゲートアレイ方式の論理L
SIが形成された半導体チップの周辺部分を示す拡大図
である。
FIG. 1 is a gate array type logic L to which the present invention is applied.
FIG. 6 is an enlarged view showing a peripheral portion of a semiconductor chip on which SI is formed.

【図2】半導体チップの全体のレイアウトを示す平面図
である。
FIG. 2 is a plan view showing an overall layout of a semiconductor chip.

【図3】従来のゲートアレイ方式の論理LSIが形成さ
れた半導体チップの周辺部分を示す拡大図である。
FIG. 3 is an enlarged view showing a peripheral portion of a semiconductor chip on which a conventional gate array type logic LSI is formed.

【図4】従来の論理LSIの1つの基本セルに形成され
たI/Oセルの配線パターンを示す平面図である。
FIG. 4 is a plan view showing a wiring pattern of an I / O cell formed in one basic cell of a conventional logic LSI.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 ボンディングパッド 3 出力MOS部 4 プリバッファ部 101,102,… 第1の基本セル 201,202,… 第2の基本セル S1,S2,S3,S4,… セル領域 SL1,SL2,SL3,SL4,… I/Oセル1 Semiconductor Chip 2 Bonding Pad 3 Output MOS Section 4 Pre-Buffer Section 101, 102, ... First Basic Cell 201, 202, ... Second Basic Cell S 1 , S 2 , S 3 , S 4 , ... Cell Area SL 1 , SL 2 , SL 3 , SL 4 , ... I / O cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体チップ上に入・出力用のバッファ
回路を構成するI/Oセルを配設するに当り、チップの
所定領域に複数個の基本セルを整列して設け、斯く設け
られた基本セルから、当該所望のI/Oセルを構成する
のに必要なトランジスタ数に応じて1又は2以上の基本
セルを選択し、斯く選択した基本セルによってI/Oセ
ル領域を区画し、斯く区画したI/Oセル領域内の素子
を使用して前記I/Oセルを形成する配線パターンを設
計するようにしたことを特徴とする半導体集積回路装置
の設計方法。
1. When arranging an I / O cell constituting a buffer circuit for input / output on a semiconductor chip, a plurality of basic cells are arranged in a predetermined area of the chip, and the basic cell is arranged. From the basic cells, one or more basic cells are selected according to the number of transistors required to form the desired I / O cell, and the selected basic cells partition the I / O cell region. A method for designing a semiconductor integrated circuit device, wherein a wiring pattern for forming the I / O cell is designed by using elements in the partitioned I / O cell region.
【請求項2】 前記基本セルを、nMOSトランジスタ
からなる第1の基本セル部と、nMOSトランジスタ及
びpMOSトランジスタからなる第2の基本セル部とに
分けて形成することを特徴とする請求項1に記載の半導
体集積回路装置の設計方法。
2. The basic cell is divided into a first basic cell section composed of an nMOS transistor and a second basic cell section composed of an nMOS transistor and a pMOS transistor, and is formed. A method for designing a semiconductor integrated circuit device as described above.
【請求項3】 前記複数個の基本セルに対して一定の比
率で、ボンディングパッドを、前記チップ上に設けるこ
とを特徴とする請求項1又は2に記載の半導体集積回路
装置の設計方法。
3. The method for designing a semiconductor integrated circuit device according to claim 1, wherein bonding pads are provided on the chip at a constant ratio with respect to the plurality of basic cells.
JP1624693A 1993-02-03 1993-02-03 Method of designing semiconductor integrated circuit device Pending JPH06232267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1624693A JPH06232267A (en) 1993-02-03 1993-02-03 Method of designing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1624693A JPH06232267A (en) 1993-02-03 1993-02-03 Method of designing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH06232267A true JPH06232267A (en) 1994-08-19

Family

ID=11911203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1624693A Pending JPH06232267A (en) 1993-02-03 1993-02-03 Method of designing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH06232267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727596B2 (en) 2001-03-19 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit
JP2006294651A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device and i/o cell provided therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727596B2 (en) 2001-03-19 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit
JP2006294651A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device and i/o cell provided therein
JP4671739B2 (en) * 2005-04-05 2011-04-20 パナソニック株式会社 Semiconductor integrated circuit device and I / O cell provided for the same

Similar Documents

Publication Publication Date Title
US4733288A (en) Gate-array chip
US4893168A (en) Semiconductor integrated circuit device including bonding pads and fabricating method thereof
KR920008396B1 (en) Semiconductor integrated circuit device
US8013362B2 (en) Semiconductor integrated circuit and multi-chip module
US4825107A (en) Master slice type integrated circuit
US4992845A (en) Semiconductor integrated circuit device having input/output buffer cells each comprising a plurality of transistor regions arranged in a single line
US5045913A (en) Bit stack compatible input/output circuits
US6979908B1 (en) Input/output architecture for integrated circuits with efficient positioning of integrated circuit elements
US5206529A (en) Semiconductor integrated circuit device
JPH06232267A (en) Method of designing semiconductor integrated circuit device
JPH0578190B2 (en)
EP0119059B1 (en) Semiconductor integrated circuit with gate-array arrangement
JPH0831581B2 (en) Semiconductor device
JPS62194640A (en) Semiconductor integrated circuit using bump mounting
JPH0252428B2 (en)
JP2693920B2 (en) Semiconductor integrated circuit device
JPH023279A (en) Standard cell of complementary mis master slice lsi
JPH0815209B2 (en) Semiconductor integrated circuit device
US7038257B2 (en) System and method for providing scalability in an integrated circuit
JPS6182455A (en) Semiconductor integrated circuit device
JPS6223618A (en) Logic integrated circuit
JPH01152642A (en) Semiconductor integrated circuit
JP2913766B2 (en) Semiconductor device
JPS6112043A (en) Master slice type gate array device
JPS61294833A (en) Semiconductor integrated circuit