JPS6262472B2 - - Google Patents

Info

Publication number
JPS6262472B2
JPS6262472B2 JP56045138A JP4513881A JPS6262472B2 JP S6262472 B2 JPS6262472 B2 JP S6262472B2 JP 56045138 A JP56045138 A JP 56045138A JP 4513881 A JP4513881 A JP 4513881A JP S6262472 B2 JPS6262472 B2 JP S6262472B2
Authority
JP
Japan
Prior art keywords
layer
silicon
tantalum oxide
tantalum
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045138A
Other languages
Japanese (ja)
Other versions
JPS57167669A (en
Inventor
Takashi Kato
Masao Taguchi
Nobuo Toyokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56045138A priority Critical patent/JPS57167669A/en
Publication of JPS57167669A publication Critical patent/JPS57167669A/en
Publication of JPS6262472B2 publication Critical patent/JPS6262472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳现な説明】 本発明は、半導䜓集積回路等の受動玠子ずしお
奜適なコンデンサおよびその補造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitor suitable as a passive element in a semiconductor integrated circuit, etc., and a method for manufacturing the same.

半導䜓集積回路のコンデンサ玠子ずしおは、接
合容量たたはMOS構造の容量が利甚されるが、
埌者のMOS構造のコンデンサ玠子の誘電䜓は、
珟圚殆んど二酞化シリコンSiO2により圢成さ
れおいる。
Junction capacitance or MOS structure capacitance is used as a capacitor element in semiconductor integrated circuits.
The dielectric of the capacitor element in the latter MOS structure is
Currently, most of them are made of silicon dioxide (SiO 2 ).

二酞化シリコンは、珟圚の半導䜓集積回路にお
いお倚様な目的に䜿甚されおいる奜適な材料であ
り、この二酞化シリコンを誘電䜓ずしたMOS構
造のコンデンサ玠子の実斜䟋ずしお、䞀玠子圢の
MOSダむナミツクランダムアクセスメモリヌ
以䞋MOS RAMず略すに぀いお説明する。こ
のMOS RAMの構成単䜍はメモリセルず呌ばれ
るが、第図は䞀玠子メモリセルの等䟡回路であ
る。
Silicon dioxide is a suitable material used for various purposes in current semiconductor integrated circuits.
MOS dynamic random access memory (hereinafter abbreviated as MOS RAM) will be explained. The structural unit of this MOS RAM is called a memory cell, and FIG. 1 shows an equivalent circuit of one element memory cell.

第図のメモリセルにおいお、MOSトランゞ
スタはワヌド線が遞択された時にのみオンず
なり、デむゞツト線ずMOSコンデンサのト
ランゞスタ偎電極ずが同電䜍ずなるよう電荷を転
送する転送トランゞスタである。メモリセルぞの
情報の曞蟌みは、ワヌド線を遞択し、デむゞツ
ト線ず同電䜍にされたMOSコンデンサぞの
電荷の蓄積であり、情報の読取りは、デむゞツト
線に぀いお、所定の電䜍プリチダヌゞされた
デむゞツト線にダミヌセルが接続されたのちの電
䜍ず、ワヌド線が遞択されおMOSコンデン
サずの間の電荷の移動により倉化した電䜍ずの
差の怜出である。ワヌド線の遞択時のデむゞツ
ト線の電䜍の倉化△Dは次匏で䞎えられる。
In the memory cell shown in FIG. 1, MOS transistor 1 is a transfer transistor that turns on only when word line 2 is selected and transfers charges so that digit line 3 and the transistor side electrode of MOS capacitor 4 have the same potential. . Writing information to a memory cell involves selecting the word line 2 and accumulating charge in the MOS capacitor 4, which is set to the same potential as the digit line 3. Reading information is performed by selecting the word line 2 and storing charge in the MOS capacitor 4, which is set to the same potential as the digit line 3. This is the detection of the difference between the potential after the dummy cell is connected to the precharged digit line and the potential changed by the movement of charge between the word line 2 and the MOS capacitor 4 when the word line 2 is selected. A change in the potential of the digit line 3 when the word line 2 is selected, ΔV D , is given by the following equation.

△DC−D 前蚘の匏においお   MOSコンデンサの容量 D  デむゞツト線の分垃容量第図の
 C

MOSコンデンサの䞡端の電圧 D  デむゞツト線の分垃容量Dの䞡端の電
圧 である。前蚘の匏から△Dを倧きくするために
は、Cを倧きくするか、のDに察する比率を
倧きくする必芁がある。
△V D =C/C+ CD (V C -V D ) In the above formula, C... Capacity of MOS capacitor 4 C D ... Distributed capacitance of digit line 3 (5 in Figure 1) V C ... MOS capacitor Voltage V D across the digit line 3 is the voltage across the distributed capacitance C D of the digit line 3. From the above equation, in order to increase ΔV D , it is necessary to increase V C or increase the ratio of C to CD .

第図は最も䞀般的なこの皮のMOS RAMの
構造を瀺す断面図である。型シリコン基板に
蚭けられたn+領域及び基板の衚面に生じた
反転局を゜ヌスあるいはドレむンずしお機胜さ
せ、基板䞊に二酞化シリコン局を介しお蚭け
られた倚結晶シリコン局をゲヌトずする転送
トランゞスタのn+領域は、倚数の他のメモリ
ヌセルの圓該n+領域ず接続されおデむゞツト線
を構成しおいる。反転局はMOSコンデンサの
䞀方の電極を構成し、倚結晶シリコン局はこ
れに察向する電極であ぀お、この間に介圚する二
酞化シリコン局が誘電䜓である。
FIG. 2 is a sectional view showing the structure of the most common type of MOS RAM. A polycrystalline silicon layer is formed on the substrate 6 with a silicon dioxide layer 9 interposed therebetween, with the n + region 7 provided on the P-type silicon substrate 6 and the inversion layer 8 formed on the surface of the substrate 6 functioning as a source or drain. The n + region 7 of the transfer transistor with gate 10 is connected to the n + regions of many other memory cells to form a digit line. The inversion layer 8 constitutes one electrode of the MOS capacitor, the polycrystalline silicon layer 11 is the opposite electrode, and the silicon dioxide layer 9 interposed therebetween is a dielectric.

デむゞツト線は倚数のメモリヌセルを接続しお
いるために配線分垃量が倧きく、珟状の64kビツ
トMOS RAMでDは15倍皋床の倧きさを有
し、このためにコンデンサに電源電圧が盞圓す
る充分な論理レベルの電荷が蓄えられおいたずし
おも、読出し信号はほが100皋床にすぎな
い。このために、この読出し信号を怜知し増幅す
るセンス増幅噚を高感床なものずしなければなら
ない。この読出し信号を少しでも倧きくし、セン
ス増幅噚の動䜜条件を緩和するために、たた雑音
電圧による誀動䜜を無くするためにも、メモリヌ
セルのコンデンサにはできる限り倧きい静電容
量をもたせるこずが必芁である。このためにメモ
リヌセルの平面配眮を工倫しおコンデンサの面積
を最倧限にし、か぀、二酞化シリコン局の厚さ
を最小限に薄くするこずが行われおいる。この方
法による限界をこえ、曎にメモリヌセルの集積床
を向䞊する䞀方法は、転送トランゞスタずコンデ
ンサが同䞀平面䞊にある点を改め、倚局化によ぀
おコンデンサ面積を最倧ずするものであり、たた
他の方法は二酞化シリコンの比誘電率が3.8皋床
ず小さく、埓぀お容量密床が最倧700PFmm2皋床
に止぀おいる珟状に察し、これよりも比誘電率が
倧きい窒化シリコンSi3N4εs〜、曎
に酞化タンタルεs20〜28等を誘電䜓ずす
るこずにより容量密床を増加させるものである。
Since the digit line connects a large number of memory cells, the amount of wiring distribution is large, and in the current 64k-bit MOS RAM, C D /C is about 15 times as large. Even if a sufficient logic level charge corresponding to 1 is stored, the read signal is only about 100 mV. For this reason, the sense amplifier that detects and amplifies this read signal must be highly sensitive. In order to increase this read signal as much as possible, relax the operating conditions of the sense amplifier, and eliminate malfunctions due to noise voltage, it is necessary to provide the capacitor 4 of the memory cell with as large a capacitance as possible. It is. For this purpose, the planar arrangement of the memory cells is devised to maximize the area of the capacitor and to minimize the thickness of the silicon dioxide layer 9. One way to overcome the limitations of this method and further improve the degree of integration of memory cells is to change the point that the transfer transistor and capacitor are on the same plane and maximize the capacitor area by multilayering. Other methods use silicon nitride ( Si 3 N 4 ) (ε s =5 to 7), and by using tantalum oxide (ε s =20 to 28) as a dielectric material, the capacitance density is increased.

タンタルTa、チタンTi、ニオビりム
Nb、ゞルコニりムZr、タングステン
、ハフニりムHf、バナゞりムは、
アルミニりムAlやシリコンSi等ずずもに
皮膜圢成性金属あるいは匁䜜甚金属ずしお知られ
おいる。これらの金属、特にタンタルは、その金
属単䜓で、もしくは合金又は窒玠等ずの化合物の
状態であ぀おも、陜極化成法、熱酞化法等によ぀
お、技術的に遞定された厚さにその酞化物を圢成
するこずができ、圢成された酞化物はアルミニり
ム酞化物等ず比范しお化孊的、物理的に安定性が
優れおおり、コンデンサの誘電䜓ずしお、倧きい
電界匷床に耐え、挏掩電流が少く、比誘電率が倧
きいなどの特長を有しおいる。
Tantalum (Ta), titanium (Ti), niobium (Nb), zirconium (Zr), tungsten (W), hafnium (Hf), vanadium (V) are
Along with aluminum (Al) and silicon (Si), it is known as a film-forming metal or valve metal. These metals, especially tantalum, can be processed to a technically selected thickness by anodization, thermal oxidation, etc., either as a single metal, or in the form of an alloy or a compound with nitrogen, etc. The formed oxide has superior chemical and physical stability compared to aluminum oxide, etc., and can withstand large electric field strengths and reduce leakage current as a dielectric material of capacitors. It has features such as low dielectric constant and high dielectric constant.

薄膜集積回路に実甚化されおいる酞化タンタル
Ta2O5を誘電䜓ずするコンデンサには、酞化タ
ンタル局に接しお積局圢成された二酞化マンガン
MnO2あるいは二酞化鉛PbO2等からなる固
䜓電解質局を有する構造のコンデンサず、䞊蚘固
䜓電解質局を有しない構造のコンデンサずがあ
る。
Capacitors using tantalum oxide (Ta 2 O 5 ) as a dielectric material, which are used in thin-film integrated circuits, contain manganese dioxide (MnO 2 ) or lead dioxide (PbO 2 ), etc., which are laminated in contact with the tantalum oxide layer. There are two types of capacitors: one has a solid electrolyte layer, and the other has no solid electrolyte layer.

固䜓電解質局を有するコンデンサにおいお、こ
の固䜓電解質局たずえば二酞化マンガン局は硝酞
マンガンMnNO32溶液を200−400℃の枩床で
熱分解しお、二酞化マンガンずしお酞化タンタル
局衚面に生成被着せしめたものであ぀お、電極構
成の䞀郚をなすずずもに、酞化タンタル局䞭に絶
瞁砎壊個所を生じた堎合にこれから発生する酞玠
の酞化䜜甚により砎壊個所を回埩させる䜜甚を有
しおいる。この回埩䜜甚がある為に、固䜓電解質
局を有しない構造のコンデンサの堎合に比范しお
酞化タンタル局を薄く100n皋床ずし、容量密
床2000PFmm2皋床たで実甚化されおいる。
In a capacitor having a solid electrolyte layer, this solid electrolyte layer, for example, a manganese dioxide layer, is produced by thermally decomposing a manganese nitrate Mn(NO 3 ) 2 solution at a temperature of 200-400°C and depositing it on the surface of the tantalum oxide layer as manganese dioxide. It forms a part of the electrode structure, and has the function of recovering a dielectric breakdown point in the tantalum oxide layer by the oxidizing action of oxygen generated from the breakdown point. Because of this recovery effect, the tantalum oxide layer is made thinner, about 100 nm, compared to capacitors with a structure that does not have a solid electrolyte layer, and capacitance densities of about 2000 PF/mm 2 have been put into practical use.

これに察し、酞化タンタルを誘電䜓ずし、固䜓
電解質局を有しないコンデンサは、固䜓電解質局
が電極の䞀郚を構成するこずに起因する容量枩床
係数あるいは損倱係数の増倧、又は容量および損
倱の呚波数特性の劣化を解決するこずが可胜であ
るが、安定しお実甚に䟛し埗るのは酞化タンタル
局の厚さ300ないし500n以䞊、埓぀お容量密床
400PFmm2ないし600PFmm2皋床ずされおいる。
On the other hand, capacitors that use tantalum oxide as a dielectric and do not have a solid electrolyte layer have an increase in the capacitance temperature coefficient or loss coefficient, or an increase in the capacitance and loss frequency due to the solid electrolyte layer forming part of the electrode. Although it is possible to solve the problem of deterioration in characteristics, the thickness of the tantalum oxide layer must be 300 to 500 nm or more, and the capacitance density can be stably put into practical use.
It is estimated to be around 400PF/mm 2 to 600PF/mm 2 .

以䞊の二皮の構造を比范するに、容量密床の増
倧の芋地からは、固䜓電解質局を有する酞化タン
タルコンデンサが奜たしいが、固䜓電解質ずしお
慣甚されおいる二酞化マンガンは玄450℃におい
お分解し、酞玠を攟出しお䜎䜍の酞化物ずなり目
的ずした機胜を倱うためにこの皋床以䞊の加熱は
蚱されない。二酞化鉛に぀いおも同様であ぀お半
導䜓集積回路のコンデンサ玠子ずしおはこの構造
は䞍適圓である。
Comparing the above two types of structures, tantalum oxide capacitors having a solid electrolyte layer are preferable from the standpoint of increasing capacity density, but manganese dioxide, which is commonly used as a solid electrolyte, decomposes at about 450°C, and oxygen Heating above this level is not allowed because it releases oxides and becomes a low-level oxide, which loses its intended function. The same applies to lead dioxide, and this structure is inappropriate as a capacitor element for a semiconductor integrated circuit.

たた、薄膜集積回路の酞化タンタルコンデンサ
の倚数の䟋は、酞化されおいないタンタル金属単
量䜓等を残眮しこれを䞀方の電極ずしおいる。こ
の構造は、熱酞化法による堎合、酞化タンタル局
の厚さ制埡に䞍利であり、か぀タンタル金属局の
組織により差異はあるが、酞化タンタル䞭の酞玠
が酞化されおいない金属単䜓等の内郚に熱拡散す
る珟象が200℃皋床以䞊で起り埗るこず、及び埌
続工皋においお高枩に眮かれたずきに、金属タン
タルずシリコンずの界面反応によ぀おタンタル珪
化物を生じお䞍安定悪因ずなり埗るなどの問題を
有する。
Furthermore, in many examples of tantalum oxide capacitors for thin film integrated circuits, an unoxidized tantalum metal monomer or the like is left as one electrode. This structure is disadvantageous in controlling the thickness of the tantalum oxide layer when thermal oxidation is used, and although there are differences depending on the structure of the tantalum metal layer, oxygen in the tantalum oxide is trapped inside the unoxidized metal. Thermal diffusion phenomenon can occur at temperatures above about 200℃, and when exposed to high temperatures in subsequent processes, tantalum silicide may be generated due to the interfacial reaction between metal tantalum and silicon, which may cause instability. have a problem.

以䞊の理由に基づき、タンタル金属等の局及び
固䜓電解質局を有しない酞化タンタルコンデンサ
玠子を蚭けたMOS RAMの実隓䟋を第図に瀺
す。この図においお、倚結晶シリコン局、酞
化タンタル局及び倚結晶シリコン局がコ
ンデンサ玠子を圢成しおいる。本実隓䟋ず類䌌の
構造は、k.Ohta他によりISSCC Dig.of
Technical Papers1980.p.66に報告されおい
る。
Based on the above reasons, FIG. 3 shows an experimental example of a MOS RAM equipped with a tantalum oxide capacitor element that does not have a tantalum metal layer or a solid electrolyte layer. In this figure, a polycrystalline silicon layer 12, a tantalum oxide layer 13, and a polycrystalline silicon layer 14 form a capacitor element. A structure similar to this experimental example was developed by k. Ohta et al. in the ISSCC Dig.
Reported in Technical Papers (1980.p.66).

本文献では誘導䜓ずしお無定圢タンタル酞化膜
を甚いるこずが瀺されおいるが、無定圢酞化タン
タルは高枩に眮れた堎合に結晶化し、以埌圓該局
を通ずる挏掩電流が増倧しお、メモリヌ甚のコン
デンサずしお重芁な電荷の保持特性を著しく劣化
させるず埓来認識されおいた。
This document indicates the use of an amorphous tantalum oxide film as a dielectric, but amorphous tantalum oxide crystallizes when placed at high temperatures, and the leakage current through the layer increases thereafter, making it difficult to use for memory devices. It was previously recognized that this significantly deteriorates the charge retention characteristics that are important for capacitors.

このために、䟋えば絶瞁局の圢成に圓぀お
は通垞900℃皋床以䞊の高枩雰囲気を必芁ずする
CDV法化孊蒞着法を実斜せず、䜎枩で圢成
可胜なプラズマCVD法やスパツタ法等に䟝るな
ど、酞化タンタル局圢成埌は、埓来半導䜓集積回
路に぀いお最適ずされおきた補造方法を、結晶化
を進行させないために䜎枩で実斜可胜な補造方法
に倉曎するこずによる補造原䟡の䞊昇、及び局間
絶瞁局自䜓の特性である耐湿性や段差の緩和胜力
等が高枩圢成のものに比范しお劣぀おいるこず等
が、酞化タンタルを誘電䜓ずするこずによ぀お容
量密床を増倧するに圓぀おの問題点ずされおい
た。
For this reason, for example, when forming the insulating layer 15, a high temperature atmosphere of about 900° C. or higher is usually required.
After forming the tantalum oxide layer, manufacturing methods that have traditionally been considered optimal for semiconductor integrated circuits, such as not using the CDV method (chemical vapor deposition method) but relying on plasma CVD methods or sputtering methods that can be formed at low temperatures, are used. The manufacturing cost increases due to changing the manufacturing method to one that can be carried out at low temperatures in order to prevent the progression of corrosion, and the characteristics of the interlayer insulating layer itself, such as moisture resistance and level difference mitigation ability, are inferior to those formed at high temperatures. This has been considered a problem in increasing the capacitance density by using tantalum oxide as a dielectric material.

本発明は、前蚘の問題点を解決すべく、これを
含む半導䜓装眮の補造工皋においお、1000℃皋床
の高枩凊理に耐え、か぀、容量密床及び挏掩電流
に関しお薄膜集積回路甚に類䌌のコンデンサ以䞊
の性胜を有するコンデンサ玠子及びその補造方法
を埗るこずを目的ずする。
In order to solve the above-mentioned problems, the present invention is designed to withstand high-temperature processing of approximately 1000°C in the manufacturing process of semiconductor devices including the same, and to be superior to similar capacitors for thin film integrated circuits in terms of capacitance density and leakage current. The purpose of the present invention is to obtain a capacitor element with high performance and a method for manufacturing the same.

本発明者は本発明に至る過皋においお、型倚
結晶シリコン局䞊にスパツタ法によりタンタル局
を玄20nの厚さに圢成した埌、玄500℃の也燥
酞玠䞭においお圓該タンタル局を党郚酞化せしめ
お無定圢酞化タンタル局を埗た。これを800℃な
いし1000℃に各30分間加熱した埌に、膜の組成の
深さ方向の倉化をむオンマむクロアナラむザによ
り分析した結果、シリコンが二酞化タンタル領域
内に拡散しおいるこずを芋出した。
In the process leading to the present invention, the inventor formed a tantalum layer with a thickness of about 20 nm on an n-type polycrystalline silicon layer by sputtering, and then completely oxidized the tantalum layer in dry oxygen at about 500°C. An amorphous tantalum oxide layer was obtained. After heating this to 800°C to 1000°C for 30 minutes each, we analyzed changes in the composition of the film in the depth direction using an ion microanalyzer, and found that silicon had diffused into the tantalum dioxide region.

本発明者はこの熱拡散により結晶粒界に移動し
たシリコンを酞化しお、良奜な電気絶瞁材料であ
る二酞化シリコンずするこずにより、挏掩電流を
枛少せしめるこずが可胜であるず刀断し、本発明
を埗た。
The present inventor determined that it is possible to reduce leakage current by oxidizing the silicon that has moved to the grain boundaries due to this thermal diffusion and converting it into silicon dioxide, which is a good electrical insulating material, and has developed the present invention. I got it.

すなわち、本発明は倚結晶シリコン局等に接し
お無定圢酞化タンタル局を圢成埌、これを酞化雰
囲気䞭で無定圢酞化タンタルの結晶化枩床以䞊の
高枩に保ち、酞化タンタルを結晶化するずずも
に、結晶化に䌎぀お生ずる結晶粒界にシリコンを
拡散せしめ、これを酞化するこずにより前蚘結晶
粒界を二酞化シリコンで充填し、挏掩電流の䌝導
路を遮断するものである。
That is, in the present invention, after forming an amorphous tantalum oxide layer in contact with a polycrystalline silicon layer, etc., this is kept at a high temperature higher than the crystallization temperature of the amorphous tantalum oxide in an oxidizing atmosphere, and the tantalum oxide is crystallized. By diffusing silicon into grain boundaries that occur during crystallization and oxidizing them, the grain boundaries are filled with silicon dioxide and the conduction path for leakage current is blocked.

第図およびは本発明によるコンデン
サ玠子の状態を暡型的に瀺す断面図であ぀お、第
図は倚結晶シリコン局䞊に酞化タンタル
局が無定圢状態で圢成されおいる。
4a, b, and c are cross-sectional views schematically showing the state of the capacitor element according to the present invention, and FIG. 4a shows a tantalum oxide layer 17 formed in an amorphous state on a polycrystalline silicon layer 16. ing.

第図は、第図の状態のコンデンサ玠子
を800℃に斌お30分間加熱した状態を瀺し、酞化
タンタルは結晶化し、その結晶粒界にシ
リコンが拡散しおいる。第図は、第図の
状態のコンデンサ玠子を、酞化性雰囲気䞭におい
お1000℃に30分間加熱した状態を瀺し、酞化タン
タルの結晶化は完了し、か぀、結晶粒界は二
酞化シリコンにより充填されおいる。
FIG. 4b shows the state in which the capacitor element in the state shown in FIG. 4a is heated at 800° C. for 30 minutes, and the tantalum oxide 17 is crystallized and silicon is diffused into its crystal grain boundaries 18. FIG. 4c shows the state in which the capacitor element in the state of FIG. Filled with silicon 19.

第図は、前蚘の酞化タンタル局の特性倉化を
瀺す図であり、暪軞に熱凊理枩床が、瞊軞に挏掩
電流及び比誘電率がずられおいる。酞化タンタル
の結晶化は450℃皋床から郚分的に始た぀おいる
が、600℃以䞊においお結晶化が進行し、か぀、
シリコンの熱拡散が掻発に行われお、挏掩電流が
急激に増倧しおいる。なお、結晶化の進行により
比誘電率が増加しおいる。800℃をこえる高枩に
おいおは、前述したごずく、挏掩電流は急激に枛
少し、1000℃においお熱凊理を実斜した結果は、
電界1MVcmにおいお×10-9Acm2以䞋の優れ
た結果を埗おいる。たた、二酞化シリコンの比誘
電率は酞化タンタルの比誘電率より遥に小さい
が、結晶粒界の占める面積が、コンデンサ玠子の
党面積に比范すれば小さいために、コンデンサ玠
子ずしおの比誘電率は20以䞊ず充分な倀を保぀お
いる。この様に本発明により、埓来の無定圢酞化
タンタルに比范しお挏掩電流が遥に少く、比誘電
率は同等に倧きい優れた誘電䜓が埗られた。
FIG. 5 is a diagram showing changes in the characteristics of the tantalum oxide layer, in which the horizontal axis represents the heat treatment temperature, and the vertical axis represents leakage current and dielectric constant. Crystallization of tantalum oxide partially begins at around 450℃, but crystallization progresses above 600℃, and
Thermal diffusion of silicon is active, causing a rapid increase in leakage current. Note that the dielectric constant increases as crystallization progresses. As mentioned above, the leakage current decreases rapidly at high temperatures exceeding 800℃, and the results of heat treatment at 1000℃ show that
Excellent results of less than 5×10 -9 A/cm 2 were obtained at an electric field of 1 MV/cm. Also, the dielectric constant of silicon dioxide is much smaller than that of tantalum oxide, but since the area occupied by the crystal grain boundaries is small compared to the total area of the capacitor element, the dielectric constant as a capacitor element is It maintains a sufficient value of 20 or more. Thus, according to the present invention, an excellent dielectric material with far less leakage current and an equally large dielectric constant compared to conventional amorphous tantalum oxide was obtained.

本発明の方法により凊理された誘電䜓局はコン
デンサ玠子圢成埌、局間絶瞁局の圢成等のため
に、900℃ないし1000℃皋床の高枩に眮かれおも
安定した特性を保ち、挏掩電流の増倧等を瀺さ
ず、二酞化シリコン等ず同等に取扱うこずができ
る。
The dielectric layer treated by the method of the present invention maintains stable characteristics even when placed at high temperatures of about 900°C to 1000°C to form an interlayer insulating layer after forming a capacitor element, and increases leakage current. etc., and can be treated in the same manner as silicon dioxide, etc.

以䞋に本発明を、その䞀実斜䟋に埓い図面を甚
いお説明する。
The present invention will be explained below according to an embodiment thereof using the drawings.

第図は、MOS RAMのメモリヌセルの補造
工皋䞭の状態を瀺す断面図である。呚知の方法に
より、型シリコン基板䞊に゜ヌス又はドレ
むンずなるn+領域及び、二酞化シリコ
ンよりなる絶瞁局を介しお倚結晶シリコンよ
りなるゲヌトを蚭ける。次に、シラン
SiH4の熱分解法等の呚知の方法により、倚結
晶シリコン局を厚さ200n皋床に圢成す
る。この倚結晶シリコン局は目的ずするコン
デンサ玠子の䞀方の電極ずなるものであり、゜ヌ
ス及びドレむン電極の極性ず同じ型にドヌプす
る。
FIG. 6 is a cross-sectional view showing the state of a MOS RAM memory cell during the manufacturing process. By a well-known method, a gate 24 made of polycrystalline silicon is provided on a P-type silicon substrate 20 with n + regions 21 and 22 serving as a source or drain interposed therebetween and an insulating layer 23 made of silicon dioxide. Next, a polycrystalline silicon layer 25 is formed to a thickness of about 200 nm by a well-known method such as silane (SiH 4 ) thermal decomposition method. This polycrystalline silicon layer 25 becomes one electrode of the intended capacitor element, and is doped to have the same n-type polarity as the source and drain electrodes.

第図は前図に続く状態を瀺す断面図である。
たず、倚結晶シリコン局䞊に厚さ20n皋床
のタンタル局を圢成する。このタンタル局の圢成
は、電子ビヌム加熱真空蒞着法でも可胜である
が、スパツタ法により曎に良い結果が埗られる。
次いで、圓該基板を玄500℃の也燥酞玠雰囲気䞭
に玄30分間おき、前蚘タンタル局を党郚酞化せし
めお酞化タンタル局を埗る。この酞化工皋に
おいお、タンタルは酞化され易いために酞化物に
倉化するが、その䞋の局を圢成しおいる倚結
晶シリコンは、少くずも900℃以䞊でないず顕著
には酞化されないので、均䞀性の良い酞化タンタ
ル局を容易に埗るこずが出来る。続いお、圓該基
板を玄1000℃の也燥酞玠雰囲気䞭に玄30分間お
く。この熱凊理により、前述のごずく、酞化タン
タルは結晶化し、結晶化によりお生じた結晶粒界
に倚結晶シリコン局から拡散したシリコンは
酞化されお、結晶粒界は二酞化シリコンを䞻成分
ずする絶瞁物により充填される。
FIG. 7 is a sectional view showing a state following the previous figure.
First, a tantalum layer with a thickness of about 20 nm is formed on the polycrystalline silicon layer 25. This tantalum layer can be formed by electron beam heating vacuum evaporation, but even better results can be obtained by sputtering.
Next, the substrate is placed in a dry oxygen atmosphere at about 500° C. for about 30 minutes to completely oxidize the tantalum layer to obtain the tantalum oxide layer 26. In this oxidation process, tantalum changes into an oxide because it is easily oxidized, but the polycrystalline silicon forming the layer 25 below it is not noticeably oxidized unless it is at least 900°C or higher, so tantalum is not uniform. A tantalum oxide layer with good properties can be easily obtained. Subsequently, the substrate is placed in a dry oxygen atmosphere at about 1000° C. for about 30 minutes. Through this heat treatment, as described above, tantalum oxide is crystallized, and the silicon diffused from the polycrystalline silicon layer 25 to the crystal grain boundaries generated by the crystallization is oxidized, and the crystal grain boundaries are insulated with silicon dioxide as the main component. Filled with things.

熱凊理時間を延長すれば、挏掩電流は枛少する
が、反面においお、倚結晶シリコン局の衚面
の酞化が進行し、コンデンサ玠子の容量密床が枛
少する。
If the heat treatment time is extended, the leakage current will be reduced, but on the other hand, the oxidation of the surface of the polycrystalline silicon layer 25 will progress, and the capacitance density of the capacitor element will be reduced.

第図は前図に続く状態を瀺す断面図である。
結晶化された酞化タンタル局䞊に、䞊偎電極
ずなる倚結晶シリコン局を圢成する。この倚
結晶シリコン局の圢成は、反応枩床900℃繋
床のシランの熱分解法が懞念なく実斜可胜であ
る。続いおホト゚ツチング法によりコンデンサ玠
子ずしおのパタヌン圢成を実斜する。次いで、二
酞化シリコン或いは燐珪酞ガラス以䞋PSGず称
する等よりなる絶瞁局、䞊びにデむゞツト
線ずなるアルミニりム配線局を圢成しお、第
図ず同様の構造ずする。しかしながら、本実斜
䟋は第図に匕甚した公知䟋ず比范したずきに絶
瞁局の構成が異なり、PSG等の半導䜓集積回
路に぀いお最適ずされおいる物質を甚い、高枩凊
理を含む補造方法により䜜成されおいる。
FIG. 8 is a sectional view showing a state following the previous figure.
A polycrystalline silicon layer 27, which will become an upper electrode, is formed on the crystallized tantalum oxide layer 26. This polycrystalline silicon layer 27 can be formed without any concern by a silane thermal decomposition method at a reaction temperature of about 900°C. Subsequently, a pattern as a capacitor element is formed by photoetching. Next, an insulating layer 28 made of silicon dioxide or phosphosilicate glass (hereinafter referred to as PSG), and an aluminum wiring layer 29 serving as a digit line are formed to form a structure similar to that shown in FIG. 3. However, this embodiment differs in the structure of the insulating layer 28 when compared with the known example cited in FIG. has been created.

即ち、本発明の実斜により、1000℃皋床の高枩
を必芁ずする補造方法が実斜可胜ずな぀たため
に、埓来無定圢酞化タンタルの結晶化を進行させ
ないために実斜䞍可胜ずされた、所謂メルト・フ
ロヌ技術のための再熔融に1000℃皋床を必芁ずす
るPSGや、デンシフむケヌシペンに900乃至1000
℃を必芁ずする化孊蒞着法による二酞化シリコン
が掻甚可胜ずな぀たこずによる。この結果、本実
斜䟋のごずく立䜓構造で倧きな段差を生じる構造
においおも、信頌性ある配線局が圢成可胜であ
る。なお、本実斜䟋のコンデンサ玠子の容量密床
は玄5000PFmm2、挏掩電流は玄×10-3AF.V
であ぀お目的を充分に達成しおいる。
That is, by carrying out the present invention, it has become possible to carry out a manufacturing method that requires a high temperature of about 1000°C, so that it is possible to carry out a manufacturing method that requires a high temperature of about 1000°C. PSG, which requires about 1000℃ for remelting for flow technology, and 900 to 1000℃ for densification.
This is due to the fact that it has become possible to utilize silicon dioxide produced by chemical vapor deposition, which requires temperatures at ℃. As a result, a reliable wiring layer can be formed even in a structure in which a large step difference occurs in the three-dimensional structure as in this embodiment. The capacitance density of the capacitor element in this example is approximately 5000PF/mm 2 , and the leakage current is approximately 2×10 -3 A/FV.
and has fully achieved its purpose.

前蚘実斜䟋においおは、酞化タンタルの結晶化
及びシリコンの酞化のための熱凊理の際の雰囲気
を也燥酞玠ずしたが、これを氎蒞気を含んだ加湿
酞玠ずしおも有効である。加湿酞玠雰囲気䞭では
シリコンの酞化が早く、也燥酞玠の堎合に比范し
お、時間を短瞮し、あるいは枩床を䜎䞋しお同等
の結果を埗、枩床、時間が同䞀ならば挏掩電流、
容量密床はずもに䜎䞋する。
In the above embodiments, dry oxygen was used as the atmosphere during the heat treatment for crystallizing tantalum oxide and oxidizing silicon, but it is also effective to use humidified oxygen containing water vapor. Silicon oxidizes quickly in a humidified oxygen atmosphere, so compared to dry oxygen, the same result can be obtained by shortening the time or lowering the temperature, and if the temperature and time are the same, the leakage current,
Capacity density also decreases.

たた、䟋えば窒玠等の非酞化性雰囲気䞭で、或
いはシリコンの酞化が顕著には進たない枩床にお
いお酞化性雰囲気䞭での熱凊理によ぀お、酞化タ
ンタルの結晶化ず酞化タンタル局ぞのシリコン拡
散ずを先行せしめた埌に、前蚘酞化性雰囲気䞭の
熱凊理によ぀おシリコンを酞化せしめおも前蚘実
斜䟋ず同等の結果を埗る。
Furthermore, crystallization of tantalum oxide and silicon diffusion into the tantalum oxide layer can be achieved by heat treatment in a non-oxidizing atmosphere such as nitrogen, or in an oxidizing atmosphere at a temperature at which oxidation of silicon does not proceed significantly. Even if the silicon is oxidized by the heat treatment in the oxidizing atmosphere after the above-mentioned oxidizing atmosphere, the same results as in the above embodiment can be obtained.

たた、酞化タンタル局䞭ぞのシリコン原子の導
入を積極的に行い、酞化タンタルの結晶化過皋で
結晶性の䞍完党な粒界郚分、膜の欠損郚分等にシ
リコン原子が偏析しおくるこずを利甚しこのシリ
コン原子を酞化しおも良い。具䜓的には金属タン
タルを被着させる際にその䞭にシリコンを含有さ
せおおく、もしくはタンタルを酞化したのちむオ
ン泚入法等によ぀おシリコン原子を圓該膜䞭に導
入する等の手段によりこの方法を実斜するこずが
できる。
In addition, we actively introduce silicon atoms into the tantalum oxide layer to prevent silicon atoms from segregating at grain boundaries with incomplete crystallinity, film defects, etc. during the crystallization process of tantalum oxide. This silicon atom may be oxidized using the silicon atom. Specifically, this method involves incorporating silicon into the metal tantalum when depositing it, or by oxidizing the tantalum and then introducing silicon atoms into the film by ion implantation or the like. can be carried out.

次に前蚘実斜䟋においお、コンデンサ玠子の電
極材料を倚結晶シリコンずしたが、䞋偎電極は倚
結晶シリコンに代えお基板の単結晶シリコン、或
いはモリブデンシリサむドMoSi2等の金属珪
化物の局ずしおも䞊蚘実斜䟋ず同様の効果が埗ら
れ、又、䞊偎電極は前蚘材料の他にモリブデン
Mo、金Au等の金属局ずしおもよい。
Next, in the above embodiment, the electrode material of the capacitor element was polycrystalline silicon, but the lower electrode was made of the single crystal silicon of the substrate or a layer of metal silicide such as molybdenum silicide (MoSi 2 ) instead of polycrystalline silicon. However, the same effect as in the above embodiment can be obtained, and the upper electrode may be made of a metal layer such as molybdenum (Mo) or gold (Au) in addition to the above-mentioned materials.

曎に前蚘実斜䟋においお、コンデンサ玠子の誘
電䜓材料を酞化タンタルずしたが、チタン、ニオ
ビりム、ゞルコニりム、タングステン、ハフニり
ム、バナゞりムの酞化物も酞化タンタルず類䌌し
た性質を有し、酞化局の結晶化ず挏掩電流に぀い
お前蚘内容ず同様の珟象があり、本発明を適甚す
るこずが可胜である。
Furthermore, in the above embodiment, tantalum oxide was used as the dielectric material of the capacitor element, but oxides of titanium, niobium, zirconium, tungsten, hafnium, and vanadium also have properties similar to tantalum oxide, and are susceptible to crystallization of the oxide layer. Regarding leakage current, there is a phenomenon similar to that described above, and the present invention can be applied to this phenomenon.

特に酞化チタンTiO2は比誘電率が100皋床
ず極めお倧きい反面、挏掩電流が倚いこずが欠点
ずされおいるので、本発明は非垞に有効な手段ず
なる。
In particular, titanium oxide (TiO 2 ) has a very high dielectric constant of about 100, but has a disadvantage of having a large leakage current, so the present invention is a very effective means.

以䞊の説明で述べた劂く、本発明はタンタル、
チタン等の前蚘金属の酞化物をコンデンサ玠子の
誘電䜓ずし、圓該金属酞化物を酞化性高枩雰囲気
䞭においお結晶化せしめ、結晶化により生ずる結
晶粒界を、これに接する電極より拡散するシリコ
ンの酞化物が充填するこずにより、珟圚半導䜓集
積回路に぀いお奜適ずされる補造方法を掻甚し埗
る1000℃皋床の高枩凊理に耐え、か぀、同皮の金
属酞化物を誘電䜓ずする薄膜集積回路甚コンデン
サの氎準を凌駕する容量密床ず、これに匹敵する
挏掩電流のコンデンサ及びその補造方法を埗たも
のである。本発明は半導䜓集積回路に぀いお実斜
するこずを目的ずしたものではあるが、薄膜集積
回路あるいは個別回路郚品にも適甚し埗るもので
ある。
As stated in the above explanation, the present invention provides tantalum,
An oxide of the metal such as titanium is used as the dielectric of the capacitor element, and the metal oxide is crystallized in an oxidizing high-temperature atmosphere, and the crystal grain boundaries generated by the crystallization are diffused from the electrode in contact with the oxidation of silicon. The level of capacitors for thin-film integrated circuits that can withstand high-temperature processing of around 1000°C by being filled with material and can utilize manufacturing methods that are currently suitable for semiconductor integrated circuits, and that use the same type of metal oxide as a dielectric. The present invention provides a capacitor with a capacitance density exceeding that of the previous one, and a leakage current comparable to that of the previous capacitor, and a method for manufacturing the same. Although the present invention is intended for implementation in semiconductor integrated circuits, it can also be applied to thin film integrated circuits or individual circuit components.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はコンデンサ玠子の実斜䟋であるメモリ
ヌセルの等䟡回路図、第図は埓来のメモリヌセ
ルの構造の䞻芁郚を瀺す断面図、第図は埓来の
技術によるメモリヌセルの䞀実隓䟋の構造を瀺す
断面図、第図の誘電䜓局の状態を瀺
す断面図、第図は本発明の効果の説明に䟛する
ための特性図衚、第図、第図及び第図は本
発明の䞀実斜䟋を瀺す断面図である。   MOSトランゞスタ、  ワヌド線、
  デむゞツト線、  MOSコンデンサ、
  デむゞツト線の分垃容量、  型シリ
コン基板、  n+領域、  反転局、 
 二酞化シリコン局、  倚結晶シリコン
局、  倚結晶シリコン局、  倚結晶
シリコン局、  酞化タンタル局、  
倚結晶シリコン局、  絶瞁局、  倚
結晶シリコン局、  酞化タンタル局、
  結晶粒界、  二酞化シリコン、 
 型シリコン基板、  n+領域、 

n+領域、  絶瞁局、  ゲヌト、
  倚結晶シリコン局、  酞化タンタ
ル局、  倚結晶シリコン局、  絶瞁
局、  配線局。
Figure 1 is an equivalent circuit diagram of a memory cell that is an example of a capacitor element, Figure 2 is a cross-sectional view showing the main parts of the structure of a conventional memory cell, and Figure 3 is an experimental example of a memory cell using conventional technology. FIG. 4 is a cross-sectional view showing the state of the dielectric layers in a, b, and c. FIG. 5 is a characteristic chart for explaining the effects of the present invention. and FIG. 8 are cross-sectional views showing one embodiment of the present invention. 1...MOS transistor, 2...word line,
3...digit wire, 4...MOS capacitor,
5... Distributed capacitance of digit line, 6... P-type silicon substrate, 7... n + region, 8... Inversion layer, 9...
... silicon dioxide layer, 10 ... polycrystalline silicon layer, 11 ... polycrystalline silicon layer, 12 ... polycrystalline silicon layer, 13 ... tantalum oxide layer, 14 ...
Polycrystalline silicon layer, 15... Insulating layer, 16... Polycrystalline silicon layer, 17... Tantalum oxide layer, 18
...Grain boundary, 19...Silicon dioxide, 20...
...P-type silicon substrate, 21...n + region, 22...
...n + region, 23...insulating layer, 24...gate,
25... Polycrystalline silicon layer, 26... Tantalum oxide layer, 27... Polycrystalline silicon layer, 28... Insulating layer, 29... Wiring layer.

Claims (1)

【特蚱請求の範囲】  タンタルTa、チタンTi、ニオビりム
Nb、ゞルコニりムZr、タングステン
、ハフニりムHfもしくはバナゞりム
のうち少くずも䞀皮の金属の酞化物を䞻芁
成分ずしお、電極ずなる導電基䜓もしくは局の䞊
に圢成された膜を誘電䜓局ずするコンデンサにお
いお、前蚘金属酞化物は結晶化され、前蚘誘電䜓
局の結晶粒界に、前蚘電極ずなる導電基䜓もしく
は局、あるいは前蚘金属酞化物䞭から拡散された
シリコンにより圢成されたシリコン酞化物が充填
されおいるこずを特城ずするコンデンサ。  タンタルTa、チタンTi、ニオビりム
Nb、ゞルコニりムZr、タングステン
、ハフニりムHfもしくはバナゞりム
のうちの少くずも䞀皮の金属の酞化物より
なる膜を、電極ずする導電基䜓もしくは局䞊に圢
成しお誘電䜓局ずする工皋を有するコンデンサの
補造方法においお、前蚘金属酞化物を結晶化し、
か぀前蚘電極ずする導電基䜓もしくは局より前蚘
金属酞化物局䞭にシリコンを拡散せしめ、前蚘金
属酞化物局䞭に拡散したシリコンを酞化せしめお
シリコン酞化物ずする工皋を有するこずを特城ず
するコンデンサの補造方法。
[Claims] 1. Oxidation of at least one metal among tantalum (Ta), titanium (Ti), niobium (Nb), zirconium (Zr), tungsten (W), hafnium (Hf), or vanadium (V). In a capacitor in which the dielectric layer is a film formed on a conductive substrate or layer serving as an electrode, the metal oxide is crystallized, and the metal oxide is formed at the grain boundaries of the dielectric layer. A capacitor characterized in that it is filled with a conductive substrate or layer, or a silicon oxide formed of silicon diffused from the metal oxide. 2 A film made of an oxide of at least one metal among tantalum (Ta), titanium (Ti), niobium (Nb), zirconium (Zr), tungsten (W), hafnium (Hf), or vanadium (V). , a method for manufacturing a capacitor comprising the step of forming a dielectric layer on a conductive substrate or layer serving as an electrode, crystallizing the metal oxide,
and a capacitor comprising the step of diffusing silicon into the metal oxide layer from the conductive substrate or layer serving as the electrode, and oxidizing the silicon diffused into the metal oxide layer to form silicon oxide. manufacturing method.
JP56045138A 1981-03-27 1981-03-27 Capacitor and manufacture thereof Granted JPS57167669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56045138A JPS57167669A (en) 1981-03-27 1981-03-27 Capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56045138A JPS57167669A (en) 1981-03-27 1981-03-27 Capacitor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57167669A JPS57167669A (en) 1982-10-15
JPS6262472B2 true JPS6262472B2 (en) 1987-12-26

Family

ID=12710915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56045138A Granted JPS57167669A (en) 1981-03-27 1981-03-27 Capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57167669A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107854A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Capacitor
JPH0656877B2 (en) * 1987-09-10 1994-07-27 シャヌプ株匏䌚瀟 Method for producing tantalum oxide thin film
JP2918835B2 (en) * 1996-02-14 1999-07-12 株匏䌚瀟日立補䜜所 Method for manufacturing semiconductor device
US6777248B1 (en) * 1997-11-10 2004-08-17 Hitachi, Ltd. Dielectric element and manufacturing method therefor
KR100373159B1 (en) * 1999-11-09 2003-02-25 죌식회사 하읎닉슀반도첎 Method of manufacturing a capacitor in a semiconductor device
US7531405B2 (en) 2005-02-28 2009-05-12 Qimonds Ag Method of manufacturing a dielectric layer and corresponding semiconductor device

Also Published As

Publication number Publication date
JPS57167669A (en) 1982-10-15

Similar Documents

Publication Publication Date Title
US7446363B2 (en) Capacitor including a percentage of amorphous dielectric material and a percentage of crystalline dielectric material
US4495219A (en) Process for producing dielectric layers for semiconductor devices
KR100200060B1 (en) Tantal oxide capacitor having high capacitance
US6040594A (en) High permittivity ST thin film and a capacitor for a semiconductor integrated circuit having such a thin film
US6075691A (en) Thin film capacitors and process for making them
US5318920A (en) Method for manufacturing a capacitor having a rough electrode surface
US4959745A (en) Capacitor and method for producing the same
KR930010089B1 (en) Semiconductor device and producting method of the same
JPH0231865B2 (en)
JPS6349906B2 (en)
GB2156586A (en) A semiconductor device with an insulated gate and an adjacent dense insulation layer
JPH04598B2 (en)
JPH06151751A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6262472B2 (en)
JPH0311552B2 (en)
JP3683764B2 (en) Capacitor manufacturing method for memory device
US6833605B2 (en) Method of making a memory cell capacitor with Ta2O5 dielectric
JPH0691219B2 (en) Semiconductor memory device
JPH06232344A (en) Capacitor of semiconductor device
JPH0563157A (en) Semiconductor device
JPS6044823B2 (en) Manufacturing method of semiconductor device
JPH0736438B2 (en) Semiconductor device
KR100249095B1 (en) Process for fabricating low leakage current electrode for titanium oxide films
JPS62219659A (en) Mos type semiconductor memory
US5547891A (en) Structural modification to enhance DRAM gate oxide quality