JPS626164A - Ultrasonic inspection method for recesses corner part and its device - Google Patents

Ultrasonic inspection method for recesses corner part and its device

Info

Publication number
JPS626164A
JPS626164A JP60144783A JP14478385A JPS626164A JP S626164 A JPS626164 A JP S626164A JP 60144783 A JP60144783 A JP 60144783A JP 14478385 A JP14478385 A JP 14478385A JP S626164 A JPS626164 A JP S626164A
Authority
JP
Japan
Prior art keywords
ultrasonic
defect
concave corner
concave
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60144783A
Other languages
Japanese (ja)
Other versions
JPH0679016B2 (en
Inventor
Hisao Okada
久雄 岡田
Soji Sasaki
佐々木 荘二
Junichi Ishii
潤市 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60144783A priority Critical patent/JPH0679016B2/en
Publication of JPS626164A publication Critical patent/JPS626164A/en
Publication of JPH0679016B2 publication Critical patent/JPH0679016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect exactly a crack-shaped detect, etc. existing in a working surface discontinuous part by discriminating an end part echo from the working surface discontinuous part and a reflected wave caused by a detect existing in its part. CONSTITUTION:An ultrasonic transmitter 4 sends out a transversal wave ultrasonic pulse beam as an ultrasonic wave IS to a recessed corner part 3. and an ultrasonic receiver 5 receives a reflected wave R. A control part 8 gives the instruction on a position to a scanning controller 7 of the receiver 5, gives the setting signal of a gate time for inputting a reflected wave corresponding to a position, to a receiver 9, and gives a timing signal to an oscillator 10. A receiving signal e(x) of the receiver 9 is divided by positive and negative of a position (x), an area S+ and S- are calculated by an area calculator 12, an area ratio S+/S- is calculated in a defect deciding device 13, its result is compared with a threshold value Sth and whether a defect exists or not is decided. Its result is outputted to an indicator 14 and a recorder 15. That is to say, from the form of a relative distribution of a receiving signal, an echo is discriminated and a defect is detected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波探索探傷方法および装置に係り、特に被
検体の各部に存在する欠陥を検知するに好適な超音波検
査方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic flaw detection method and apparatus, and more particularly to an ultrasonic inspection method and apparatus suitable for detecting defects present in various parts of an object.

〔発明の背景〕[Background of the invention]

従来の超音波探傷方法では、反射波の有無によって欠陥
の有無を判断してきた。しかしながら、被検体の加工面
が不連続となるようなところ、例えば凹形各部において
は、欠陥が有る場合に反射波が生じることはもちろんの
こと、欠陥が無い場合においても凹形各部から端部えこ
ーが生じ、これにより欠陥が存在しているものと認識す
るという問題があり、当該部分の探傷を超音波で行う上
での大きな壁となっていた。
In conventional ultrasonic flaw detection methods, the presence or absence of defects has been determined based on the presence or absence of reflected waves. However, in places where the machined surface of the object is discontinuous, for example, in each concave part, reflected waves will occur if there is a defect, and even if there is no defect, waves will be reflected from each concave part to the end. There is a problem in that echoes are generated and this causes the recognition that a defect exists, which has been a major obstacle in performing ultrasonic flaw detection on the part concerned.

このような角部の探傷方法としては、例えば、特開昭5
9−141062 号公報に示されるように、反射波の
波形の違いに着目する方法がある。しかしながら、この
ような方法では、被検査部分に角を形成する欠陥がある
か否かを判定できるだけであり、本発明で対象としてい
るような凹形被検体の角部に欠陥があるか否かを判定す
る方法については何ら示されていない。
As a flaw detection method for such corners, for example, Japanese Patent Application Laid-open No. 5
As shown in Japanese Patent No. 9-141062, there is a method that focuses on differences in the waveforms of reflected waves. However, with such a method, it is only possible to determine whether or not there is a defect that forms a corner in the inspected part, and it is only possible to determine whether or not there is a defect in the corner of a concave object to be inspected, which is the object of the present invention. There is no indication of how to determine this.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述のような従来技術に鑑み、加工面
不連続部における欠陥をも検知するに有効な超音波検査
方法および装置を提供することにある。
An object of the present invention is to provide an ultrasonic inspection method and apparatus that are effective in detecting defects even in discontinuous portions of a machined surface in view of the above-mentioned prior art.

〔発明の概要〕[Summary of the invention]

本発明は、加工面不連続部からのエコーの発生状況と、
当該部分にわれ状欠陥が存在する場合におけるエコーの
発生状況との相異点を明らかにしたことに基づいており
、これにより、加工面不連続部からの端部エコーとその
部分に存在する欠陥による反射波とを識別することによ
り、上記加工面不連続部に存在するわれ状欠陥等を確実
に検知するものである。
The present invention deals with the occurrence of echoes from discontinuous parts of the machined surface,
This is based on the clarification of the differences between the echo generation situation when a rib-like defect exists in the part concerned, and by this, the edge echo from the machined surface discontinuity and the defect existing in that part. By distinguishing between the reflected waves and the reflected waves caused by the above-mentioned processing surface, it is possible to reliably detect wrinkle-like defects existing in the discontinuous portion of the machined surface.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の根拠となる凹形角部における超音波
の反射状況を示すものであり、(a)にはその探傷方法
のモデルが、(b)には被検体の凹形角部に欠陥がない
場合の探傷結果が、そして(c)には凹形角部に欠陥が
ある場合の探傷結果が示されているにこで探傷結果は被
検体表面上で受信したエコーの信号レベル分布である。
Figure 1 shows the reflection state of ultrasonic waves at a concave corner, which is the basis of the present invention. (a) shows a model of the flaw detection method, and (b) shows a concave corner of the object. (c) shows the flaw detection result when there is no defect on the concave corner part, and (c) shows the flaw detection result when there is a defect on the concave corner. This is the level distribution.

同図(a)において、加工面2aと2bが凹形角部3で
不連続になっている。このとき、超音波、入射波1.が
凹形角部3に入射する場合において、凹形角部3にわれ
状欠陥6が存在する場合は当然ながらエコーRが生する
。しかし凹形角部にわれ状欠陥6が存在しない場合にお
いても、凹形角部の先端からいわゆる端部エコーRが生
ずることになり、凹形角部3に存在する欠陥を検知する
に当っての障害となる。
In the same figure (a), machined surfaces 2a and 2b are discontinuous at a concave corner 3. At this time, ultrasonic waves, incident waves 1. When the beam is incident on the concave corner 3, if there is a crack-like defect 6 in the concave corner 3, an echo R will naturally occur. However, even if there is no crack-like defect 6 in the concave corner, a so-called end echo R will occur from the tip of the concave corner. becomes an obstacle.

いま、探触子4から入射波工、とじて横波超音波を凹形
角部3に入射させた場合、凹形角部3からの端部エコー
は広い指向角度範囲にわたっていることを実験的に明ら
かにした。そのため探触子5で被検体表面la上の多数
の位置で凹形角部3からの反射波Rを受信した場合の受
信信号レベルの分布は同図(b)のように凹形角部3−
の真上Oの位置を中心としてほぼ対称な形になる。しか
しながら凹形角部3に加工面2aにほぼ垂直なわれ状欠
陥が存在する場合には、探触子5で被検体表面la上の
多数の位置で反射波Rを受信した場合の受信信号レベル
の分布は同図(c)のように凹形角部3の真上0を中心
としてかなり非対称な形になる0本発明は上述のように
、凹形角部での垂直われ状欠陥の存在によって被検体表
面上での受信信号レベルの分布形態が異なることを利用
して凹形角部を有する被検体の欠陥を検知するものであ
る。
Now, when a transverse wave ultrasonic wave is input from the probe 4 into the concave corner 3, it has been experimentally shown that the end echo from the concave corner 3 covers a wide directivity angle range. revealed. Therefore, when the probe 5 receives reflected waves R from the concave corner 3 at many positions on the surface la of the object, the distribution of received signal levels is as shown in FIG. −
The shape is almost symmetrical about the position O directly above the center. However, if there is a trap-like defect in the concave corner 3 that is almost perpendicular to the machined surface 2a, the received signal level when the probe 5 receives reflected waves R at multiple positions on the object surface la As shown in FIG. 3(c), the distribution of This method detects a defect in an object having a concave corner by utilizing the difference in the distribution form of the received signal level on the surface of the object.

次に信号レベル分布形態から欠陥の有無を判断する本発
明になる検査方法の原理について説明する。第1図(b
)において凹形角部3に欠陥が無い場合にはy軸を境に
してグラフの右側の面積S。
Next, the principle of the inspection method according to the present invention for determining the presence or absence of a defect from the signal level distribution form will be explained. Figure 1 (b
), if there is no defect in the concave corner 3, the area S on the right side of the graph with the y-axis as the border.

と左側の面積S。and the area S on the left.

がほぼ等しい、一方、凹形角部3に欠陥が存在している
場合には、第2図(c)に示すように、右側の面積S、
は左側の面積S−に比べてはるかに大きくなる。よって
、S、とS、の比S、=Sや/iを調べて、S、%1 
 ならば反射波は凹形角部3からの端部エコーであり、
欠陥は無しと判定し、S、〉〉1ならば反射波は欠陥か
らのエコーであり、欠陥有りと判定できるのである。そ
して実際には1よりやや大きなしきい値S0を設定して
、S、<S、にならば欠陥無し、S?≧Soならば欠陥
有りと判定する0以上に示したように、本発明では受信
信号の絶対値ではなく、その相対的な分布の形態からエ
コーを区別し、欠陥を検知するのである。
On the other hand, if there is a defect in the concave corner 3, as shown in FIG. 2(c), the area S on the right side,
is much larger than the area S- on the left side. Therefore, by examining the ratio S,=S and /i of S, and S, S,%1
Then, the reflected wave is an end echo from the concave corner 3,
It is determined that there is no defect, and if S,〉〉1, the reflected wave is an echo from the defect, and it can be determined that there is a defect. In reality, we set a threshold value S0 slightly larger than 1, and if S, < S, there is no defect, S? If ≧So, it is determined that there is a defect. 0 or more As shown above, in the present invention, defects are detected by distinguishing echoes not from the absolute value of the received signal but from the form of its relative distribution.

次に1本発明になる検査方法を具体的に実施するための
検査装置の一実施例を第2図によって説明する。4は横
波超音波パルスビームを検査対象としている凹形角部3
に向けて超音波工、送出する超音波送波子であり、5は
凹形角部3からの反射波Rを受信する超音波受波子であ
り、7は上記受波子5を被検体1の表面で走査するため
の走査制御器である。8は走査制御器7に走査位置の指
示を与え、受信器9に走査位置に応じた反射波を取り込
むゲート時間の設定信号を与え、さらに発振器10に超
音波発振のタイミング信号を与える制御部である。11
は上記制御部8からの位置情報又と、受信器9により検
出された反射波の受信信号レベルe (x)を取り込み
、それらを焦!Xの正負で分けて面積計算器12へ送る
0面積算器12では前述した面積S、とS−をそれぞれ
面積計算器12a、12bにより計算し、その結果を欠
陥判定器13へ送る。この欠陥判定器では、面積比Sや
/S−を計算し、その結果をしきい値S□と比較して、
前述した判定方法で欠陥の有無を判定する。その結果は
表示器14及び記録1115に出力する。
Next, an embodiment of an inspection apparatus for concretely carrying out the inspection method according to the present invention will be described with reference to FIG. 4 is a concave corner portion 3 that is inspected by a transverse ultrasonic pulse beam.
5 is an ultrasonic wave receiver that receives the reflected wave R from the concave corner 3, and 7 is an ultrasonic wave receiver that transmits the ultrasonic waves toward This is a scan controller for scanning. Reference numeral 8 denotes a control unit which gives an instruction of the scanning position to the scanning controller 7, gives a setting signal for a gate time for capturing reflected waves according to the scanning position to the receiver 9, and also gives a timing signal for ultrasonic oscillation to the oscillator 10. be. 11
takes in the position information from the control section 8 and the received signal level e(x) of the reflected wave detected by the receiver 9, and converts them into a focus! The area calculator 12 calculates the aforementioned areas S and S- by the area calculators 12a and 12b, respectively, and sends the results to the defect determiner 13. This defect determiner calculates the area ratio S and /S-, compares the results with the threshold value S□,
The presence or absence of a defect is determined using the determination method described above. The results are output to the display 14 and record 1115.

このとき、受波子5は、検査対象とする凹形角部3から
到来する縦波もしくは横波に対して感度を有するものと
する。また、その場合において。
At this time, it is assumed that the wave receiver 5 is sensitive to longitudinal waves or transverse waves arriving from the concave corner portion 3 to be inspected. Also, in that case.

受波子5は走査されるので1位置によって反射波の受信
角が異なり、受波子5の出力には受波子5の指向性の影
響が出る。そのため、特定の方向に指向性を有する受波
子、例えば縦波を受信する場合には垂直探触子、横波を
受信する場合にはY−01,探触子を使った場合には、
第1図に示す受信信号レベルの分布形態は受波子の指向
性の影響が大きく作用してしまい1反射波自身の指向性
による形態への影響が小さくなって、評価を難しくする
。・このため、受波子としてはその出力が反射波の指向
性に対応するような指向性が広いものを用いることが好
ましい。
Since the wave receiver 5 is scanned, the reception angle of the reflected wave differs depending on one position, and the output of the wave receiver 5 is influenced by the directivity of the wave receiver 5. Therefore, if you use a wave receiver with directivity in a specific direction, for example, a vertical probe to receive longitudinal waves, or a Y-01 probe to receive transverse waves,
The received signal level distribution form shown in FIG. 1 is greatly influenced by the directivity of the wave receiver, and the directivity of one reflected wave itself has little influence on the form, making evaluation difficult. - For this reason, it is preferable to use a wave receiver with wide directivity so that its output corresponds to the directivity of the reflected wave.

以上に説明したように、本発明によれば、凹形角部から
の端部エコーと凹形角部に存在するわれ状欠陥によるエ
コーとが区別され、凹形角部の欠陥の検出を的確に行う
ことができ、検査の信頼性を高めることができる。
As described above, according to the present invention, edge echoes from concave corners and echoes due to rib-like defects present in concave corners are distinguished, and defects in concave corners can be accurately detected. The reliability of the test can be increased.

以上に述べた実施例は本発明による検査方法を実現する
ための一手段として装置を構成したものであり1本発明
の発明思想が利用される限り、必ずしもこれに限定され
るものではない、つまり、上述の実施例では被検体の表
面上の多数の位置で反射波を受信するために1つの受波
子を機械的に走査しているが、第3図に示すように複数
の受波子を被検体表面上に多数配置し、それらを電子的
に切換えて走査してもよい。さらに最も簡単に本発明の
効果を奏する方法としては、第4図に示すように受信位
置を受信信号レベルが無欠陥の場合にほぼ同じになるよ
うな被検体の凹形角部3をはさむ2つの位置に設定する
ことによって、2つの受信位置での受信信号レベルの比
から欠陥エコーと端部エコーとを区別でき、凹形角部3
の欠陥の脊部を簡単に検知できる。特にこの場合には、
第2図に示す走査制御器7Rや制御部8等の装置が不要
であり、また参照番号11,12.13で示される装置
は1つにまとめて単に2つの信号レベルを比べて欠陥の
有無を判定する装置とすればよく、装置の簡単化や低・
価格化が可能となる。
The embodiments described above constitute an apparatus as one means for realizing the inspection method according to the present invention, and as long as the inventive idea of the present invention is utilized, it is not necessarily limited to this. In the above embodiment, one wave receiver is mechanically scanned in order to receive reflected waves at many positions on the surface of the object, but as shown in FIG. A large number of them may be placed on the surface of the specimen and scanned by electronically switching between them. Furthermore, the simplest method for achieving the effects of the present invention is to set the receiving position between two concave corners 3 of the object such that the received signal level is almost the same when there is no defect, as shown in FIG. By setting the two positions, defective echoes and edge echoes can be distinguished from the ratio of the received signal levels at the two receiving positions.
The spine of the defect can be easily detected. Especially in this case,
Devices such as the scanning controller 7R and the control unit 8 shown in FIG. 2 are not required, and the devices indicated by reference numbers 11, 12, and 13 are integrated into one and simply compare the two signal levels to determine whether there is a defect. It suffices to use a device that determines the
Pricing becomes possible.

以上に説明した実施例では反射波の分布形態を演算によ
って判別し、これにより欠陥の有無を判定して表示装置
にその結判を表示するものであったにのため、この方法
では演算が必要であるが。
In the embodiment described above, the distribution form of the reflected waves is determined by calculation, the presence or absence of a defect is determined based on this, and the result is displayed on the display device, so this method requires calculation. In Although.

しかし1反射波の指向性を的確にとらえるようにするこ
とにより上記の様な演算が不要となる。この根拠となる
検査結果を第5図に示す、凹形角部に欠陥が無い場合に
は1反射波の指向性はほぼ等方的であるため、第5図(
a)に示すように表面での反射波の受信信号レベルはな
だらかな分布となり、凹形角部のほぼ真上の位置で最大
値をとる。
However, by accurately capturing the directivity of one reflected wave, the above calculation becomes unnecessary. The inspection results that serve as the basis for this are shown in Figure 5.If there is no defect in the concave corner, the directivity of one reflected wave is almost isotropic, so Figure 5 (
As shown in a), the received signal level of the reflected wave on the surface has a gentle distribution, and reaches its maximum value almost directly above the concave corner.

一方、凹形角部に欠陥がある場合には、第5図(b)に
示すように、凹形角部の真上の位置よりずれたところで
最大値をとる。この位置は受信する波の種類と反射源の
形状から理論的に予測できる位置であり、この位置付近
に受信信号の最大値があることを検知することにより欠
陥の有無を判定することもできる。
On the other hand, if there is a defect in the concave corner, the maximum value is taken at a position shifted from the position directly above the concave corner, as shown in FIG. 5(b). This position can be predicted theoretically from the type of received wave and the shape of the reflection source, and the presence or absence of a defect can be determined by detecting that the maximum value of the received signal is near this position.

第6図は上述の方法を実現した装置構成である。FIG. 6 shows the configuration of an apparatus that implements the above method.

この装置において特徴的な構成は参照番号19で示すn
個の受信モジュールである。この受信モジュールは隣接
するモジュール間が接続されており、その内部構成は第
7図に示すものである。5は凹形角部からの反射波を効
率良く受信できるよう屈折角を調整した受波子、9は受
信器であり反射波を取り込むゲート時間が前もって特定
されており、タイミング信号の同期して受波子5の出力
を取り込む、14は表示器、20はこのモジュールの受
信信号レベルが最大値であるか否かを判定する判定器で
ある。このような装置を使用して欠陥の有無の判定の方
法を次の詳細に説明する。に番目のモジュールの着目し
たとき、このモジュールの受信信号レベルをe (k)
としたとき、e (k)が最大値であった場合には、k
−1番目とに+1番目モジュールの受信号レベルをe(
k−1)。
The characteristic configuration of this device is indicated by the reference number 19.
receiving module. Adjacent modules are connected to each other in this receiving module, and its internal configuration is shown in FIG. 5 is a wave receiver whose refraction angle is adjusted to efficiently receive the reflected wave from the concave corner, and 9 is a receiver whose gate time for capturing the reflected wave is specified in advance, and is received in synchronization with a timing signal. Reference numeral 14 is a display device that takes in the output of the wave child 5, and 20 is a determiner that determines whether or not the received signal level of this module is at the maximum value. A method for determining the presence or absence of a defect using such an apparatus will be described in detail below. When we focus on the th module, let the received signal level of this module be e (k)
If e (k) is the maximum value, then k
-1st and +1st module received signal level e(
k-1).

e (k+1)としたとき次の関係がある。When e (k+1), the following relationship exists.

e (k)≧e (k −1)      −−(3)
a (k)≦e (k + 1 )      −・=
(4)つまり、この式で示される関係が成立すれば、モ
ジュールにの受信信号レベルe (k)は最大値であり
得るわけである。そこでこの式で示される関係が成立す
るか否かを判定器20で判定し、成立した場合には表示
器14に表示する。この表示器は単に関係の成立または
不成立を表示するだけで十分なので発光ダイオード等を
用いれば十分である。ただしこの方法で問題となり得る
のは、関係が成立した場合でも最大値ではなく極大値に
なる場合があることである。しかし、このような問題も
、表示器に信号レベル自体の大きさをも含めて光の強度
等で表すようにすれば解決できる。
e (k)≧e (k −1) --(3)
a (k)≦e (k + 1) −・=
(4) In other words, if the relationship expressed by this equation holds true, the received signal level e (k) to the module can be at its maximum value. Therefore, the determiner 20 determines whether or not the relationship expressed by this formula holds true, and if the relationship holds true, it is displayed on the display 14. Since it is sufficient for this indicator to simply indicate whether the relationship is established or not, it is sufficient to use a light emitting diode or the like. However, a problem with this method is that even if the relationship is established, the value may not be the maximum value but a local maximum value. However, such a problem can be solved if the display includes the magnitude of the signal level itself and is expressed by the intensity of light or the like.

以上に説明したように、上述の実施例では、複雑な演算
が不要であり、簡単な装置を用いて実時間(リアルタイ
ム)で高速に凹形角部の欠陥の検出を的確に行うことが
できる。
As explained above, the above embodiment does not require complicated calculations, and can accurately detect defects in concave corners at high speed in real time using a simple device. .

〔発明の効果〕〔Effect of the invention〕

以上に述べたように2本発明になる超音波検査方法およ
び装置によれば、従来の方法では角部からの端部エコー
の発生によって欠陥の有無が的確に検知することが困難
であった角部に発生する欠陥、特にわれ状欠陥を確実に
検知することが可能となり、これによりより優れた検出
性能を有する検査装置及び方法を提供できる。
As described above, according to the ultrasonic inspection method and apparatus of the present invention, it is possible to detect corners where it was difficult to accurately detect the presence or absence of defects due to the generation of edge echoes from the corners in the conventional method. This makes it possible to reliably detect defects occurring in the parts, especially wrinkle defects, thereby providing an inspection apparatus and method with superior detection performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1(a)〜(c)図は本発明の基本となる角部の検査
方法と本発明の根拠となる受信信号の分布形態を示す図
、第2図は本発明になる検査装置の一実施警の説明図、
第3図および第4図は本発明の他の実施例の構成を示す
図、第5(a−)。 (b)図は本発明による他の実施例における検査方法の
根拠を示す図、第6図は第5図を根拠とする検査装置の
実施例の構成を示す図、第7図は第6図の実施例で用い
る受信モジュールの構成を示す図。 1・・・被検体、2・・・加工面、3・・・角部、4・
・・超音波送波子、5・・・超音波受波子、6・・・わ
れ状欠陥、粥1図 荊5図 (α)りこw!41翠1
Figures 1 (a) to (c) are diagrams showing the corner inspection method that is the basis of the present invention and the distribution form of the received signal that is the basis of the present invention, and Figure 2 is an example of the inspection apparatus that is the present invention. Explanatory diagram of the enforcement police,
FIGS. 3 and 4 are diagrams showing the configuration of another embodiment of the present invention, and FIG. 5(a-). (b) is a diagram showing the basis of the inspection method in another embodiment of the present invention, FIG. 6 is a diagram showing the configuration of an embodiment of the inspection device based on FIG. 5, and FIG. 7 is the diagram shown in FIG. The figure which shows the structure of the receiving module used in the Example. 1... Subject, 2... Processed surface, 3... Corner, 4...
...Ultrasonic wave transmitter, 5...Ultrasonic wave receiver, 6...Cracked defect, porridge 1 figure 荊5 figure (α) Riko lol! 41 Midori 1

Claims (1)

【特許請求の範囲】 1、凹形角部を有する被検体の表面上の1つの位置に超
音波送波子を設け、該凹形角部に向つて超音波を入射さ
せ、被検体の表面上の複数点で該凹形角部からの反射波
を受信し、その受信信号レベルの被検体表面上での分布
形態より上記凹形角部での欠陥の有無を検知することを
特徴とする凹形角部と超音波検査方法。 2、特許請求の範囲第1項の凹形角部の超音波検査方法
において、前記受信反射波の受信信号レベルの被検体表
面上での分布が、上記凹形角部を中心として左右対称か
否かを判別し、上記判別結果が非対称となる場合の欠陥
が有ると判断することを特徴とする凹形角部の超音波検
査方法。 3、特許請求の範囲第1項の凹形角部の超音波検査方法
において、前記受信反射波の受信信号レベルの最大値が
被検体表面上の上記凹形角部の位置に存在するか否かを
判別し、上記判別により最大値が上記凹形角部位置から
外れている場合に欠陥が有ると判断することを特徴とす
る凹形角部の超音波検査方法。 4、凹形角部を有する被検体の表面上に位置され、上記
被検体の凹形角部に向つて超音波を入射させる超音波送
波子と、上記被検体の表面上の複数の点から反射波を受
信する超音波受信子と、上記超音波受信子からの受信信
号レベルの被検体表面上での分布形態により上記凹形角
部での欠陥の有無を判断する手段とから成る凹形角部の
超音波検査装置。 5、特許請求の範囲第4項の凹形角部の超音波検査装置
において、前記欠陥判断手段は、前記受信子からの受信
信号レベルの被検体表面上での分布を上記凹形角部を中
心として左右各々に演算する手段と、上記演算手段から
の演算結果を比較することにより欠陥の有無を判別する
手段とを有する。 6、特許請求の範囲第5項の凹形角部の超音波検査装置
において、上記演算手段は積分器から構成されている。 7、特許請求の範囲第4項の凹形角部の超音波検査装置
において、前記欠陥判断手段は、前記受信子からの受信
信号レベルの最大値を検出する手段と、被検体表面上で
前記最大値レベルを受信した位置を求める手段と、上記
最大値レベル受信位置が被検体の前記凹形角部の位置に
あるか否かを判断する手段を有する凹形角部の超音波検
査装置。 8、特許請求の範囲第4項の凹形角部の超音波検査装置
において、前記超音波受信子は走査手段により前記被検
体表面上を走査される凹形角部の超音波検査装置。 9、特許請求の範囲第4項の凹形角部の超音波検査装置
において、前記超音波受信子は前記被検体表面上に配置
される複数の超音波受信子から成る凹形角部の超音波検
査装置。
[Scope of Claims] 1. An ultrasonic wave transmitter is provided at one position on the surface of the object having a concave corner, and ultrasonic waves are incident on the surface of the object to be detected toward the concave corner. A recess characterized in that the reflected waves from the recessed corner are received at a plurality of points, and the presence or absence of a defect at the recessed corner is detected from the distribution form of the received signal level on the surface of the object. Shaped corners and ultrasonic inspection methods. 2. In the method for ultrasonic inspection of a concave corner according to claim 1, the distribution of the received signal level of the received reflected wave on the surface of the subject is symmetrical about the concave corner. 1. An ultrasonic inspection method for a concave corner portion, characterized in that it is determined that there is a defect if the determination result is asymmetric. 3. In the ultrasonic inspection method for a concave corner according to claim 1, whether or not the maximum value of the received signal level of the received reflected wave exists at the position of the concave corner on the surface of the subject. A method for ultrasonic inspection of a concave corner, characterized in that it is determined that there is a defect if the maximum value is out of the position of the concave corner. 4. An ultrasonic wave transmitter that is positioned on the surface of the object having a concave corner and injects ultrasonic waves toward the concave corner of the object, and from a plurality of points on the surface of the object. A concave shape comprising an ultrasonic receiver for receiving reflected waves, and means for determining the presence or absence of a defect at the concave corner based on the distribution form of the received signal level from the ultrasonic receiver on the surface of the object to be inspected. Ultrasonic inspection device for corners. 5. In the ultrasonic inspection apparatus for concave corners as set forth in claim 4, the defect determining means determines the distribution of the level of the received signal from the receiver on the surface of the object to be inspected for the concave corners. It has means for performing calculations on the left and right sides of the center, and means for determining the presence or absence of a defect by comparing the calculation results from the calculation means. 6. In the ultrasonic inspection apparatus for concave corner parts as set forth in claim 5, the calculation means comprises an integrator. 7. In the ultrasonic inspection apparatus for concave corners according to claim 4, the defect determination means includes means for detecting the maximum value of the received signal level from the receiver, and An ultrasonic inspection apparatus for a concave corner, comprising means for determining a position at which a maximum level is received, and means for determining whether the maximum level reception position is at the position of the concave corner of a subject. 8. An ultrasonic inspection apparatus for a concave corner according to claim 4, wherein the ultrasonic receiver is scanned over the surface of the subject by a scanning means. 9. In the ultrasonic inspection apparatus for a concave corner according to claim 4, the ultrasonic receiver comprises a plurality of ultrasonic receivers disposed on the surface of the subject. Sonic testing equipment.
JP60144783A 1985-07-03 1985-07-03 Method and apparatus for ultrasonic inspection of concave corners Expired - Lifetime JPH0679016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60144783A JPH0679016B2 (en) 1985-07-03 1985-07-03 Method and apparatus for ultrasonic inspection of concave corners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60144783A JPH0679016B2 (en) 1985-07-03 1985-07-03 Method and apparatus for ultrasonic inspection of concave corners

Publications (2)

Publication Number Publication Date
JPS626164A true JPS626164A (en) 1987-01-13
JPH0679016B2 JPH0679016B2 (en) 1994-10-05

Family

ID=15370335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144783A Expired - Lifetime JPH0679016B2 (en) 1985-07-03 1985-07-03 Method and apparatus for ultrasonic inspection of concave corners

Country Status (1)

Country Link
JP (1) JPH0679016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360462B2 (en) * 2002-05-08 2008-04-22 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe
CN104500136A (en) * 2015-01-06 2015-04-08 中国矿业大学 Local ground stress distribution characteristic fine detection method
JP2019049503A (en) * 2017-09-12 2019-03-28 株式会社Kjtd Ultrasonic flaw detection method of axle, and system thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122944A (en) * 1982-12-28 1984-07-16 Toshiba Corp Probe and ultrasonic wave flaw detecting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122944A (en) * 1982-12-28 1984-07-16 Toshiba Corp Probe and ultrasonic wave flaw detecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360462B2 (en) * 2002-05-08 2008-04-22 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe
CN104500136A (en) * 2015-01-06 2015-04-08 中国矿业大学 Local ground stress distribution characteristic fine detection method
JP2019049503A (en) * 2017-09-12 2019-03-28 株式会社Kjtd Ultrasonic flaw detection method of axle, and system thereof

Also Published As

Publication number Publication date
JPH0679016B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US6092420A (en) Ultrasonic flaw detector apparatus and ultrasonic flaw-detection method
JPH01248053A (en) Ultrasonic measuring method and apparatus
KR101942792B1 (en) Steel material quality evaluation method and quality evaluation device
JPS626164A (en) Ultrasonic inspection method for recesses corner part and its device
JP2002243703A (en) Ultrasonic flaw detector
JP4672441B2 (en) Ultrasonic flaw detection method and flaw detection apparatus
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JPS61160053A (en) Ultrasonic flaw detection test
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JP3637146B2 (en) Method and apparatus for determining wounds to be inspected
JP2001324485A (en) Ultrasonic flaw detection result display method and ultrasonic flaw detector
JP4500391B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JP2007292554A (en) Ultrasonic flaw inspection system
JP3473435B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPS61266907A (en) Detector for surface condition
JPH09229910A (en) Method for ultrasonic angle beam flaw detection
GB2104219A (en) Measuring sizes by means of ultrasonic waves
JPH0545346A (en) Ultrasonic probe
JPH04348276A (en) Method and apparatus for inspecting soldered part
JP2001249119A (en) Image display method for ultrasonic flaw detection and image display apparatus therefor
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP3379166B2 (en) Ultrasound spectrum microscope
JPH06258302A (en) Ultrasonic flaw-detection apparatus