JPS626158B2 - - Google Patents

Info

Publication number
JPS626158B2
JPS626158B2 JP57222379A JP22237982A JPS626158B2 JP S626158 B2 JPS626158 B2 JP S626158B2 JP 57222379 A JP57222379 A JP 57222379A JP 22237982 A JP22237982 A JP 22237982A JP S626158 B2 JPS626158 B2 JP S626158B2
Authority
JP
Japan
Prior art keywords
groove
shaft
hole
bearing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57222379A
Other languages
Japanese (ja)
Other versions
JPS59113314A (en
Inventor
Takafumi Asada
Katsu Kishimoto
Tadayoshi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22237982A priority Critical patent/JPS59113314A/en
Publication of JPS59113314A publication Critical patent/JPS59113314A/en
Publication of JPS626158B2 publication Critical patent/JPS626158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は軸の外周に設けられたグルーブで、ラ
ジアル方向およびスラスト方向軸受を兼用する動
圧型流体軸受装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hydrodynamic bearing device in which a groove provided on the outer periphery of a shaft serves as both a radial direction and a thrust direction bearing.

従来例の構成とその問題点 従来の動圧型流体軸受装置は第1図に具体構成
を示すように、軸受穴2Aを有するスリーブ2
に、エツチング等により加工されたグルーブ1
A,1Bを有する軸1が回転自在に挿入され、ス
リーブ2の下端面2Bは、軸受穴2Aに直角に加
工され、そこにスラスト受け部材3が固定されて
いる。グルーブ1Aおよびグルーブ1Bの周辺一
体にはオイルまたはグリースの潤滑剤4を注油し
ている。2Cは2ケ所のグルーブの間にある空気
を大気に開放し、低圧において、この空気が膨張
してグルーブ2Aの潤滑剤を外部に押し出してし
まうことを防止するための通気孔である。2Dは
フランジである。
Structure of a conventional example and its problems As shown in FIG. 1, a conventional hydrodynamic bearing device has a sleeve 2 having a bearing hole 2A.
Groove 1 processed by etching etc.
A shaft 1 having A and 1B is rotatably inserted, a lower end surface 2B of the sleeve 2 is machined perpendicularly to the bearing hole 2A, and a thrust receiving member 3 is fixed thereto. A lubricant 4 such as oil or grease is applied around the grooves 1A and 1B. 2C is a vent hole for opening the air between the two grooves to the atmosphere and preventing this air from expanding at low pressure and pushing out the lubricant in the groove 2A to the outside. 2D is a flange.

従来のこの動圧型流体軸受装置においては軸ま
たはスリーブが図示しないモーター等により回転
させられると、グルーブ1A,1Bのポンピング
作用により油膜圧力を発生し、無接触で回転す
る。尚、この時1AのグルーブではP1a―P1
―P1bのような、また2BのグルーブではP2
a―P2のような圧力分布になり、この発生圧力
が軸1の下端面とスラスト受け部材3との間にも
伝わりこの圧力P3a,P3bによりスラスト方
向にQ1の力が発生し、軸1は図中C1だけ浮上
をする。従つてグルーブ1Bはラジアルおよびス
ラスト方向の両方の力を発生する動圧型流体軸受
である。軸1の回転中、潤滑剤4は軸1に設けら
れた絞り孔1Cと排出孔1Dを通つて循環する。
しかしながら上記のような構成ではスリーブの下
端面2Bとスラスト受け部材3の接合部において
回転中に圧力が高くなり(圧力:P=P2=P
3)となり接合部から潤滑油が時間と共に漏洩
し、油切れが生じて焼付くことがあつた。また従
来の動圧型流体軸受を構置き姿勢にして使用した
場合には排出孔1Dから排出した潤滑油がグルー
ブ1Bの方へは循環せず、通気孔2Cから流出
し、やはり油切れが生じるという重大な欠点を有
していた。
In this conventional hydrodynamic bearing device, when the shaft or sleeve is rotated by a motor (not shown) or the like, an oil film pressure is generated by the pumping action of the grooves 1A, 1B, and the shaft or sleeve rotates without contact. At this time, in the 1A groove, P1a-P1
- P2 in grooves like P1b and 2B.
The pressure distribution becomes like a-P2, and this generated pressure is also transmitted between the lower end surface of the shaft 1 and the thrust receiving member 3, and the force Q1 is generated in the thrust direction by these pressures P3a and P3b, and the shaft 1 In the figure, only C1 floats up. Therefore, the groove 1B is a hydrodynamic bearing that generates forces in both radial and thrust directions. During rotation of the shaft 1, the lubricant 4 circulates through the throttle hole 1C and the discharge hole 1D provided in the shaft 1.
However, in the above configuration, pressure increases during rotation at the joint between the lower end surface 2B of the sleeve and the thrust receiving member 3 (pressure: P=P2=P
3) The lubricating oil leaked from the joint over time, causing oil depletion and seizing. Furthermore, when a conventional hydrodynamic bearing is used in a parked position, the lubricating oil discharged from the discharge hole 1D does not circulate toward the groove 1B, but flows out from the ventilation hole 2C, resulting in oil shortage. It had serious drawbacks.

発明の目的 本発明は上記欠点に鑑み、潤滑剤の漏洩がな
く、構置き姿勢でも使用できる信頼性の高いラジ
アル方向およびスラスト方向を兼用する動圧型流
体軸受装置を提供するものである。
OBJECTS OF THE INVENTION In view of the above drawbacks, the present invention provides a highly reliable hydrodynamic bearing device that can be used in both the radial and thrust directions without lubricant leakage and can be used even in a parked position.

発明の構成 本発明は、軸受穴を有するスリーブと、この軸
受穴に回転自在に挿入された軸と、前記スリーブ
端面に固定され、前記下端面と当接するスラスト
受け部材からなり、前記軸にはヘリングボーン型
グルーブとそのグルーブの中央に潤滑剤の導入孔
と、その導入孔の周辺に切溝と、切溝の周辺にグ
ルーブを有しない絞り部と、前記導入孔から前記
下端面の中央に連通する給油孔を有し、前記ヘリ
ングボーン型グルーブ周辺に潤滑剤を配してな
り、潤滑剤の漏洩がなく信頼性の高い動圧型軸受
装置が得られる。
Structure of the Invention The present invention includes a sleeve having a bearing hole, a shaft rotatably inserted into the bearing hole, and a thrust receiving member fixed to the end surface of the sleeve and in contact with the lower end surface, A herringbone groove, a lubricant introduction hole in the center of the groove, a cut groove around the introduction hole, a constriction part without a groove around the cut groove, and a lubricant introduction hole in the center of the lower end surface from the introduction hole. It has a communicating oil supply hole and a lubricant is disposed around the herringbone groove, thereby providing a highly reliable hydrodynamic bearing device with no lubricant leakage.

実施例の説明 以下本発明の実施例について第2〜4図を参照
しながら説明する。第2図は本発明の第1の実施
例における動圧型流体軸受装置の断面図である、
第2図において11は軸、12はスリーブで、軸
受穴12Aとこの軸受穴に直角な下端面12Bと
通気孔12Cを有している。13はスラスト受け
部材であり、以上は第1図に示す従来例と同じで
ある。軸1には2つのヘリングボーン型グルーブ
11Aと11B,11Eが設けられ、グルーブ1
1Bと、11Eの間には導入孔11Dとその上下
には筒状絞り部1G,11Hが設けられている。
また導入孔に連なつて円筒状の切溝11Fが設け
られている。軸11の下面は直角に仕上げられ、
中央には絞り孔11Cがあけられ、給油孔11D
に慣通している。グルーブ11Aとグルーブ11
B,11Eの附近一体には潤滑油14が注油され
ている。
DESCRIPTION OF EMBODIMENTS Examples of the present invention will be described below with reference to FIGS. 2 to 4. FIG. 2 is a sectional view of a hydrodynamic bearing device according to a first embodiment of the present invention.
In FIG. 2, 11 is a shaft, and 12 is a sleeve, which has a bearing hole 12A, a lower end surface 12B perpendicular to the bearing hole, and a ventilation hole 12C. 13 is a thrust receiving member, which is the same as the conventional example shown in FIG. The shaft 1 is provided with two herringbone grooves 11A, 11B, and 11E.
An introduction hole 11D is provided between 1B and 11E, and cylindrical constricted portions 1G and 11H are provided above and below the introduction hole 11D.
Further, a cylindrical cut groove 11F is provided continuous to the introduction hole. The lower surface of the shaft 11 is finished at a right angle,
A throttle hole 11C is drilled in the center, and an oil supply hole 11D
I'm used to it. Groove 11A and Groove 11
Lubricating oil 14 is applied to the vicinity of B and 11E.

以上のように構成された動圧型流体軸受装置に
ついて以下にその動作を説明する。まず軸11ま
たはスリーブ12が図示しないモーター等により
回転させられると、例えば軸11が矢印ω方向に
回転するとグルーブ11A,11B,11Cのポ
ンピング作用により油膜圧力を発生し、無接触で
回転する。この時、グルーブ部の圧力分布はそれ
ぞれ、グルーブ11AではP6a―P6―P6b
のように、そしてグルーブ11BではP7a―P
9a、そしてグルーブ11EではP7b―P9b
のようになる。また筒状絞り部11G、11Hの
圧力は、軸受すきまが充分小さいため圧力の低下
は、ほとんどなく、第2図に示すとおり、P8a
≒P7a,P8b≒P7bであり、導入孔11D
での圧力はP=P8a=P8bとなる。このよう
に11G,11Hは、切溝11Fの周辺にあるグ
ルーブを有しない軸受面であり、圧力の低下を防
ぐ圧力絞りの効果をもつ。
The operation of the hydrodynamic bearing device configured as described above will be described below. First, when the shaft 11 or the sleeve 12 is rotated by a motor (not shown) or the like, for example, when the shaft 11 rotates in the direction of the arrow ω, an oil film pressure is generated by the pumping action of the grooves 11A, 11B, and 11C, and the shaft 11 rotates without contact. At this time, the pressure distribution in the groove part is P6a-P6-P6b in groove 11A, respectively.
and in groove 11B P7a-P
9a, and P7b-P9b in groove 11E.
become that way. In addition, the pressure in the cylindrical constricted portions 11G and 11H hardly decreases because the bearing clearance is sufficiently small, and as shown in Fig. 2, P8a
≒P7a, P8b≒P7b, and the introduction hole 11D
The pressure at is P=P8a=P8b. In this way, 11G and 11H are bearing surfaces that do not have grooves around the kerf 11F, and have the effect of a pressure throttle to prevent a drop in pressure.

この圧力Pは給油孔11Eを通つて軸11の下
端面に、ほとんど圧力の低下なく伝播され、給油
孔11Eの出口での圧力は第2図のようにP=P
10a=P10b≒P8a=P8bとなる。この
圧力によりスラスト方向にQ2の力を発生し、こ
の時C2だけ(約2〜10ミクロンメータ)浮上し
た位置で安定する。この時第4図に示すようにこ
のスラストの方向発生力Q2は回転部分の自重W
1と駆動モーターのローターマグネツト17がス
テータ18を吸引することにより発生するスラス
ト方向吸引力W2の和に等しくなつてバランスす
るものである。15,16はデイスクを固定する
ための回転テーブルである。
This pressure P is propagated to the lower end surface of the shaft 11 through the oil supply hole 11E with almost no pressure drop, and the pressure at the outlet of the oil supply hole 11E is P=P as shown in FIG.
10a=P10b≒P8a=P8b. This pressure generates a force Q2 in the thrust direction, and at this time it becomes stable at a position where it is floating only by C2 (approximately 2 to 10 micrometers). At this time, as shown in Fig. 4, the directional force Q2 of this thrust is the self-weight W of the rotating part
1 and the thrust direction attraction force W2 generated when the stator 18 is attracted by the rotor magnet 17 of the drive motor. 15 and 16 are rotary tables for fixing the disk.

次に第3図に示すようにラジアル方向にW3の
荷重がかかり、軸11が偏心して半径すきまC4
>C5になつた場合であるが、この場合は半径す
きまの小さい側のグルーブのポンピング作用によ
る圧力が高くなり、即ち、図3に示すようにP7
a>P7c,P7b>P7dとなり、これらの圧
力差によりW3に対向するラジアル方向の反発力
を発生するわけである。このときは筒状絞り部1
1G,11Hは高圧側(P7a,P7b)の圧力
が低圧側(P7c,P7d)に逃げるのを防ぐ役
目をはたす。第2図、第3図のいずれの場合も、
グルーブ11Eにより昇圧され搬送された潤滑剤
は導入孔11Dと給油孔11Cを通つて給油孔1
1cから圧力(P=P10a=P10b)で排出
され、軸11Bとスラスト受け部材13との隙間
を通過して再びグルーブ11Eの方へ向けて循環
していく。円筒状の切溝11Fはこの循環する潤
滑剤を充分導入孔11Dに導くようその量を確保
するためのものである。
Next, as shown in Fig. 3, a load W3 is applied in the radial direction, causing the shaft 11 to become eccentric, resulting in a radial clearance C4.
>C5, but in this case, the pressure due to the pumping action of the groove on the side with the smaller radial clearance increases, that is, as shown in Fig. 3, P7
a>P7c and P7b>P7d, and due to these pressure differences, a repulsive force in the radial direction opposing W3 is generated. At this time, the cylindrical constriction part 1
1G and 11H serve to prevent the pressure on the high pressure side (P7a, P7b) from escaping to the low pressure side (P7c, P7d). In both Figures 2 and 3,
The lubricant pressurized and conveyed by the groove 11E passes through the introduction hole 11D and the oil supply hole 11C to the oil supply hole 1.
It is discharged from 1c under pressure (P=P10a=P10b), passes through the gap between the shaft 11B and the thrust receiving member 13, and circulates again toward the groove 11E. The cylindrical groove 11F is provided to ensure a sufficient amount of the circulating lubricant to be introduced into the introduction hole 11D.

以上のように本発明によればスリーブ12の下
端面とスラスト受け部材13の接合面の下端面と
スラスト受け部材13の接合面の圧力(P=P9
b=P11a=P11b)がほぼ大気圧と等しく
なり、外気との圧力差がないので、この接合面か
ら潤滑剤が流出することがないので信頼性が高
い。また本発明の動圧型軸受装置は構置き姿勢で
使用しても、潤滑剤は潤滑剤自身の表面張力によ
りグルーブ部に保持され、外部へ流出することが
なく、信頼性が高い。また本発明においては軸の
下端面と、スラスト受け部材13の間の軸受部に
はグルーブを設けていないので、停止中にスラス
ト方向に大きな外力がかかつても、図示しない
が、スラスト方向の軸受面にグルーブを設けた他
の溝付き動圧型軸受に比べて、本発明動圧型流体
軸受はスラスト方向の軸受面、(即ちスラスト受
け部材13と、軸11の下端面から成る軸受面)
にはグルーブを設けていないので、停止中にスラ
スト方向に大きな外力がかかつても、グルーブの
エツヂにより軸受材料を傷つける心配がないの
で、本動圧型流体軸受装置を、信号を記録する例
えばデイスクの回転駆動装置に採用した場合、デ
イスクの交換時にかかる過大なスラスト力に対し
ても故障をおこさない。また、スリーブの下端面
21Bは軸受穴12Aと同時加工し、正確に直角
度を出すことができる。この面にスラスト受け1
2Bを固定するので軸11の下端面との間の隙間
を精度よく保ち安定性の優れた軸受が得られる。
As described above, according to the present invention, the pressure (P=P9
b=P11a=P11b) is almost equal to atmospheric pressure, and there is no pressure difference with the outside air, so the lubricant does not flow out from this joint surface, so reliability is high. Further, even when the hydrodynamic bearing device of the present invention is used in a parked position, the lubricant is retained in the groove portion by the surface tension of the lubricant itself, and does not flow out to the outside, resulting in high reliability. Furthermore, in the present invention, since no groove is provided in the bearing portion between the lower end surface of the shaft and the thrust receiving member 13, even if a large external force is applied in the thrust direction while the shaft is stopped, the bearing in the thrust direction Compared to other hydrodynamic bearings with grooves in their surfaces, the hydrodynamic bearing of the present invention has a bearing surface in the thrust direction (i.e., a bearing surface consisting of the thrust receiving member 13 and the lower end surface of the shaft 11).
Since there is no groove in the bearing, there is no risk of damage to the bearing material due to the edges of the groove even if a large external force is applied in the thrust direction while stopped. When used in a rotary drive device, it will not fail even when subjected to excessive thrust force when replacing a disk. Further, the lower end surface 21B of the sleeve can be machined simultaneously with the bearing hole 12A to obtain an accurate squareness. Thrust receiver 1 on this surface
Since 2B is fixed, the gap between the shaft 11 and the lower end surface of the shaft 11 can be maintained with high accuracy, and a bearing with excellent stability can be obtained.

以下本発明の第2の実施例について第5図を参
照しながら説明する。軸21には21B,21E
が設けられ、それらの中間には筒状絞り部21G
が設けられ、軸21の円筒状切り溝11Fの機能
を第5図の座グリ溝21Fがはたすので部品加工
が容易になる。21Dは導入孔、21Cは給油孔
である。
A second embodiment of the present invention will be described below with reference to FIG. 21B, 21E on the shaft 21
are provided, and a cylindrical constriction part 21G is provided between them.
Since the counterbore groove 21F shown in FIG. 5 performs the function of the cylindrical cut groove 11F of the shaft 21, it becomes easy to process the parts. 21D is an introduction hole, and 21C is an oil supply hole.

第6図に第3の実施例を示す。この場合軸31
の座グリ穴31Fと導入孔31Dの周囲に略丸形
状の絞り部31Gがあり、この絞り部31Gが第
3図の筒状絞り部11G,11Hと同じ機能をは
たす。この第3の実施例の場合、ヘリングボーン
型グルーブ31B,31Eの面積を大きくし、軸
受の負荷容量を大きくできる。31Cは給油孔で
ある。
FIG. 6 shows a third embodiment. In this case the shaft 31
There is a substantially round constricted portion 31G around the counterbored hole 31F and the introduction hole 31D, and this constricted portion 31G performs the same function as the cylindrical constricted portions 11G and 11H shown in FIG. In the case of this third embodiment, the areas of the herringbone grooves 31B and 31E can be increased, and the load capacity of the bearing can be increased. 31C is an oil supply hole.

第7図に第4の実施例を示す。この場合、筒状
絞り部は軸41の導入孔41Dの上側にのみ筒状
絞り部41Gを設けている。この場合、軸方向の
長さ寸法をわずかであるが、短かくし、軸受の小
型化がはかれる。41Fは円筒状切溝、41Cは
給油孔、41B,41Eはヘリングボーン型グル
ーブである。
FIG. 7 shows a fourth embodiment. In this case, the cylindrical constriction part 41G is provided only above the introduction hole 41D of the shaft 41. In this case, the length in the axial direction is slightly shortened, and the bearing can be made smaller. 41F is a cylindrical groove, 41C is an oil supply hole, and 41B and 41E are herringbone grooves.

第8図に第5の実施例を示す。この場合軸51
の給油孔51Cに連なつて軸51の下面に多孔質
材料からなる給油部材55を取付けたものであ
り、これにより、給油孔51Cの直径のバラツキ
が、軸受性能に与える影響がなくなり、軸受性能
の安定化がはかれる。51B,51Eはヘリング
ボーン型グルーブ、51Fは円筒状切溝、51D
は導入孔、51G,51Hは絞り部である。
FIG. 8 shows a fifth embodiment. In this case the shaft 51
An oil supply member 55 made of a porous material is attached to the lower surface of the shaft 51 in series with the oil supply hole 51C.This eliminates the influence of variations in the diameter of the oil supply hole 51C on bearing performance, and improves bearing performance. stabilization is achieved. 51B, 51E are herringbone grooves, 51F is a cylindrical groove, 51D
is an introduction hole, and 51G and 51H are throttle parts.

第2図に示す第1の実施例において円筒状切溝
11Fは軸11に設けず、スリーブ12の軸受穴
12Aの内面の導入孔11Dの対向面に設けても
よい。
In the first embodiment shown in FIG. 2, the cylindrical groove 11F may not be provided on the shaft 11, but may be provided on the inner surface of the bearing hole 12A of the sleeve 12, on the surface facing the introduction hole 11D.

尚、第2図に示す第1の実施例においてヘリン
グボーン型グルーブ11A,11B,11Eは軸
11に設けずスリーブ12の軸受穴12Aの内面
に設けても同じである。
In the first embodiment shown in FIG. 2, the herringbone grooves 11A, 11B, and 11E may be provided on the inner surface of the bearing hole 12A of the sleeve 12 instead of on the shaft 11.

発明の効果 以上のように本発明は軸に設けられたヘリング
ボーン型グルーブの中央部に、軸に略直角な導入
孔とその周辺に切溝と、その溝の周辺に絞り部を
設けることにより潤滑油の漏洩がなく、信頼性の
高い動圧型流体軸受装置を得ることができ、その
実用効果は大なるものがある。
Effects of the Invention As described above, the present invention provides an introduction hole approximately perpendicular to the axis in the center of the herringbone groove provided on the shaft, a kerf around the kerf, and a constriction around the groove. It is possible to obtain a highly reliable hydrodynamic bearing device without leakage of lubricating oil, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは従来の動圧型流体軸受装置の断面
図、第1図ロ,ハはそれぞれ圧力分布の説明図、
第2図イは本発明の一実施例における動圧型流体
軸受装置の断面図、第2図ロ,ハはそれぞれ圧力
分布の説明図、第3図イは流体軸受装置の要部断
面図、第3図ロ,ハ,ニは圧力分布の説明図、第
4図は同動圧型流体軸受の断面図、第5図は本発
明の第2の実施例の軸の斜視図、第6図は第3の
実施例の軸の斜視図、第7図は第4の実施例の軸
の斜視図、第8図は第5の実施例の軸の部分の正
面断面図である。 11,21,31,41,51……軸、12…
…スリーブ、13……スラスト受け部材、14…
…潤滑剤、11B,11E……ヘリングボーン型
グルーブ、11C……給油孔、11D……導入
孔、11F……切溝、11G,11H……絞り
部。
Figure 1A is a sectional view of a conventional hydrodynamic bearing device, Figure 1B and C are explanatory diagrams of pressure distribution, respectively.
FIG. 2A is a cross-sectional view of a hydrodynamic bearing device according to an embodiment of the present invention, FIG. 2B and C are explanatory diagrams of pressure distribution, respectively, FIG. Figures 3B, C, and D are explanatory diagrams of pressure distribution, Figure 4 is a sectional view of the same dynamic pressure type fluid bearing, Figure 5 is a perspective view of the shaft of the second embodiment of the present invention, and Figure 6 is the FIG. 7 is a perspective view of the shaft of the fourth embodiment, and FIG. 8 is a front sectional view of the shaft of the fifth embodiment. 11, 21, 31, 41, 51...axis, 12...
...Sleeve, 13...Thrust receiving member, 14...
...Lubricant, 11B, 11E... Herringbone groove, 11C... Oil supply hole, 11D... Introduction hole, 11F... Cut groove, 11G, 11H... Restricted portion.

Claims (1)

【特許請求の範囲】[Claims] 1 軸受穴を有するスリーブと、この軸受穴に回
転自在に挿入された軸と、前記スリーブ端面に固
定され、前記軸下端面と当接するスラスト受け部
材からなり、前記軸にはヘリングボーン型グルー
ブと、このヘリングボーン型グルーブの中心に潤
滑油の導入孔と、この導入孔の周辺に設けられた
切溝と、この切溝の周辺にグルーブを有しない圧
力の絞り部と、前記導入孔から前記下端面の中央
に連絡する給油孔とを有し、前記ヘリングボーン
型グルーブの周辺に潤滑剤を配してなる動圧型流
体軸受装置。
1 Consists of a sleeve having a bearing hole, a shaft rotatably inserted into the bearing hole, and a thrust receiving member fixed to the end surface of the sleeve and in contact with the lower end surface of the shaft, and the shaft has a herringbone groove. , a lubricating oil introduction hole in the center of this herringbone groove, a cut groove provided around this introduction hole, a pressure constriction part having no groove around this cut groove, and A hydrodynamic bearing device having a lubricating hole communicating with the center of the lower end surface, and having a lubricant arranged around the herringbone groove.
JP22237982A 1982-12-17 1982-12-17 Dynamic pressure type fluid bearing Granted JPS59113314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22237982A JPS59113314A (en) 1982-12-17 1982-12-17 Dynamic pressure type fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22237982A JPS59113314A (en) 1982-12-17 1982-12-17 Dynamic pressure type fluid bearing

Publications (2)

Publication Number Publication Date
JPS59113314A JPS59113314A (en) 1984-06-30
JPS626158B2 true JPS626158B2 (en) 1987-02-09

Family

ID=16781429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22237982A Granted JPS59113314A (en) 1982-12-17 1982-12-17 Dynamic pressure type fluid bearing

Country Status (1)

Country Link
JP (1) JPS59113314A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520893Y2 (en) * 1987-05-14 1993-05-28
JPH044310A (en) * 1990-04-18 1992-01-08 Matsushita Electric Ind Co Ltd Dynamic pressure type gas bearing
US5273368A (en) * 1990-11-13 1993-12-28 Matsushita Electric Industrial Co., Ltd. Hydrodynamic gas bearing
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same
KR20120125735A (en) * 2011-05-09 2012-11-19 삼성전기주식회사 Hyperdynamic fluid bearing assembly and motor having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501759U (en) * 1973-05-04 1975-01-09

Also Published As

Publication number Publication date
JPS59113314A (en) 1984-06-30

Similar Documents

Publication Publication Date Title
KR940002802B1 (en) Oil impregnated sintered bearing
US5145266A (en) Bearing apparatus
KR20000071559A (en) Dynamic pressure bearing-unit and method for manufacturing the same
US5645355A (en) Bearing unit
JPH03149410A (en) Dynamic pressure bearing device
JPS626158B2 (en)
JPH1182487A (en) Porous bearing
JP3602317B2 (en) Dynamic pressure type porous oil-impregnated bearing unit
JPH08322191A (en) Motor
JPS624565B2 (en)
US3981547A (en) Spiral, tapered-land, journal bearing
JPS608523A (en) Magnetic fluid slide bearing structure
CN113614395A (en) Fluid dynamic pressure bearing device
JPS5817219A (en) Dynamic-pressure radial bearing device
JP2000035041A (en) Dynamic pressure type sintered and oil retaining bearing unit
JPH11336762A (en) Oil-impregnated bearing device
JPS59159416A (en) Dynamic pressure type fluid bearing device
US3834773A (en) Unit bearing motor
JPH03260415A (en) Dynamic pressure fluid bearing device
JPH11191945A (en) Spindle motor and rotary shaft support device of hard disc drive
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JPS6360246B2 (en)
JPH1182479A (en) Supporting device for information equipment spindle motor
JP2000081028A (en) Dynamic pressure bearing device for fan motor