JPS6261273A - Hydrogen solid battery - Google Patents

Hydrogen solid battery

Info

Publication number
JPS6261273A
JPS6261273A JP60201156A JP20115685A JPS6261273A JP S6261273 A JPS6261273 A JP S6261273A JP 60201156 A JP60201156 A JP 60201156A JP 20115685 A JP20115685 A JP 20115685A JP S6261273 A JPS6261273 A JP S6261273A
Authority
JP
Japan
Prior art keywords
hydrogen
solid
battery
positive electrode
solid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60201156A
Other languages
Japanese (ja)
Inventor
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60201156A priority Critical patent/JPS6261273A/en
Publication of JPS6261273A publication Critical patent/JPS6261273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a hydrogen solid battery having a superior charge-and- discharge characteristic by using a material principally composed of a molybdenum oxide to make the positive electrode. CONSTITUTION:The positive electrode of the hydrogen solid battery of this invention is principally composed of a molybdenum oxide (MoO3-x: 0<=x<=0.3). Use of a molybdenum oxide in the positive electrode achieves production of a hydrogen solid battery which has superior charge-and-discharge performance and can be repeatedly charged and discharged.

Description

【発明の詳細な説明】 く技術分野〉 本発明は負極活物質、電解質及び1椿活物質がいずれも
固体からなる固体水素電池の正極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a positive electrode for a solid-state hydrogen battery in which a negative electrode active material, an electrolyte, and a camellia active material are all solid.

〈従来技術〉 近年生導体技術及びこれらの応用技術の発展に伴ない、
電子機器の消費電力は漸次低下される方向にある。また
、これら電子機器に用いられる電池も消費電力の低下と
ともに小型・薄型化が望まれ同時に信頼性の高いことが
要求されるようになってきた。このような要求に応える
ものとして、固体電解質電池がある。固体電解質電池は
電解質にイオン導電体を有する固体を用いるため′1[
池からの液漏れがなく、また量産化も1〜易い。
<Prior art> With the recent development of live conductor technology and its application technology,
The power consumption of electronic devices is gradually decreasing. In addition, batteries used in these electronic devices are desired to be smaller and thinner with lower power consumption, and at the same time, they are also required to be highly reliable. Solid electrolyte batteries meet these demands. Solid electrolyte batteries use a solid containing ionic conductors as the electrolyte;
There is no liquid leakage from the pond, and mass production is easy.

従来このような固体電解質電池としては、銀、銅、リチ
ウム系の電池が開発されている。この中で銀イオンまた
は銅イオンを用いた′電池は固体電解質のイオン電導度
が比較的大きく、大電流での放電が可能であるという性
質を有する。−力、リチウム系の固体電解質電池は高い
エネルギー密度と高い出力電圧を有するが、用いる固体
電解質のイオン電導度が余り大きくないので大きな電流
での放電ができない。また、リチウム金属が非常に活性
であるため、耐酸化、耐湿気のために電池の製造工程や
封口技術が複雑となる。さらに上記いずれの系の固体電
池においても、二次電池化を考えた場合、充電時に負極
において還元される・、4電種が樹枝状に析出するため
、ザイクル寿命が悪く、深い放電ができないという大き
な問題が残存している。
Conventionally, silver, copper, and lithium-based batteries have been developed as such solid electrolyte batteries. Among these, batteries using silver ions or copper ions have the property that the ionic conductivity of the solid electrolyte is relatively high and discharge at a large current is possible. Although lithium-based solid electrolyte batteries have high energy density and high output voltage, they cannot be discharged with large currents because the ionic conductivity of the solid electrolyte used is not very high. In addition, since lithium metal is extremely active, the battery manufacturing process and sealing technology are complicated due to oxidation and moisture resistance. Furthermore, in any of the above solid-state batteries, when considering the use of secondary batteries, the 4-electrode species that are reduced at the negative electrode precipitate in a dendritic form during charging, resulting in poor cycle life and the inability to perform deep discharge. Big problems remain.

〈発明の概要〉 本発明は、負極を水素吸蔵合金、電解質を水素イオン導
電種〈1間体電解質、正極を水素イオン受容1/lのあ
る物質で構成することによって水素固体電池となること
に着目しこれを基本として+E極に独特の技術を駆使し
たものである。水素固体電池の場合、水素の拡散のみが
反応に開力する拡散型の電極となるので、従来のように
金属イオンを導電種に用いた析出型の電極のように、充
放電の繰り返しによって生ずる樹枝状の析出物はなく、
充放電の繰り返し特性がよいという特徴がある。本発明
はこのような充放電性1Jtの良好な水素固体電池を提
供することを目的とする。
<Summary of the Invention> The present invention provides a hydrogen solid battery by configuring the negative electrode with a hydrogen-absorbing alloy, the electrolyte with a hydrogen ion-conducting species (an interstitial electrolyte), and the positive electrode with a substance that accepts 1/l of hydrogen ions. Based on this, we have made full use of the unique technology of +E pole. In the case of a solid-state hydrogen battery, it is a diffusion-type electrode in which only the diffusion of hydrogen leads to a reaction, so unlike conventional precipitation-type electrodes that use metal ions as conductive species, the hydrogen is generated by repeated charging and discharging. No dendritic precipitates;
It is characterized by good repeatability of charging and discharging. An object of the present invention is to provide such a solid hydrogen battery with a good charge/discharge performance of 1 Jt.

〈構成及び効果の説明〉 水素を金属水素化物の状態で吸蔵する合金は水素を吸蔵
し7た状態においても固体である。水素吸蔵合金は中休
とり、て水素を吸収する元素(Mg、Ca。
<Description of Structure and Effects> An alloy that absorbs hydrogen in the form of a metal hydride remains solid even in the hydrogen-absorbed state. Hydrogen storage alloys contain elements (Mg, Ca) that absorb hydrogen.

La、Ti、V等)と水素を前件化する触媒能をイ」J
る元素(Fe、 Co、 N i+ Cu等)とを絹み
合わ一+ノーることによって様々な解離圧、吸蔵匿をも
つものが実現する。この水素吸蔵合金を負極として用い
る。
(La, Ti, V, etc.) and hydrogen as antecedents.
By combining these elements (Fe, Co, Ni+ Cu, etc.), materials with various dissociation pressures and occlusion properties can be realized. This hydrogen storage alloy is used as a negative electrode.

固体′電解質としては5酸化アンチモン(Sb205@
nHo)、2酸化スズ(Sn02− nl+2o )等
の水素イオン導電性酸化物や、バー フルオロカーボン
系等の高分子固体電解質等を用いる。またi「極材料と
しては、水素イオンをゲスト物質として受答する物質を
用いる。以上の材料を用いて例えば第1図に示すように
電池を構成する。第1図においてlは負極、2は固体電
解質、3はIL極、4は集電体、5はリード線、6は加
圧用板、7はビスである。この電池の電位は用いる負極
材料、正極材料によって異なる。本発明はこの正極材料
としてモリブデン酸化物(MoOa −X:O≦X≦0
3)を」ご成分に用いることを特徴とする0種々の電極
材料を検討した結果、正極旧材としてモリブデン酸化物
を用いることによって放電特性が最も良くなりかつ充放
電が繰り返し可能な電池が実現されることが解明された
Antimony pentoxide (Sb205@
Hydrogen ion conductive oxides such as nHo), tin dioxide (Sn02-nl+2o), and solid polymer electrolytes such as perfluorocarbons are used. In addition, as the electrode material, a substance that accepts hydrogen ions as a guest substance is used. Using the above materials, a battery is constructed, for example, as shown in Figure 1. In Figure 1, l is the negative electrode, and 2 is the negative electrode. A solid electrolyte, 3 is an IL electrode, 4 is a current collector, 5 is a lead wire, 6 is a pressure plate, and 7 is a screw.The potential of this battery varies depending on the negative electrode material and positive electrode material used.The present invention is directed to this positive electrode. Molybdenum oxide (MoOa -X: O≦X≦0
As a result of examining various electrode materials characterized by the use of 3) as a component, we found that by using molybdenum oxide as the positive electrode material, a battery with the best discharge characteristics and the ability to be repeatedly charged and discharged was realized. It was clarified that this would happen.

〈実施例〉 以下本発明の1実施例について第11Qを参照しながら
詳説する。市販のチタン(純度995%)とニッケル(
純度9995%)及びミツシュメタルを原子比で] :
 ] : 0.01になるように秤量、混合する。
<Example> An example of the present invention will be described in detail below with reference to the 11th Q. Commercially available titanium (995% purity) and nickel (
(purity 9995%) and Mitsushmetal in atomic ratio]:
] : Weigh and mix so that it becomes 0.01.

これをアーク溶解炉で溶解する。この合金をステンレス
容器に入れ高圧水素ガスを導入j〜、加温して水素化さ
せる。即ち、水素吸蔵合金とする。水素化した合金を取
り出し、アルゴンガス雰囲気で粒径447zm以下に粉
砕する。この粉末02gとカルボキシメチルセルローズ
粉末0.01 g 、アセチレンブラック001g及び
後述する固体電解質005gを混合し、錠剤成型器でペ
レットにする。これを負極1とする。
This is melted in an arc melting furnace. This alloy is placed in a stainless steel container, high-pressure hydrogen gas is introduced, and hydrogenation is achieved by heating. That is, it is a hydrogen storage alloy. The hydrogenated alloy is taken out and ground to a particle size of 447 zm or less in an argon gas atmosphere. 02 g of this powder, 0.01 g of carboxymethyl cellulose powder, 001 g of acetylene black, and 005 g of a solid electrolyte to be described later are mixed and made into pellets using a tablet molding machine. This will be referred to as negative electrode 1.

次に5塩化アンチモン(SbCt5)を純水中へ滴下し
、得られた沈殿を洗浄・乾燥し、5酸化アンチモンを得
る。これを02g秤量し、錠剤成型器でペレットにする
。以上により水素イオン導電性酸化物である5酸化アン
チモンで固体電解質2を構成する。
Next, antimony pentachloride (SbCt5) is dropped into pure water, and the resulting precipitate is washed and dried to obtain antimony pentoxide. Weigh 02g of this and make it into pellets using a tablet molding machine. As described above, the solid electrolyte 2 is composed of antimony pentoxide, which is a hydrogen ion conductive oxide.

次にモリブデン酸アンモニウム・4水和物((NFI4
)6Mo7024・4I■20)を純水中へ溶解し、加
熱した後熱硝酸を滴下し、得られた沈殿物を洗浄・乾燥
して酸化モリブデン(MoOa)を得る。この酸化モリ
ブデン02g1カルボキシメチルセルローズ粉末0.0
1 gl アセチレンブラック旧12g及び上述した固
体電解質0.05gを秤;ii 、混合し錠剤成型器で
ペレットにする。これを11゛極3とする〇これら負極
11電解質2及び正極3を重ね合せ、集電板4及び加圧
用板6で挾持し、ビス、7′で固定して水素固体電池を
構成する0集電体4は正極3及び負極lと外部接続用リ
ード線5間のコンタクトを良好にする。本実施例の水素
固体電池の初!11開放電位は420mVであった。
Next, ammonium molybdate tetrahydrate ((NFI4
)6Mo7024.4I■20) is dissolved in pure water, heated, and then hot nitric acid is added dropwise, and the resulting precipitate is washed and dried to obtain molybdenum oxide (MoOa). This molybdenum oxide 02g1 carboxymethyl cellulose powder 0.0
Weigh 1 gl of acetylene black (12 g) and 0.05 g of the above-mentioned solid electrolyte; ii. Mix and pelletize using a tablet machine. This is made into a 11゛ electrode 3〇These negative electrode 11 electrolyte 2 and positive electrode 3 are stacked together, sandwiched between a current collector plate 4 and a pressure plate 6, and fixed with screws 7' to form a hydrogen solid battery. The electric body 4 makes good contact between the positive electrode 3 and the negative electrode 1 and the external connection lead wire 5. This is the first hydrogen solid state battery in this example! 11 open-circuit potential was 420 mV.

以上により作製された水素固体電池の性能を調べるため
、I= l O07!A/cnの′電流密度で放電させ
た。このときの放電特性を第2図に示す。特1/ト曲線
より明らかな如く、放電開始後90時間経過後も放電々
圧はほぼ一定であり、電池特性として良好な結果がイ(
Jられた。次に同様にして作製した電池を50 lt 
A/crIの電流密度で2時間毎に充電と放電を繰り返
す充放電テスl−を行な一〕た。その結果を第3図に示
す。充放電操作を1 (10回繰り返しても易性曲線は
ほとんど変化していない。第2図及び第3図より明らか
な如くモリブデン酸化物を正極に用いることVCより、
−次電池としてもまた二次jI[ii池としても実用「
jJ能な充放電44件の非常に良々fな水素固体電池が
得られる。
In order to investigate the performance of the hydrogen solid state battery produced as described above, I= l O07! The discharge was carried out at a current density of A/cn. The discharge characteristics at this time are shown in FIG. As is clear from the special 1/T curve, the discharge pressure remains almost constant even after 90 hours have passed after the start of discharge, indicating that the battery characteristics are good (
I got hit. Next, 50 lt batteries were prepared in the same manner.
A charge/discharge test was conducted in which charging and discharging were repeated every 2 hours at a current density of A/crI. The results are shown in FIG. Even after repeating the charge/discharge operation 10 times, the ease curve hardly changes.As is clear from Figures 2 and 3, using molybdenum oxide as the positive electrode, VC
-Practical as a secondary battery and as a secondary jI [ii pond]
A hydrogen solid-state battery with very good charging and discharging capacity of 44 times is obtained.

尚、正極材料としてMo8023 、” 40I l 
f用イた場合、電池作製後の開放電位はそれぞれ280
rnV。
In addition, Mo8023, "40Il" was used as the positive electrode material.
For f, the open circuit potential after battery fabrication is 280, respectively.
rnV.

410mVであり、同様に良好な放電時[トを示した。The voltage was 410 mV, indicating a similarly good discharge time.

iF、 極材*−1としては上記以外にもMo9026
1M0028等神々の酸化モリブデンを用いることがで
きる。
In addition to the above, Mo9026 is also used as the iF, pole material *-1.
A divine molybdenum oxide such as 1M0028 can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のl実施例の説明に供する水素「・)固
体電池の概略構成図である。第2肉は本発明のニー、、
5.−0 ¥l謬実施例に係る水素固体電池の放電特性図である。 第31・ど1は本発明の1実施例に係る水素lid体電
池の充放電44件図である。
FIG. 1 is a schematic diagram of a hydrogen solid state battery used to explain embodiments of the present invention.
5. -0 ¥lError It is a discharge characteristic diagram of a hydrogen solid state battery according to an example. No. 31, No. 1 is a chart showing 44 cases of charging and discharging a hydrogen lid battery according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、負極を金属水素化物として水素を吸蔵する水素吸蔵
物質、固体電解質を水素イオン導電体、正極を水素イオ
ンの受容される物質でそれぞれ構成した水素固体電池に
おいて、前記正極がモリブデン酸化物(MoO_3_−
_x)(0≦x≦0.3)を主とする材料で構成されて
いることを特徴とする水素固体電池。 2、モリブデン酸化物はMoO_3、Mo_9O_2_
6、Mo_8O_2_3、Mo_4O_1_1又はMo
O_2_._8である特許請求の範囲第1項記載の水素
固体電池。
[Scope of Claims] 1. A solid hydrogen battery in which the negative electrode is made of a metal hydride which is a hydrogen storage material that stores hydrogen, the solid electrolyte is a hydrogen ion conductor, and the positive electrode is made of a material that can accept hydrogen ions. is molybdenum oxide (MoO_3_-
_x) (0≦x≦0.3). 2. Molybdenum oxides are MoO_3, Mo_9O_2_
6, Mo_8O_2_3, Mo_4O_1_1 or Mo
O_2_. The hydrogen solid state battery according to claim 1, which is _8.
JP60201156A 1985-09-10 1985-09-10 Hydrogen solid battery Pending JPS6261273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201156A JPS6261273A (en) 1985-09-10 1985-09-10 Hydrogen solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201156A JPS6261273A (en) 1985-09-10 1985-09-10 Hydrogen solid battery

Publications (1)

Publication Number Publication Date
JPS6261273A true JPS6261273A (en) 1987-03-17

Family

ID=16436309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201156A Pending JPS6261273A (en) 1985-09-10 1985-09-10 Hydrogen solid battery

Country Status (1)

Country Link
JP (1) JPS6261273A (en)

Similar Documents

Publication Publication Date Title
JP2012227106A (en) Nickel-metal hydride battery
JPS60211778A (en) Solid electrolyte battery
US5682592A (en) Fabrication method for paste-type metal hydride electrode
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
JPS6166369A (en) Lithium secondary battery
JPS6261273A (en) Hydrogen solid battery
JPH0461468B2 (en)
JPH04179056A (en) Alkaline storage battery
CN112768756A (en) Solid electrolyte material, and composite solid electrolyte and all-solid-state battery prepared from same
JPH02204976A (en) Electrochenical battery and its manufacture
JPH05290854A (en) Lithium secondary battery
JPH041995B2 (en)
JPH0467302B2 (en)
JPS62126567A (en) Solid hydrogen battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3162595B2 (en) Method of manufacturing alkaline storage battery, nickel positive electrode for alkaline storage battery, and alkaline storage battery
JPS61133581A (en) Solid state hydrogen cell
JPH0737610A (en) Manufacture of sealed alkaline storage battery using paste type nickel positive electrode
JPH0555987B2 (en)
JPH02278658A (en) Secondary battery
JPS5856228B2 (en) solid electrolyte battery
JPH0481309B2 (en)
JPH11191412A (en) Alkaline storage battery
JPH0261100B2 (en)