JPS62126567A - Solid hydrogen battery - Google Patents

Solid hydrogen battery

Info

Publication number
JPS62126567A
JPS62126567A JP60266758A JP26675885A JPS62126567A JP S62126567 A JPS62126567 A JP S62126567A JP 60266758 A JP60266758 A JP 60266758A JP 26675885 A JP26675885 A JP 26675885A JP S62126567 A JPS62126567 A JP S62126567A
Authority
JP
Japan
Prior art keywords
hydrogen
positive electrode
solid
solid electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60266758A
Other languages
Japanese (ja)
Inventor
Tetsuya Yoneda
哲也 米田
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60266758A priority Critical patent/JPS62126567A/en
Publication of JPS62126567A publication Critical patent/JPS62126567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a positive electrode which makes high rate discharge possible, has high equilibrium voltage, and good cycle performance by forming a positive electrode with a material mainly comprising lead peroxide. CONSTITUTION:PbO2 is used as a material for a positive electrode 2, and an adequate amount of carbon powder such as acetylene black is added to it. Thereby, the positive electrode which makes high rate discharge possible, has high voltage, and good cycle performance can be obtained.

Description

【発明の詳細な説明】 く技術分野〉 本発明は負極活物質、電解質及び正極物質がいずれも固
体からなる固体水素電池に関し、特にその正極拐料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a solid-state hydrogen battery in which a negative electrode active material, an electrolyte, and a positive electrode material are all solid, and particularly relates to a positive electrode material thereof.

〈従来技術〉 近年、半導体技術及びこれらの応用技術の発展に伴い、
電子機器の消費電力は漸次低下される傾向にある。また
、これら電子機器に用いられる電池も消費電力の低下と
ともに、小型、薄型化が望まれ、同時に信頼性の高いこ
とが要求されるようになってきた。このような要求に応
えるものとして、固体電解質電池が一般的に知られてい
る。固体電解質電池は電解質にイオン導電性を有する固
体電解質を用いるため、電池からの液漏れがなく、また
製造工程に於いても高度に自動化された半導体製造技術
を適用することができ、量産化し易いといった特徴を有
する。
<Prior art> In recent years, with the development of semiconductor technology and its applied technologies,
The power consumption of electronic devices is gradually decreasing. In addition, batteries used in these electronic devices are desired to be smaller and thinner as power consumption decreases, and at the same time, they are also required to be highly reliable. Solid electrolyte batteries are generally known as batteries that meet these demands. Solid electrolyte batteries use a solid electrolyte with ionic conductivity, so there is no leakage from the battery, and highly automated semiconductor manufacturing technology can be applied to the manufacturing process, making it easy to mass produce. It has the following characteristics.

すでに、このような固体電解質電池としては、銀、銅、
リチウム系の電池が開発されている。この中で、銀イオ
ンまたは銅イオン導電体を固体電解質として用いた電池
は、これらの固体電解質のイオン電導度が比較的大きく
、そのため大電流での放電も可能であるという特徴を有
する。一方、リチウム系の固体電解質電池は高いエネル
ギー密度と高い出力電圧を有するが、ここで用いる固体
電解質のイオン電導度が余り大きくないので、大電流で
の放電はできない。また、負極に用いているリチウム金
属が非常に活性であるため、耐酸化、耐湿を必要とし、
従って電池の製造工程や封口技術が複雑となる。更に、
上記のいずれの系の固体電池においても二次電池化を考
えた場合、充電時に負極において還元される導電種が樹
枝状に析出するため、サイクル寿命が悪く、深い放電が
できないという大きな問題が残っている。
Already, such solid electrolyte batteries include silver, copper,
Lithium-based batteries are being developed. Among these, batteries using silver ion or copper ion conductors as solid electrolytes are characterized in that these solid electrolytes have relatively high ionic conductivities, and therefore can be discharged at large currents. On the other hand, lithium-based solid electrolyte batteries have high energy density and high output voltage, but the ionic conductivity of the solid electrolyte used here is not very high, so they cannot be discharged with a large current. In addition, since the lithium metal used in the negative electrode is extremely active, it requires oxidation and moisture resistance.
Therefore, the battery manufacturing process and sealing technology become complicated. Furthermore,
When considering the use of solid-state batteries in any of the above systems as secondary batteries, the major problem remains that the conductive species that are reduced at the negative electrode precipitate in a dendritic form during charging, resulting in poor cycle life and the inability to perform deep discharge. ing.

〈発明の背景〉 本発明者は一負極活物質を金属水素化物として水素を吸
蔵する水素吸蔵用材料、固体電解質を水素イオン導電体
、正極活物質をゲスト物質として水素イオンを受容する
物質で構成することによって電池となることを見い出し
既に提案した。この電池の場合、大きな電流での放電が
可能であり、かつ負極に用いる活物質が水素であるため
、水素の拡散のみが反応に関与する拡散型の電極となる
ので、従来のように金属イオンを導電種に用いた析出型
の電極のように、充放電の繰り返しによって生ずる樹枝
状の析出物はなく、サイクル寿命がよいという利点を有
する。また、樹枝物の出現がないため、正極、負極間の
短絡を生じることがない。
<Background of the Invention> The present inventors have proposed a method in which the negative electrode active material is a hydrogen storage material that stores hydrogen as a metal hydride, the solid electrolyte is a hydrogen ion conductor, and the positive electrode active material is a guest material that accepts hydrogen ions. I have already proposed that it can be used as a battery by doing this. In the case of this battery, it is possible to discharge with a large current, and since the active material used in the negative electrode is hydrogen, it is a diffusion type electrode in which only the diffusion of hydrogen participates in the reaction, so it is possible to discharge with a large current. Unlike precipitated electrodes using C as a conductive species, there are no dendritic precipitates produced by repeated charging and discharging, and this has the advantage of a long cycle life. Furthermore, since there are no tree branches, short circuits between the positive and negative electrodes do not occur.

上述した正極には水素イオンをゲスト物質として受容す
る物質であればいずれの材料であっても電池を構成する
ことは可能であるが、用いる材料によって得られる電圧
、放電可能な電流密度、二次電池化した場合のサイクル
特性は異なって(る。
Although it is possible to construct a battery using any material that accepts hydrogen ions as a guest substance for the positive electrode mentioned above, the voltage obtained depending on the material used, the current density that can be discharged, and the secondary The cycle characteristics of batteries are different.

〈発明の目的〉 本発明は、高い電圧と大きな放電電流とを得ることがで
き、また充放電による繰り返しサイクル特性のよい正極
を有する固体水素電池を提供することを目的とする。
<Objective of the Invention> An object of the present invention is to provide a solid hydrogen battery that can obtain a high voltage and a large discharge current, and has a positive electrode that has good repeated cycle characteristics during charging and discharging.

く構成及び効果の説明〉 負極に水素吸蔵用材料、正極に水素イオンをゲスト物質
として受容することのできる物質を用い、電解質に水素
イオン導電性固体電解質を用いた水素固体電解質電池の
起電反応は以下のようになると考えられる。
Description of structure and effects> Electromotive reaction of a hydrogen solid electrolyte battery using a hydrogen storage material for the negative electrode, a substance that can accept hydrogen ions as a guest substance for the positive electrode, and a hydrogen ion conductive solid electrolyte for the electrolyte. is considered to be as follows.

・・・・・・・・・(2) または、 十XH2O・・・・・・・・・(4) ここで、Metalは水素吸蔵用材料であり、AB。・・・・・・・・・(2) or 10XH2O・・・・・・・・・(4) Here, Metal is a hydrogen storage material, and AB.

は水素イオンをゲスト物質として受容することのできる
物質である。上述の反応式で示したように水素のイオン
伝導が水を介しているか否かは充分解明されていないが
、固体電解質としては構造水として水分子を含んでいる
、五酸化アンチモン(Sb20.・nH2Oン、二酸化
スズ(S n 02 ・n H2O)等の水素イオン導
電性酸化物や、パーフルオロカーボン系等のイオン交換
膜に代表される固体高分子電解質等を用いる。用いる負
極材料、正極材料によって得られる電位は異なってくる
。種々の電極材料を検討した結果、正極材料としてPb
O3を用い、これにアセチレンブラック等のカーボン粉
末を必要に応じて適量加えることによって、高い平衡電
圧を有し、かつ大電流放電が可能で、サイクル特性のよ
い正極の実現を可能にした。
is a substance that can accept hydrogen ions as a guest substance. As shown in the reaction formula above, it is not fully understood whether hydrogen ionic conduction is via water, but antimony pentoxide (Sb20.. Hydrogen ion conductive oxides such as nH2O, tin dioxide (S n 02 ・n H2O), solid polymer electrolytes represented by perfluorocarbon ion exchange membranes, etc. are used. Depending on the negative electrode material and positive electrode material used. The potential obtained varies.As a result of examining various electrode materials, we found that Pb was used as the positive electrode material.
By using O3 and adding an appropriate amount of carbon powder such as acetylene black as necessary, it has become possible to realize a positive electrode that has a high equilibrium voltage, is capable of large current discharge, and has good cycle characteristics.

〈実施例1〉 市販のチタン(Ti)(純度99.5%)トニッケル(
Ni)(純度99.95%)とミッシニメタル(Mm)
を原子比で7 i N f Mmo、01になるように
秤量・混合する。これをアーク溶解炉で溶解する。この
合金をステンレス反応容器に入れ、高圧水素ガスを導入
し加温して水素化させる。水素化した合金を取り出して
アルゴンガス雰囲気中で粒径44師以下に粉砕する。こ
の粉末0.2fにアセチレンブラック0.01fを混合
し、更に後述する固体電解質である五酸化アンチモン0
.11を加えて混合し、錠剤成型器でペレツトに成型す
る。これを負極とする。次に市販の五酸化アンチモン(
SbC1,)を純水中へ滴下し、生成した沈殿物を分離
・洗浄・乾燥し、五酸化アンチモンを得る。この五酸化
アンチモン0.12を用い錠剤成型器でペレットに成型
する。これを固体電解質とする。次に、市販の過酸化鉛
(Pb03)(純度97%)0.22を用い、これにア
セチレンブラック0.02Fと上述した五酸化アンチモ
ン0.05Fを混合し、錠剤成型器でペレットに成型す
る。これを正極とする。これらを用いて第1図に示すよ
うな構造の電池を構成する。即ち、正極lと負極2の間
に固体電解質3を挿入し、更に集電板4を正負両電極面
に配設してリード線5を接続し、押え板6とビス7でこ
れらを一体的に挟設することにより固体電解質電池が作
製される。この25℃での初期開放電位は1430mV
であった。その後電極面積当たり100μA/iの電流
密度で放電させた。その結果を第2図に示す。横軸は時
間、縦軸はボルトである。また、電極面積当たり!00
μA/iの電流密度で、25℃において1時間毎の充放
電テストを行った。
<Example 1> Commercially available titanium (Ti) (purity 99.5%) and nickel (
Ni) (purity 99.95%) and Missini Metal (Mm)
are weighed and mixed so that the atomic ratio is 7 i N f Mmo,01. This is melted in an arc melting furnace. This alloy is placed in a stainless steel reaction vessel, and high-pressure hydrogen gas is introduced and heated to hydrogenate it. The hydrogenated alloy is taken out and pulverized to a particle size of 44 grains or less in an argon gas atmosphere. 0.01f of acetylene black was mixed with 0.2f of this powder, and 0.01f of antimony pentoxide, which is a solid electrolyte to be described later, was mixed.
.. Add 11, mix, and form into pellets using a tablet machine. This is used as the negative electrode. Next, commercially available antimony pentoxide (
SbC1,) is dropped into pure water, and the resulting precipitate is separated, washed, and dried to obtain antimony pentoxide. This antimony pentoxide 0.12 is molded into pellets using a tablet molding machine. This is used as a solid electrolyte. Next, using commercially available lead peroxide (Pb03) (purity 97%) 0.22, acetylene black 0.02F and antimony pentoxide 0.05F mentioned above are mixed with this, and the mixture is molded into pellets using a tablet molding machine. . This is used as the positive electrode. Using these, a battery having a structure as shown in FIG. 1 is constructed. That is, a solid electrolyte 3 is inserted between a positive electrode 1 and a negative electrode 2, a current collector plate 4 is arranged on both the positive and negative electrode surfaces, a lead wire 5 is connected, and these are integrally connected with a holding plate 6 and a screw 7. A solid electrolyte battery is produced by sandwiching the two. The initial open potential at 25°C is 1430mV
Met. Thereafter, discharge was performed at a current density of 100 μA/i per electrode area. The results are shown in FIG. The horizontal axis is time and the vertical axis is volts. Also, per electrode area! 00
A charge/discharge test was performed every hour at 25° C. at a current density of μA/i.

その結果を第3図に示す。同様に横軸は時間、縦軸はボ
ルトである。100回の充放電テストを行った結果、は
とんど劣化は認められなかった。
The results are shown in FIG. Similarly, the horizontal axis is time and the vertical axis is volts. As a result of 100 charge/discharge tests, almost no deterioration was observed.

〈実施例2〉 実施例1と同様な方法で負極及び正極を作製する。次に
、パーフルオロカーボン系のイオン交換膜を負極及び正
極の直径に合う大きさに切断し、2規定の塩酸に浸した
後水洗し乾燥した。これを固体電解質とする。これらを
用いて実施例1と同様な方法で正極及び負極を作製し固
体電解質電池を作製した。この場合は25℃での初期開
放電位は1340mVであった。その後、電極面積当た
り50μA/dの電流密度で25℃に於いて1時間毎の
充放電テストを行った。その結果を第4図に示す。横軸
は時間、縦軸はボルトである。100回の充放電テスト
を行った結果、はとんど劣化は認められなかった。
<Example 2> A negative electrode and a positive electrode are produced in the same manner as in Example 1. Next, the perfluorocarbon ion exchange membrane was cut into a size matching the diameters of the negative and positive electrodes, immersed in 2N hydrochloric acid, washed with water, and dried. This is used as a solid electrolyte. Using these materials, a positive electrode and a negative electrode were manufactured in the same manner as in Example 1, and a solid electrolyte battery was manufactured. In this case, the initial open-circuit potential at 25°C was 1340 mV. Thereafter, a charge/discharge test was performed every hour at 25° C. at a current density of 50 μA/d per electrode area. The results are shown in FIG. The horizontal axis is time and the vertical axis is volts. As a result of 100 charge/discharge tests, almost no deterioration was observed.

以上のように、水素固体電解質電池において、正極に過
酸化鉛を用い、これにカーボン粉末を混合することによ
って一次電池としてもまた二次電
As mentioned above, in hydrogen solid electrolyte batteries, lead peroxide is used as the positive electrode, and by mixing carbon powder with it, it can be used as both a primary battery and a secondary battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明に供する固体電解質電池の
概略構成図である。第2図は本発明の実施例1に係る固
体水素電池の放電特性図である。 第3図及び第4図は本発明の各実施例に係る固体水素電
池の充放電特性図である。 I・・・負極、2・・・正極、3・・・固体電解質、4
・・・集電板、5・・・リード線、6・・・押え板、7
・・・ビス。 代理人 弁理士 福 士 愛 彦(他2名)@/図 νp 第2図 t/h 第3図 Ol      2 1/h 第4図
FIG. 1 is a schematic configuration diagram of a solid electrolyte battery provided for detailed explanation of the present invention. FIG. 2 is a discharge characteristic diagram of the solid hydrogen battery according to Example 1 of the present invention. FIG. 3 and FIG. 4 are charge/discharge characteristic diagrams of solid hydrogen batteries according to each embodiment of the present invention. I... Negative electrode, 2... Positive electrode, 3... Solid electrolyte, 4
... Current collector plate, 5 ... Lead wire, 6 ... Holding plate, 7
···Screw. Agent Patent attorney Aihiko Fuku (2 others) @/Figure νp Figure 2 t/h Figure 3 Ol 2 1/h Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、負極物質が水素を金属水素化物として吸蔵する水素
吸蔵用材料、固体電解質が水素イオン導電体、正極物質
が水素イオンをゲスト物質として受容する物質でそれぞ
れ構成した固体水素電池において前記正極が、過酸化鉛
を主とする材料より成ることを特徴とする固体水素電池
1. In a solid hydrogen battery, the negative electrode material is a hydrogen storage material that stores hydrogen as a metal hydride, the solid electrolyte is a hydrogen ion conductor, and the positive electrode material is a material that accepts hydrogen ions as a guest material. A solid hydrogen battery characterized by being made of a material mainly consisting of lead peroxide.
JP60266758A 1985-11-25 1985-11-25 Solid hydrogen battery Pending JPS62126567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266758A JPS62126567A (en) 1985-11-25 1985-11-25 Solid hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266758A JPS62126567A (en) 1985-11-25 1985-11-25 Solid hydrogen battery

Publications (1)

Publication Number Publication Date
JPS62126567A true JPS62126567A (en) 1987-06-08

Family

ID=17435298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266758A Pending JPS62126567A (en) 1985-11-25 1985-11-25 Solid hydrogen battery

Country Status (1)

Country Link
JP (1) JPS62126567A (en)

Similar Documents

Publication Publication Date Title
CN110061285A (en) A kind of solid lithium battery and preparation method thereof
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
JPS60211778A (en) Solid electrolyte battery
US4140589A (en) Method for lead crystal storage cells and storage devices made therefrom
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
CN112768756B (en) Solid electrolyte material, and composite solid electrolyte and all-solid-state battery prepared from same
Ye et al. Metal hydride electrodes: The importance of surface area
JPS61163570A (en) Solid hydrogen electric cell
JPS62126567A (en) Solid hydrogen battery
JPH10302776A (en) Totally solid lithium secondary battery
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JPH041995B2 (en)
JPS61133581A (en) Solid state hydrogen cell
JPS6261273A (en) Hydrogen solid battery
KR19990026737A (en) How to Form a Cathode Conductive Network for Nickel-based Batteries
JP2762730B2 (en) Nickel-cadmium storage battery
JPS61147474A (en) Solid hydrogen cell
JPS61260545A (en) Hydrogen solid electrolyte cell
JPH0737610A (en) Manufacture of sealed alkaline storage battery using paste type nickel positive electrode
JPS6139453A (en) Enclosed metallic oxide-hydrogen battery
JPH0261100B2 (en)
JPH0465068A (en) Total solid voltage memory element
JPH0536437A (en) Method for initial charge and discharge of alkaline storage battery
JPH08236145A (en) Manufacture of alkaline storage battery, nickel positive electrode for alkaline storage battery, and alkaline storage battery
Salkind et al. Properties of cathode materials in alkaline cells