JPH0461468B2 - - Google Patents

Info

Publication number
JPH0461468B2
JPH0461468B2 JP60003674A JP367485A JPH0461468B2 JP H0461468 B2 JPH0461468 B2 JP H0461468B2 JP 60003674 A JP60003674 A JP 60003674A JP 367485 A JP367485 A JP 367485A JP H0461468 B2 JPH0461468 B2 JP H0461468B2
Authority
JP
Japan
Prior art keywords
hydrogen
battery
solid
positive electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60003674A
Other languages
Japanese (ja)
Other versions
JPS61163570A (en
Inventor
Motoo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60003674A priority Critical patent/JPS61163570A/en
Publication of JPS61163570A publication Critical patent/JPS61163570A/en
Publication of JPH0461468B2 publication Critical patent/JPH0461468B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • H01M10/347Gastight metal hydride accumulators with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は負極活物質、電解質及び正極活物質が
いずれも固体からなる固体水素電池に関し、特に
その正極材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a solid-state hydrogen battery in which a negative electrode active material, an electrolyte, and a positive electrode active material are all solid, and particularly relates to the positive electrode material thereof.

<従来技術> 近年、半導体技術及びこれらの応用技術の発展
に伴ない電子機器の消費電力は漸次低下される方
向にある。また、これら電子機器に用いられる電
池も消費電力の低下とともに、小型、薄型化が望
まれ、同時に信頼性の高いことが要求されるよう
になつてきた。このような要求に応えるものとし
て、固体電解質電池が一般的に知られている。固
体電解質電池は電解質にイオン導電体を有する固
体電解質を用いるため、電池からの液漏れがなく
また製造工程に於いても高度に自動化された半導
体製造技術を適用することができ、量産化し易い
といつた特徴を有する。
<Prior Art> In recent years, with the development of semiconductor technology and its applied technologies, the power consumption of electronic devices is gradually decreasing. In addition, batteries used in these electronic devices are desired to be smaller and thinner as power consumption decreases, and at the same time, they are also required to be highly reliable. Solid electrolyte batteries are generally known as batteries that meet these demands. Solid electrolyte batteries use a solid electrolyte with an ionic conductor as an electrolyte, so there is no leakage from the battery, and highly automated semiconductor manufacturing technology can be applied to the manufacturing process, making it easy to mass produce. It has unique characteristics.

従来、このような固体電解質としては銀、銅、
リチウム系の電池が開発されている。この中で、
銀イオンまたは銅イオンを用いた電池は固体電解
質のイオン電導度が比較的大きく大電流での放電
が可能であるという性質を有する。一方、リチウ
ム系の固体電解質電池は高いエネルギー密度と高
い出力電圧を有するが、用いる固体電解質のイオ
ン電導度が余り大きくないので大きな電流での放
電ができない。また、リチウム金属が非常に活性
であるため、耐酸化、耐湿のために電池の製造工
程や封口技術が複雑となる。更に上記のいずれの
系の固体電池においても二次電池化を考えた場合
充電時に負極において還元される導電種が樹枝状
に析出するためサイクル寿命が悪く、深い放電が
できないという大きな問題が残つている。
Traditionally, such solid electrolytes include silver, copper,
Lithium-based batteries are being developed. In this,
Batteries using silver ions or copper ions have a property that the solid electrolyte has a relatively high ionic conductivity and can be discharged at a large current. On the other hand, lithium-based solid electrolyte batteries have high energy density and high output voltage, but cannot be discharged with a large current because the ionic conductivity of the solid electrolyte used is not very high. In addition, since lithium metal is extremely active, the battery manufacturing process and sealing technology are complicated due to oxidation and moisture resistance. Furthermore, when considering the use of solid-state batteries in any of the above systems as secondary batteries, there remains the major problem that the conductive species that are reduced at the negative electrode during charging precipitate in a dendritic form, resulting in poor cycle life and the inability to perform deep discharge. There is.

<発明の背景> 本発明者は、負極活物質を金属水素化物として
水素を吸蔵する水素吸蔵用材料、固体電解質を水
素イオン導電体、正極活物質をゲスト物質として
水素イオンを受容する物質で構成することによつ
て電池となることを見い出した。この電池の場合
大きな電流での放電が可能であり、かつ負極に用
いる活物質が水素であるため、水素の拡散のみが
反応に関与する拡散型の電極となるので、従来の
ように金属イオンを導電種に用いた析出型の電極
のように充放電の繰り返しによつて生ずる樹枝状
の析出物はなく、サイクル寿命がよいという利点
を有する。
<Background of the Invention> The present inventor has developed a hydrogen storage material that stores hydrogen using a metal hydride as the negative electrode active material, a hydrogen ion conductor as the solid electrolyte, and a material that accepts hydrogen ions as a guest material as the positive electrode active material. He discovered that by doing so, it can be used as a battery. This battery is capable of discharging at a large current, and since the active material used in the negative electrode is hydrogen, it is a diffusion type electrode in which only the diffusion of hydrogen is involved in the reaction, so metal ions are not used as in conventional batteries. Unlike the precipitated electrodes used for the conductive species, there are no dendritic precipitates produced by repeated charging and discharging, and this has the advantage of a long cycle life.

上述した正極には水素イオンをゲスト物質とし
て受容する物質であればいずれも電池を構成する
ことは可能であるが、用いる材料によつて得られ
る電圧、放電可能な電流密度、二次電池化した場
合のサイクル特性は異なつてくる。
It is possible to construct a battery using any material that accepts hydrogen ions as a guest material for the positive electrode mentioned above, but depending on the material used, the voltage that can be obtained, the current density that can be discharged, and the ability to make a secondary battery The cycle characteristics will vary depending on the case.

<発明の目的> 本発明は、高い電圧と大きな放電電流を得るこ
とができ、かつ充放電による繰り返しサイクル特
性のよい正極を有する固体水素電池を提供するこ
とを目的とする。
<Objective of the Invention> An object of the present invention is to provide a solid hydrogen battery having a positive electrode that can obtain a high voltage and a large discharge current, and has good repeated cycle characteristics during charging and discharging.

<構成及び効果の説明> 水素を金属水素化物の状態で吸蔵する合金は水
素を吸蔵した状態においても固体である。水素吸
蔵合金は単体として水素を吸収する元素(Mg、
Ca、La、Ti、V等)と水素を活性化する触媒能
を有する元素(Fe、Co、Ni、Cu等)とを組合せ
ることによつてさまざまな解離圧、吸蔵量をもつ
ものを実現することができる。この水素吸蔵合金
を負極として用いる。固体電解質としては5酸化
アンチモン(Sb2O5、nH2O)、2酸化スズ
(SnO2、3H2O)等の水素イオン導電性酸化物や、
パーフルオロカーボン系等のイオン変換膜に代表
される固体高分子電解質等を用いる。正極材料と
しては水素イオンをゲスト物質として受容する物
質を用い、第1図に例示するような構造の電池を
構成する第1図において1は電極、2は固体電解
質、3は正極、4は集電体、5はリード線、6は
加圧用板、7はビスである。
<Description of structure and effects> An alloy that stores hydrogen in the form of a metal hydride remains solid even in the state in which hydrogen is stored. Hydrogen storage alloys contain elements (Mg,
By combining elements with catalytic ability to activate hydrogen (Fe, Co, Ni, Cu, etc.) with Ca, La, Ti, V, etc., we have created products with various dissociation pressures and storage capacities. can do. This hydrogen storage alloy is used as a negative electrode. Solid electrolytes include hydrogen ion conductive oxides such as antimony pentoxide (Sb 2 O 5 , nH 2 O) and tin dioxide (SnO 2 , 3H 2 O),
A solid polymer electrolyte, typified by a perfluorocarbon-based ion conversion membrane, etc., is used. As the positive electrode material, a substance that accepts hydrogen ions as a guest substance is used, and a battery having the structure as illustrated in FIG. 1 is constructed. In FIG. An electric body, 5 a lead wire, 6 a pressure plate, and 7 a screw.

この電池の起電反応は以下のようになると考え
られる。
The electromotive reaction of this battery is thought to be as follows.

負極:Metal−Hx放電 ――→ ←―― 充電Metal+xH+×xe- ……(1) 正極:xH++ABn+xe-放電 ――→ ←―― 充電HxABn ……(2) 又は 負極:Metal−Hx+xH2O放電 ――→ ←―― 充電Metal+xH3O++xe- ……(3) 正極:xH3O++ABn+xe-放電 −−→ ←―― 充電HxABn+xH2O ……(4) ここでMetalは水素吸蔵用材料であり、ABnは
水素をゲスト物質として取り込むことができる物
質である。用いる負極材料、正極材料によつて得
られる電位は異なつてくる。種々の電極材料を検
討した結果、正極材料としてMnO2を用い、これ
にアセチレンブラツク等のカーボン粉末を適量加
えることによつて高い平衡電位を有し、かつ大電
流放電が可能で、サイクル特性のよい正極の実現
が可能となつた。
Negative electrode: Metal−Hx discharge――→ ←− Charge Metal+xH + ×xe - …(1) Positive electrode: xH + +ABn+xe -Discharge―― → ←− Charge HxABn …(2) or Negative electrode: Metal−Hx+xH 2 O discharge――→ ←―― Charge Metal+xH 3 O + +xe - ……(3) Positive electrode: xH 3 O + +ABn+xe -Discharge−− → ←―― Charge HxABn+xH 2 O ……(4) Here, Metal absorbs hydrogen ABn is a material that can incorporate hydrogen as a guest substance. The potential obtained varies depending on the negative electrode material and positive electrode material used. As a result of studying various electrode materials, we found that by using MnO 2 as the positive electrode material and adding an appropriate amount of carbon powder such as acetylene black to this, it is possible to have a high equilibrium potential, enable large current discharge, and improve cycle characteristics. It has now become possible to create a good positive electrode.

実施例 1 市販のチタン(Ti)(純度99.5%)とニツケル
(Ni)(純度99.95%)を原子比で1:1となるよ
うに秤量、混合する。これをアーク溶解炉で溶解
する。この合金をステンレス反応容器に入れ、高
圧水素ガスを導入し、加温して水素化させる。水
素化した合金を取り出しアルゴンガス雰囲気中で
44μm以下に粉砕する。この粉末0.3gとテフロン
粉末0.015g及びアセチレンブラツク0.01gを混
合し、更に後述する固体電解質0.08gを加えて錠
剤成型器でペレツトに成型する。これを負極とす
る。
Example 1 Commercially available titanium (Ti) (purity 99.5%) and nickel (Ni) (purity 99.95%) were weighed and mixed in an atomic ratio of 1:1. This is melted in an arc melting furnace. This alloy is placed in a stainless steel reaction vessel, high-pressure hydrogen gas is introduced, and the alloy is heated and hydrogenated. Take out the hydrogenated alloy and put it in an argon gas atmosphere.
Grind to 44μm or less. 0.3 g of this powder, 0.015 g of Teflon powder and 0.01 g of acetylene black are mixed, 0.08 g of a solid electrolyte to be described later is added, and the mixture is molded into pellets using a tablet molding machine. This is used as the negative electrode.

次に5塩化アンチモン(SbCl5)を純水中へ滴
下し、水酸化アンチモンの白色沈殿を得た。これ
を洗浄、乾燥し、5酸化アンチモンを得た。これ
の0.1gを用い錠剤成型器でペレツトにする。こ
れを固体電解質とする。
Next, antimony pentachloride (SbCl 5 ) was dropped into pure water to obtain a white precipitate of antimony hydroxide. This was washed and dried to obtain antimony pentoxide. Use 0.1 g of this to make pellets using a tablet machine. This is used as a solid electrolyte.

次に電解マンガン0.5gを用いこれにアセチレ
ンブラツク0.01gと上述した固体電解質0.2gを
混合し、錠剤成型器でペレツトにする。これを正
極とする。これらを用いて第1図に示すような構
造の電池を構成する。この場合の初期開放電位は
約860mVであつた。その後100μA/cm2の電流密
度で放電させた。その結果を第2図に示す。横軸
は時間、縦軸はボルト(電圧)を表わしている。
Next, using 0.5 g of electrolytic manganese, 0.01 g of acetylene black and 0.2 g of the solid electrolyte mentioned above are mixed therewith, and pelletized using a tablet molding machine. This is used as the positive electrode. Using these, a battery having a structure as shown in FIG. 1 is constructed. The initial open-circuit potential in this case was about 860 mV. Thereafter, discharge was performed at a current density of 100 μA/cm 2 . The results are shown in FIG. The horizontal axis represents time, and the vertical axis represents volts (voltage).

実施例 2 実施例1と同様な方法でTi−Ni及びミツシユ
メタルよりTiNiMn0.01Hxの負極及び固体電解
質を作製する。次に電解マンガン0.5gを用いこ
れにアセチレンブラツク0.02gと固体電解質0.2
gを混合しこれを正極として電池を構成する。こ
の場合の初期開放電位は約1100mVであつた。そ
の後100μA/cm2の電池密度で放電させた。その結
果を第3図に示す。また、この電池を100μA/cm2
の電流密度で2時間ごとに充放電を繰り返すサイ
クル寿命テストを行なつた。その結果を第4図に
示す。100回の充放電テストを行なつた結果、ま
つたく劣化はみられなかつた。尚、上述の如く構
成された電池の開放電位が異なるのは以下のため
である。即ち、用いる水素吸蔵合金を水素化した
ときの水素含有量によつて開放電位は大きく異な
る。特にTi−Ni系のように水素解離圧に平坦部
をもたないものは水素含有量によつて開放電位に
差がある。今回実施例に用いたものはTi−Ni:
H0.8、実施例2に用いたものはTi−Ni:
Mn0.01H1.2である。
Example 2 A negative electrode and solid electrolyte of TiNiMn0.01Hx are produced from Ti-Ni and Mitsushi Metal in the same manner as in Example 1. Next, using 0.5 g of electrolytic manganese, add 0.02 g of acetylene black and 0.2 g of solid electrolyte.
g is mixed and a battery is constructed using this as a positive electrode. The initial open-circuit potential in this case was about 1100 mV. Thereafter, the battery was discharged at a cell density of 100 μA/cm 2 . The results are shown in FIG. In addition, this battery can be used at 100μA/cm 2
A cycle life test was conducted in which charging and discharging were repeated every 2 hours at a current density of . The results are shown in FIG. After 100 charging and discharging tests, no deterioration was observed. The reason why the open circuit potentials of the batteries configured as described above are different is as follows. That is, the open-circuit potential varies greatly depending on the hydrogen content when the hydrogen storage alloy used is hydrogenated. Particularly, in materials such as Ti--Ni that do not have a flat area in hydrogen dissociation pressure, there is a difference in open-circuit potential depending on the hydrogen content. The material used in this example is Ti-Ni:
H0.8, the material used in Example 2 is Ti-Ni:
Mn0.01H1.2.

以上の如く全固体水素電池において、正極に二
酸化マンガンを用い、これにカーボン粉末を混合
することによつて1次電池としてもまた2次電池
としても実用可能な全固体水素電池を構成するこ
とができる。
As described above, in an all-solid-state hydrogen battery, by using manganese dioxide for the positive electrode and mixing carbon powder with it, it is possible to construct an all-solid-state hydrogen battery that can be used as both a primary battery and a secondary battery. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する固体水素電池を
例示する概略構成図である。第2図及び第3図は
本発明の各実施例に係る固体水素電池の放電特性
図である。第4図は本発明の実施例に係る固体水
素電池の充放電特性図である。 1……負極、2……固体電解質、3……正極、
4……集電体、5……リード線、6……加圧用
板、7……ビス。
FIG. 1 is a schematic configuration diagram illustrating a solid hydrogen battery used for explaining the present invention. FIGS. 2 and 3 are discharge characteristic diagrams of solid hydrogen batteries according to each embodiment of the present invention. FIG. 4 is a diagram showing the charging and discharging characteristics of the solid hydrogen battery according to the embodiment of the present invention. 1... Negative electrode, 2... Solid electrolyte, 3... Positive electrode,
4... Current collector, 5... Lead wire, 6... Pressure plate, 7... Screw.

Claims (1)

【特許請求の範囲】 1 金属水素化物として水素を吸蔵する水素吸蔵
物質からなる負極と、水素イオン導電体からなる
固体電解質と、二酸化マンガンからなる正極とか
らなる二次電池であり、 上記負極と正極は上記固体電解質を構成する水
素イオン導電体が混合されてなることを特徴とす
る固体水素電池。
[Scope of Claims] 1. A secondary battery comprising a negative electrode made of a hydrogen storage material that stores hydrogen as a metal hydride, a solid electrolyte made of a hydrogen ion conductor, and a positive electrode made of manganese dioxide, the negative electrode and A solid hydrogen battery characterized in that the positive electrode is a mixture of hydrogen ion conductors constituting the solid electrolyte.
JP60003674A 1985-01-11 1985-01-11 Solid hydrogen electric cell Granted JPS61163570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003674A JPS61163570A (en) 1985-01-11 1985-01-11 Solid hydrogen electric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003674A JPS61163570A (en) 1985-01-11 1985-01-11 Solid hydrogen electric cell

Publications (2)

Publication Number Publication Date
JPS61163570A JPS61163570A (en) 1986-07-24
JPH0461468B2 true JPH0461468B2 (en) 1992-09-30

Family

ID=11563967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003674A Granted JPS61163570A (en) 1985-01-11 1985-01-11 Solid hydrogen electric cell

Country Status (1)

Country Link
JP (1) JPS61163570A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158761A (en) * 1986-12-19 1988-07-01 Sanyo Electric Co Ltd Solid hydrogen battery
KR101944863B1 (en) 2009-09-30 2019-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electrochemical capacitor
KR101883330B1 (en) 2009-09-30 2018-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Redox capacitor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107444A (en) * 1975-03-17 1976-09-24 Kogyo Gijutsuin
JPS5230700A (en) * 1975-09-02 1977-03-08 Daiichi Sangiyou Kk Simply packing and fabricating method of fish boxes
JPS5819878A (en) * 1981-07-14 1983-02-05 マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルング・デル・ヴイツセンシヤフテン・エ−・フアウ Battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107444A (en) * 1975-03-17 1976-09-24 Kogyo Gijutsuin
JPS5230700A (en) * 1975-09-02 1977-03-08 Daiichi Sangiyou Kk Simply packing and fabricating method of fish boxes
JPS5819878A (en) * 1981-07-14 1983-02-05 マツクス−プランク−ゲゼルシヤフト・ツ−ル・フエルデルング・デル・ヴイツセンシヤフテン・エ−・フアウ Battery

Also Published As

Publication number Publication date
JPS61163570A (en) 1986-07-24

Similar Documents

Publication Publication Date Title
JP4380265B2 (en) Water-based lithium secondary battery
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
JPS6122577A (en) Electrochemical generator with composite electrodes
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
KR100308313B1 (en) Battery
EP0156241B1 (en) Solid-state electrolytic battery
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
US3853623A (en) Additive for an alkaline battery employing divalent silver oxide positive active material
JPH0750606B2 (en) Non-aqueous electrolyte battery and method for producing positive electrode active material thereof
JPH0461468B2 (en)
JP2004362837A (en) Aqueous system lithium secondary battery
CN1107259A (en) Ni/metal hydride secondary cell
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH041995B2 (en)
US3898100A (en) Cathode mix for solid electrolyte devices
JPS62126567A (en) Solid hydrogen battery
US721682A (en) Reversible galvanic battery.
JPS6261273A (en) Hydrogen solid battery
JPH0467302B2 (en)
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
Flandrois et al. Battery electrodes based on metal chloride-graphite intercalation compounds
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
US3672997A (en) Sealed metallic oxide-indium secondary battery
Flandrois et al. Metal Chloride-Graphite Compounds as Cathode and Anode Materials for Batteries
JPS61133581A (en) Solid state hydrogen cell