JP4568124B2 - Air electrode and air secondary battery using the air electrode - Google Patents

Air electrode and air secondary battery using the air electrode Download PDF

Info

Publication number
JP4568124B2
JP4568124B2 JP2005007216A JP2005007216A JP4568124B2 JP 4568124 B2 JP4568124 B2 JP 4568124B2 JP 2005007216 A JP2005007216 A JP 2005007216A JP 2005007216 A JP2005007216 A JP 2005007216A JP 4568124 B2 JP4568124 B2 JP 4568124B2
Authority
JP
Japan
Prior art keywords
electrode
air
air electrode
secondary battery
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005007216A
Other languages
Japanese (ja)
Other versions
JP2006196329A (en
Inventor
正嗣 盛満
俊二 谷口
正尚 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Doshisha
Original Assignee
Kyushu Electric Power Co Inc
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Doshisha filed Critical Kyushu Electric Power Co Inc
Priority to JP2005007216A priority Critical patent/JP4568124B2/en
Publication of JP2006196329A publication Critical patent/JP2006196329A/en
Application granted granted Critical
Publication of JP4568124B2 publication Critical patent/JP4568124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ガス拡散性を有し酸素発生・酸素還元がともに可能な空気極、およびこの空気極を用いる空気二次電池、さらに詳細には正極・負極以外の補助電極を必要としない空気二次電池に関する。   The present invention relates to an air electrode having gas diffusibility and capable of both oxygen generation and oxygen reduction, an air secondary battery using the air electrode, and more specifically, an air electrode that does not require an auxiliary electrode other than a positive electrode and a negative electrode. Next battery.

周知のとおり、炭素粉末などの導電材と酸素還元触媒を組み合わせた正極と、亜鉛、アルミニウム、鉄、水素のいずれかを活物質とする負極、およびアルカリ水溶液のような電解液を備え、正極側においては空気中の酸素の還元反応により電力を得ることが可能な空気一次電池が実用に供されている。例えば、正極での酸素/水酸化物イオン対の反応と負極での亜鉛/酸化亜鉛対の反応を組み合わせた場合、起電力が約1.5Vの空気電池を得ることができる。   As is well known, a positive electrode comprising a combination of a conductive material such as carbon powder and an oxygen reduction catalyst, a negative electrode using any one of zinc, aluminum, iron, and hydrogen as an active material, and an electrolyte solution such as an alkaline aqueous solution. Has been put to practical use as an air primary battery capable of obtaining power by a reduction reaction of oxygen in the air. For example, when the reaction of the oxygen / hydroxide ion pair at the positive electrode and the reaction of the zinc / zinc oxide pair at the negative electrode are combined, an air battery having an electromotive force of about 1.5 V can be obtained.

現在実用に供されている空気電池は、放電のみが可能な一次電池である。この場合、正極は正極内部に酸素の浸透が可能なガス拡散性を有し、かつ酸素の還元をできるだけエネルギーロスが小さく、すなわちより小さい分極で行うことができるような酸素還元触媒が必要である。このような目的から、従来正極材料として、導電性を付与しかつ酸素還元触媒を保持するための炭素粉末と、酸素還元触媒である白金、さらにはガス拡散性を付与するとともに正極を成型体として維持する結着剤の役割を担うポリテトラフルオロエチレンなどのフッ素樹脂が用いられ、これらを成型・焼結したものが一般的によく知られている。   Air batteries currently in practical use are primary batteries that can only be discharged. In this case, the positive electrode has a gas diffusibility that allows oxygen to penetrate into the positive electrode, and an oxygen reduction catalyst that can reduce oxygen with as little energy loss as possible, that is, with a smaller polarization is required. . For this purpose, as a conventional positive electrode material, carbon powder for imparting conductivity and holding an oxygen reduction catalyst, platinum as an oxygen reduction catalyst, and further imparting gas diffusibility and using the positive electrode as a molded body A fluororesin such as polytetrafluoroethylene, which plays the role of a binder to maintain, is used, and those molded and sintered are generally well known.

しかしながら、空気一次電池はその名のとおり放電のみが可能であり、充電によって再生利用できる機能は備えていない。充電が可能となるために、正極、負極のそれぞれの電極において酸化反応と還元反応がいずれも進行可能でなければならない。先に挙げた空気一次電池で用いられている負極は、亜鉛、アルミニウム、鉄、水素などのいずれの活物質においても、酸化還元が可能な、すなわち充放電に供することができる負極を構成することが可能である。実際に亜鉛の場合にはニッケル−亜鉛二次電池の負極として利用されている亜鉛電極、水素の場合であればニッケル−水素二次電池の負極として利用されている水素吸蔵合金電極がある。   However, the air primary battery can only be discharged as its name suggests, and does not have a function that can be recycled by charging. In order to allow charging, both the oxidation reaction and the reduction reaction must be able to proceed at each of the positive electrode and the negative electrode. The negative electrode used in the air primary battery mentioned above should constitute a negative electrode that can be oxidized and reduced in any active material such as zinc, aluminum, iron, and hydrogen, that is, can be used for charging and discharging. Is possible. In fact, in the case of zinc, there is a zinc electrode that is used as a negative electrode of a nickel-zinc secondary battery, and in the case of hydrogen, there is a hydrogen storage alloy electrode that is used as a negative electrode of a nickel-hydrogen secondary battery.

一方、正極の場合、酸素還元触媒として用いられている各種材料は、酸素発生に対する触媒能が低く、現在用いられている空気一次電池用の正極では、充電は実用上不可能である。加えて、正極に炭素材料を使用している場合には、仮に充電によって正極上で酸素発生反応を起こそうとすると、同時に炭素が酸化されて最終的には二酸化炭素までに至り、充電とともに炭素が著しく消耗されて使用不能になる。つまり、従来の空気一次電池に使用されている正極では、単に外部回路から電気を供給して充電しても、負極側は対応可能であっても、正極側ではこれに対応する反応を生じせしめることは不可能であり、二次電池として利用することは困難であった。   On the other hand, in the case of the positive electrode, various materials used as an oxygen reduction catalyst have a low catalytic ability for oxygen generation, and charging is practically impossible with the positive electrode for air primary batteries currently used. In addition, when a carbon material is used for the positive electrode, if an oxygen generation reaction is caused on the positive electrode by charging, the carbon is simultaneously oxidized and finally reaches carbon dioxide. Will be worn out and become unusable. In other words, the positive electrode used in the conventional primary air battery can be charged by simply supplying electricity from an external circuit, or the negative electrode can respond, but the positive electrode causes a corresponding reaction. It was impossible to use it as a secondary battery.

これに対して、空気電池を二次電池として応用する試みがこれまでなされてきた。例えば、特許文献1には、光電変換部と電池部から空気電池を構成し、電池部は、金属電極、電解質、空気極、および補助電極からなり、空気極は空気中と電解質中に露出し、金属電極と補助電極は前記電解質中に配置され、かつ、前記金属電極と前記補助電極間には、金属電極の充電が行われるような状態に光電変換部の出力が接続され、これによって、放電で消耗した金属電極の充電を行うことができる充電式空気電池が開示されている。   On the other hand, attempts have been made to apply air batteries as secondary batteries. For example, in Patent Document 1, an air battery is constituted by a photoelectric conversion part and a battery part, and the battery part is composed of a metal electrode, an electrolyte, an air electrode, and an auxiliary electrode, and the air electrode is exposed to the air and the electrolyte. The metal electrode and the auxiliary electrode are disposed in the electrolyte, and the output of the photoelectric conversion unit is connected between the metal electrode and the auxiliary electrode so that the metal electrode is charged. A rechargeable air battery capable of charging a metal electrode consumed by discharge is disclosed.

また、特許文献2には、正極としてガス拡散電極を、負極として水素吸蔵合金を、負極充電用補助極として触媒性電極体を備えてなるアルカリ二次電池、および前記ガス拡散電極が空気極であるアルカリ二次電池、並びに前記触媒性電極体の製造方法が開示されている。   Patent Document 2 discloses an alkaline secondary battery including a gas diffusion electrode as a positive electrode, a hydrogen storage alloy as a negative electrode, and a catalytic electrode body as an auxiliary electrode for negative electrode charging, and the gas diffusion electrode as an air electrode. A certain alkaline secondary battery and a method for producing the catalytic electrode body are disclosed.

さらに、特許文献3には、ニッケル粉末と、このニッケル粉末上に担持されたイリジウムおよび/またはイリジウム酸化物と、前記ニッケル粉末上に担持された酸素還元触媒と、結着剤とを配合してなる空気極とその製造方法、およびこの空気極を正極とし、亜鉛、鉄、アルミニウム、水素のいずれか1つを活物質とする負極を備えている空気二次電池が開示されている。
特開2000−133328号公報 特開平7−282860号公報 特開2002−158013号公報
Further, Patent Document 3 includes nickel powder, iridium and / or iridium oxide supported on the nickel powder, an oxygen reduction catalyst supported on the nickel powder, and a binder. And an air secondary battery including a negative electrode using the air electrode as a positive electrode and any one of zinc, iron, aluminum, and hydrogen as an active material.
JP 2000-133328 A JP-A-7-282860 JP 2002-158013 A

上記特許文献1、2で開示されている充電式空気電池やアルカリ二次電池においては、正極、負極以外に、補助電極または負極充電用補助極と称する充電をするための第3の電極が必要である。したがって、正極、負極のみからなる空気一次電池に比べて電池の構造が複雑であり、電池構成部材が多く、製造プロセスも複雑化し、多工程になるという欠点や、第3の電極が必須要件であるため、この電極分の容積、重量が加味されることにより、空気電池の大きなメリットである単位容積当たりもしくは単位重量当たりのエネルギー密度や出力密度が低下するという欠点があった。また、第3の電極を必要とする場合には、正極や負極を単純に積層化して大型化を図るとともに、よりエネルギー密度や出力密度を向上させることは極めて困難になるという欠点があった。   In the rechargeable air battery and alkaline secondary battery disclosed in Patent Documents 1 and 2 above, a third electrode for charging called an auxiliary electrode or an auxiliary electrode for negative electrode charging is required in addition to the positive electrode and the negative electrode. It is. Therefore, the structure of the battery is more complicated than that of an air primary battery consisting only of a positive electrode and a negative electrode, there are many battery components, the manufacturing process is complicated, and there are many steps, and the third electrode is an essential requirement. Therefore, when the volume and weight of this electrode are taken into account, there is a drawback that the energy density and output density per unit volume or unit weight, which is a great merit of the air battery, is reduced. Further, when the third electrode is required, there is a drawback that it is extremely difficult to increase the size of the positive electrode and the negative electrode by simply laminating them and to further increase the energy density and output density.

すなわち、空気電池を二次電池として応用する上では、第3の電極を用いることなく、正極で酸素発生(充電時)・酸素還元(放電時)のいずれも行うことができる、いわゆる二元機能を備えた空気極を用いることが望ましく、軽量化、大容量化、高エネルギー密度化、高出力密度化といった諸特性を向上させるためには、二元機能を備えた空気極を用いることが不可欠である。一方、このような二元機能を備えた空気極については、これまで空気一次電池で使用されている空気極と同様な構造をベースとして、炭素粉末とともに酸素還元用触媒と酸素発生用触媒を混合して構成されたものの例もあるが、炭素粉末を使用しているため、充電によりこれが消耗し、充放電サイクルを繰り返すとその消耗によって早期に使用不能になるという欠点があった。   In other words, when applying an air battery as a secondary battery, a so-called dual function that can perform oxygen generation (during charging) and oxygen reduction (during discharge) at the positive electrode without using the third electrode. It is desirable to use an air electrode with a dual function, in order to improve various characteristics such as weight reduction, large capacity, high energy density, and high power density. It is. On the other hand, the air electrode having such a dual function is based on the same structure as the air electrode used in the air primary battery so far, and the oxygen reduction catalyst and the oxygen generation catalyst are mixed together with the carbon powder. However, since carbon powder is used, it is consumed by charging, and when the charge / discharge cycle is repeated, there is a drawback that it becomes unusable early due to the consumption.

これに対して、上記特許文献3で開示されている空気極は、炭素粉末のかわりにニッケル粉末を用いており、さらにこのニッケル粉末に担持された酸素発生と酸素還元に対する触媒を備えていることから、炭素粉末のような充電による消耗がなく、充放電サイクルに対して高い耐久性を有するとされている。   In contrast, the air electrode disclosed in Patent Document 3 uses nickel powder instead of carbon powder, and further includes a catalyst for oxygen generation and oxygen reduction supported on the nickel powder. Therefore, it is said that there is no consumption by charge like carbon powder, and it has high durability with respect to the charge / discharge cycle.

しかしながら、2種類の触媒を使用するため構成や製造方法が複雑であり、またそれぞれの触媒が単独の機能しか有しないために、酸素還元や酸素発生に対する分極、特に酸素還元に対する分極が大きいという欠点があった。さらに、酸素還元触媒は酸素発生に対する耐久性が低いため、これが充放電サイクル特性を低下させる要因になるという欠点があった。さらに、ニッケル粉末上に直接酸素発生触媒や酸素還元触媒を担持する方法において、ニッケル粉末の高温での熱処理を行うために、ニッケル粉末が酸化され、これによってニッケル粉末の導電性が低くなるとともに、電解液であるアルカリ水溶液中でこのニッケルの酸化物が反応する場合には、これがニッケル粉末間の導通を阻害して、充放電サイクル特性を低下させる可能性があるという欠点があった。   However, since two types of catalysts are used, the structure and manufacturing method are complicated, and since each catalyst has only a single function, the polarization of oxygen reduction and oxygen generation, particularly the polarization of oxygen reduction is large. was there. Furthermore, since the oxygen reduction catalyst has low durability against oxygen generation, there is a drawback that this becomes a factor of deteriorating charge / discharge cycle characteristics. Furthermore, in the method of directly supporting the oxygen generating catalyst or oxygen reduction catalyst on the nickel powder, the nickel powder is oxidized in order to perform the heat treatment of the nickel powder at a high temperature, thereby reducing the conductivity of the nickel powder. When this nickel oxide reacts in an alkaline aqueous solution that is an electrolytic solution, there is a drawback that this may hinder conduction between nickel powders and may deteriorate charge / discharge cycle characteristics.

上記のような課題に対して、本発明は、ガス拡散性とともに酸素発生と酸素還元が可能な二元機能を備え、酸素還元時の分極が小さく、かつ酸素発生・還元サイクルに対して高耐久性をする空気極の提供を目的とする。   In response to the above problems, the present invention has a dual function capable of generating oxygen and reducing oxygen with gas diffusibility, having low polarization during oxygen reduction, and having high durability against oxygen generation / reduction cycles. The purpose is to provide a positive air electrode.

また、本発明は、正極と負極のみで充放電が可能な簡単な構成で、高エネルギー密度、高出力密度、高耐久性を有し、かつ積層化による大容量化が容易に可能な空気二次電池を提供することを目的とする。   In addition, the present invention has a simple configuration capable of charging / discharging with only the positive electrode and the negative electrode, has a high energy density, a high output density, a high durability, and can easily increase the capacity by stacking. An object is to provide a secondary battery.

本発明者らは、上記課題に対して、新しい二元機能を有する触媒材料の開発を行い、またこれとともにニッケル粉末を利用した新しい空気極の構成、製造方法、製造条件の検討やその特性評価とともに、この空気極を利用する二次電池の作製とその特性評価に対して様々な研究を行った結果より得られた知見に基づいて本発明をなすに至った。   In response to the above problems, the present inventors have developed a catalyst material having a new dual function, and at the same time, studied a new air electrode configuration, manufacturing method, manufacturing conditions, and characteristic evaluation using nickel powder. At the same time, the present invention has been made based on the knowledge obtained from the results of various studies on the production and evaluation of the secondary battery using the air electrode.

すなわち、本発明は、ニッケル粉末と、イリジウムを含むパイロクロア型酸化物と、結着剤とを混合してなる空気極である。ここで、イリジウムを含むパイロクロア型酸化物とは、パイロクロア型酸化物のモル組成を表す一般的な表現であるA7−x(但し、−1≦x≦1)において、Bサイトの元素がイリジウムである酸化物であり、Aサイトの元素としてはビスマスや鉛などが挙げられる。また、結着剤としては、撥水性を有するとともに、ニッケル粉末を相互に結着させながらその間隙にガスの拡散を許容することを可能にするものであって、ポリテトラフルオロエチレンなどのフッ素樹脂系材料が用いられるが、上記条件を満足するものであれば、特にこれに限定されるものではない。 That is, the present invention is an air electrode formed by mixing nickel powder, pyrochlore oxide containing iridium, and a binder. Here, the pyrochlore type oxide containing iridium is a B site in A 2 B 2 O 7-x (where −1 ≦ x ≦ 1), which is a general expression representing the molar composition of the pyrochlore type oxide. Is an oxide in which the element is iridium, and examples of the A site element include bismuth and lead. The binder is water-repellent and allows the diffusion of gas into the gap while binding nickel powder to each other, and is a fluororesin such as polytetrafluoroethylene. A system material is used, but the material is not particularly limited as long as the above conditions are satisfied.

ニッケル粉末と、イリジウムを含むパイロクロア型酸化物と、結着剤との配合割合は、質量比で、98.9〜20:0.1〜60:1〜20が好ましい。イリジウムを含むパイロクロア型酸化物が0.1質量%よりも少ないと空気極内で触媒が十分に分布できず、空気極全体で触媒の作用が十分に得られないので好ましくなく、また60質量%よりも多くなると空気極内でニッケルに比べて導電性の低い酸化物の割合が増えるため、空気極全体の電気抵抗が大きくなるため好ましくない。また、結着剤が1質量%よりも少ないと空気極内に撥水性を十分に付与することができず、ガス拡散性が低下して酸素還元分極が大きくなるとともに、電解液が空気極を通って大気側まで浸透して電解液漏れを生じて空気極として機能することができなくなるため好ましくなく、また20質量%よりも多くなると空気極内の撥水性が強くなりすぎて電解液が空気極内に浸透することが困難となり、酸素発生の際に電解液が空気極内部でニッケル粉末および触媒と接触する面積が減少して、酸素発生の分極が大きくなるため好ましくない。また、これらの理由からニッケル粉末の割合は、98.9〜20質量%が好ましい。   The mixing ratio of the nickel powder, the pyrochlore-type oxide containing iridium, and the binder is preferably 98.9 to 20: 0.1 to 60: 1 to 20 in terms of mass ratio. If the amount of pyrochlore oxide containing iridium is less than 0.1% by mass, the catalyst cannot be sufficiently distributed in the air electrode, and the catalyst function cannot be sufficiently obtained in the entire air electrode. If the amount is more than the upper limit, the ratio of the oxide having a lower conductivity than that of nickel in the air electrode is increased, so that the electric resistance of the entire air electrode is increased, which is not preferable. Further, if the binder is less than 1% by mass, water repellency cannot be sufficiently imparted in the air electrode, the gas diffusibility is lowered and the oxygen reduction polarization is increased, and the electrolyte is used for the air electrode. It is not preferable because it penetrates to the atmosphere side and leaks the electrolyte and cannot function as an air electrode. When the amount exceeds 20% by mass, the water repellency in the air electrode becomes too strong and the electrolyte becomes air. It is difficult to penetrate into the electrode, and the area where the electrolyte solution contacts with the nickel powder and the catalyst inside the air electrode during oxygen generation is reduced, which increases the polarization of oxygen generation. For these reasons, the nickel powder ratio is preferably 98.9 to 20% by mass.

本発明者らは、イリジウムを含むパイロクロア型酸化物とニッケル粉末を構成材料とする空気極が、電解液であるアルカリ水溶液中での酸素発生と酸素還元に対して高い触媒性を発揮することを見出した。ここでイリジウムを含むパイロクロア型酸化物は、ニッケル粉末上に担持されているかおよび/またはアルカリ水溶液と空気との両方に対してニッケル粉末とともに接触した状態(パイロクロア型酸化物がニッケル粉末と混合されている状態)にあり、酸素還元および酸素発生のいずれに対しても触媒として作用する。特に、詳細は明らかではないが、本発明者らはイリジウムを含むパイロクロア型酸化物とニッケル粉末との間における電子的および化学的な相互作用によって、従来の空気極に比べて酸素発生と酸素還元に対する高い触媒能を発揮することを見出した。さらに、このような作用によって、空気極内部における酸素発生と酸素還元がいずれも円滑に進行し、副反応であるニッケル粉末自身の酸化や還元が抑制されることによって、ニッケル粉末の消耗が低減され、従来の炭素粉末を用いる空気極や、ニッケル粉末と他の金属系および/または酸化物系の触媒とを組み合わせた構成を有する空気極に比べて、酸素発生・還元サイクルを繰り返してもより高い耐久性を実現できることを見出した。   The present inventors have shown that an air electrode comprising pyrochlore oxide containing iridium and nickel powder exhibits high catalytic properties for oxygen generation and oxygen reduction in an alkaline aqueous solution as an electrolyte. I found it. Here, the pyrochlore type oxide containing iridium is supported on the nickel powder and / or is in contact with both the alkaline aqueous solution and air together with the nickel powder (the pyrochlore type oxide is mixed with the nickel powder). And acts as a catalyst for both oxygen reduction and oxygen generation. In particular, although the details are not clear, the present inventors have developed oxygen and oxygen reduction compared to the conventional air electrode due to electronic and chemical interaction between the pyrochlore oxide containing iridium and the nickel powder. It has been found that it exhibits a high catalytic ability for. Furthermore, by such an action, both oxygen generation and oxygen reduction inside the air electrode proceed smoothly, and the oxidation and reduction of the nickel powder itself, which is a side reaction, is suppressed, thereby reducing the consumption of the nickel powder. Compared with conventional air electrodes using carbon powder and air electrodes having a combination of nickel powder and other metal-based and / or oxide-based catalysts, the oxygen generation / reduction cycle is higher. It has been found that durability can be realized.

また、本発明は、前記イリジウムを含むパイロクロア型酸化物がビスマスイリジウム酸化物である空気極である。ここで、ビスマスイリジウム酸化物とは、先に示したパイロクロア型酸化物の組成式においてBiIr7−xで示される酸化物である。この酸化物は、イリジウムを含むパイロクロア型酸化物の中でも、特にニッケル粉末との組合せにおいて、酸素発生や酸素還元に対して分極が低く、かつ高い電流密度や高温での作動においても充放電サイクルに対して高い耐久性を実現することが可能となる。 Further, the present invention is the air electrode, wherein the pyrochlore oxide containing iridium is bismuth iridium oxide. Here, the bismuth iridium oxide is an oxide represented by Bi 2 Ir 2 O 7-x in the composition formula of the pyrochlore oxide described above. This oxide is a pyrochlore type oxide containing iridium, especially in combination with nickel powder, and has low polarization with respect to oxygen generation and oxygen reduction, and can be charged and discharged even at high current density and high temperature operation. On the other hand, high durability can be realized.

また、本発明は、上記の空気極を正極とし、亜鉛、鉄、アルミニウム、水素のいずれか1つを活物質とする負極を備えている空気二次電池である。ここで、亜鉛、鉄、アルミニウムの各元素を活物質とする負極については、従来の亜鉛−空気電池、鉄−空気電池、アルミニウム−空気電池に用いられているような負極を使用することができる。また、水素を活物質とする負極については、La−Ni系合金、La−Nd−Ni系合金、La−Gd−Ni系合金、La−Y−Ni系合金、La−Co−Ni系合金、La−Ce−Ni系合金、La−Ni−Ag系合金、La−Ni−Fe系合金、La−Ni−Cr系合金、La−Ni−Pd系合金、La−Ni−Cu系合金、La−Ni−Al系合金、La−Ni−Mn系合金、La−Ni−In系合金、La−Ni−Sn系合金、La−Ni−Ga系合金、La−Ni−Si系合金、La−Ni−Ge系合金、La−Ni−Al−Co系合金、La−Ni−Al−Mn系合金、La−Ni−Al−Cr系合金、La−Ni−Al−Cu系合金、La−Ni−Al−Si系合金、La−Ni−Al−Ti系合金、La−Ni−Al−Zr系合金、La−Ni−Mn−Zr系合金、La−Ni−Mn−Ti系合金、La−Ni−Mn−V系合金、La−Ni−Cr−Mn系合金、La−Ni−Cr−Zr系合金、La−Ni−Fe−Zr系合金、La−Ni−Cu−Zr系合金、並びに、上記合金中のLa元素をミッシュメタルで置き換えた合金、また、Ti−Zr−Mn−Mo系合金やZr−Fe−Mn系合金、Mg−Ni系合金等のTi、Fe、Mn、Al、Ce、Ca、Mg、Zr、Nb、V、Co、Ni、Cr元素の2組以上の組合せからなる合金等の水素吸蔵合金、さらには、Ti、V、Zr、La、Pd、Pt等の水素化物を形成する(水素吸蔵性を有する)金属、または上記合金や金属の水素化物(水素を吸蔵した物質)などを用いることができるが、水素の吸蔵放出が可能な材料であれば、特に上記の組成に限定されるものではない。   Further, the present invention is an air secondary battery including a negative electrode using the air electrode as a positive electrode and any one of zinc, iron, aluminum, and hydrogen as an active material. Here, as a negative electrode using each element of zinc, iron, and aluminum as an active material, a negative electrode used in a conventional zinc-air battery, iron-air battery, or aluminum-air battery can be used. . Moreover, about the negative electrode which uses hydrogen as an active material, La-Ni system alloy, La-Nd-Ni system alloy, La-Gd-Ni system alloy, La-Y-Ni system alloy, La-Co-Ni system alloy, La-Ce-Ni alloy, La-Ni-Ag alloy, La-Ni-Fe alloy, La-Ni-Cr alloy, La-Ni-Pd alloy, La-Ni-Cu alloy, La- Ni-Al alloy, La-Ni-Mn alloy, La-Ni-In alloy, La-Ni-Sn alloy, La-Ni-Ga alloy, La-Ni-Si alloy, La-Ni- Ge-based alloy, La-Ni-Al-Co-based alloy, La-Ni-Al-Mn-based alloy, La-Ni-Al-Cr-based alloy, La-Ni-Al-Cu-based alloy, La-Ni-Al- Si-based alloy, La-Ni-Al-Ti-based alloy, La-Ni-Al-Zr Alloy, La-Ni-Mn-Zr alloy, La-Ni-Mn-Ti alloy, La-Ni-Mn-V alloy, La-Ni-Cr-Mn alloy, La-Ni-Cr-Zr alloy Alloys, La-Ni-Fe-Zr alloys, La-Ni-Cu-Zr alloys, alloys in which the La element in the above alloys is replaced by misch metal, Ti-Zr-Mn-Mo alloys, Zr-Fe-Mn alloys, Mg-Ni alloys, etc. Alloys composed of combinations of two or more of Ti, Fe, Mn, Al, Ce, Ca, Mg, Zr, Nb, V, Co, Ni, Cr elements Further, a metal that forms a hydride such as Ti, V, Zr, La, Pd, and Pt (having hydrogen storage properties), or a hydride of the above alloy or metal (a substance that stores hydrogen) ) Etc., but occlusion of hydrogen If out material possible, it is not particularly limited to the above composition.

本発明の空気二次電池では、第3の電極を必要とすることなく、正極と負極のみで充放電が可能な簡単な構成で、高エネルギー密度、高出力密度、高耐久性を有し、かつ積層化による大容量化が容易に可能な空気二次電池を提供することが可能となる。   The air secondary battery of the present invention has a high energy density, a high output density, and a high durability with a simple configuration capable of charging and discharging only with a positive electrode and a negative electrode without the need for a third electrode, In addition, it is possible to provide an air secondary battery that can be easily increased in capacity by stacking.

また、本発明は、上記の負極が水素吸蔵合金である空気二次電池である。水素吸蔵合金は、亜鉛負極、鉄負極、アルミニウム負極に比べて、充放電サイクルに対する耐久性や、急激な負荷変動に対する応答特性に優れるため、より高い充放電サイクル性能を有するとともに、負荷応答特性に優れることで、応用範囲の広い二次電池を提供することが可能となる。   Moreover, this invention is an air secondary battery whose said negative electrode is a hydrogen storage alloy. Compared to zinc negative electrode, iron negative electrode, and aluminum negative electrode, the hydrogen storage alloy is superior in durability to charge / discharge cycles and response characteristics to sudden load fluctuations, so it has higher charge / discharge cycle performance and load response characteristics. By being excellent, it is possible to provide a secondary battery with a wide application range.

以上説明したように、本発明によれば下記の効果を奏する。   As described above, the present invention has the following effects.

(1)ガス拡散性とともに酸素発生と酸素還元が可能な二元機能を備え、かつ高い酸素発生・還元触媒能を有し、酸素発生・還元サイクルに対して高耐久性を有する空気極を提供できることから、空気極の電極抵抗、酸素発生・還元反応に伴う分極が低減され、空気極におけるエネルギーロスを低減し、出力向上を図ることができるとともに、空気極の長寿命化を図ることができる。 (1) Providing an air electrode that has a dual function capable of generating oxygen and reducing oxygen as well as gas diffusivity, has high oxygen generation / reduction catalytic ability, and has high durability against oxygen generation / reduction cycles. As a result, the electrode resistance of the air electrode, the polarization accompanying oxygen generation / reduction reactions are reduced, energy loss in the air electrode can be reduced, the output can be improved, and the life of the air electrode can be extended. .

(2)上記のような優れた特性、効果を有する空気極を用いた空気二次電池が提供できることから、第3の電極を必要としない単純な構造で積層化による大容量化および軽量化が実現可能となり、エネルギー密度および出力密度が向上するとともに、空気極の耐久性が高いことで極めて長寿命な二次電池となる。 (2) Since an air secondary battery using an air electrode having the above-described excellent characteristics and effects can be provided, a large capacity and light weight can be achieved by stacking with a simple structure that does not require the third electrode. It becomes feasible, the energy density and the output density are improved, and the durability of the air electrode is high, so that the secondary battery has an extremely long life.

以下、本発明を実施例、比較例を用いてより詳しく説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
0.6020gのBi(NO・5HOと0.6378gのHIrCl・6HOを75℃の蒸留水300cmに溶解し、攪拌・混合してから、2mol/dmのNaOH水溶液を加えた。その際、浴温度は75℃で、酸素バブリングを行いながら3日間攪拌した。これによって生じた沈殿物を含む溶液を85℃で保持して蒸発乾固させてペースト状とした。このペースト状のものを蒸発皿に移し、120℃、12時間乾燥させてから乳鉢で粉砕した後に、空気雰囲気中で600℃、2時間焼成した。次に、焼成物中に含まれる副生成物を除去するために、70℃の蒸留水を用いて吸引ろ過し、パイロクロア型のビスマスイリジウム酸化物を単離した。さらに、これを120℃、12時間乾燥させた後に、乳鉢を用いて粉砕してビスマスイリジウム酸化物粉末を得た。尚、その構造はX線回折法によりパイロクロア型であることを確認した。
Example 1
0.6020 g of Bi (NO 3 ) 3 .5H 2 O and 0.6378 g of H 2 IrCl 6 .6H 2 O were dissolved in 300 cm 3 of distilled water at 75 ° C., stirred and mixed, and then 2 mol / dm 3 Of aqueous NaOH was added. At that time, the bath temperature was 75 ° C., and the mixture was stirred for 3 days while carrying out oxygen bubbling. The solution containing the precipitate formed thereby was kept at 85 ° C. and evaporated to dryness to obtain a paste. The paste-like material was transferred to an evaporating dish, dried at 120 ° C. for 12 hours, pulverized in a mortar, and then baked in an air atmosphere at 600 ° C. for 2 hours. Next, in order to remove by-products contained in the fired product, suction filtration was performed using distilled water at 70 ° C. to isolate pyrochlore-type bismuth iridium oxide. Furthermore, after drying this at 120 degreeC for 12 hours, it grind | pulverized using the mortar and obtained the bismuth iridium oxide powder. The structure was confirmed to be a pyrochlore type by X-ray diffraction.

このようにして得られたビスマスイリジウム酸化物粉末、ニッケル粉末(純度99.8%、粒径3〜7μm)、市販のPTFE(ポリテトラフルオロエチレン)粒子懸濁液を攪拌混合して粘土状とした。この時、ビスマスイリジウム酸化物粉末、ニッケル粉末、PTFE粒子の質量比を10:80:10とした。粘土状としたものを室温で約30分間乾燥させてから、集電体となるニッケル網上に100kg/cmでディスク状にプレス成形してから、窒素雰囲気中370℃で12分間熱処理して空気極を作製した。 The thus obtained bismuth iridium oxide powder, nickel powder (purity 99.8%, particle size 3 to 7 μm), and commercially available PTFE (polytetrafluoroethylene) particle suspension were stirred and mixed to form a clay. did. At this time, the mass ratio of bismuth iridium oxide powder, nickel powder, and PTFE particles was 10:80:10. The clay-like material was dried at room temperature for about 30 minutes, pressed into a disk shape at 100 kg / cm 2 on a nickel mesh as a current collector, and then heat-treated at 370 ° C. for 12 minutes in a nitrogen atmosphere. An air electrode was produced.

(比較例1)
空気極を以下のように作製した。ニッケル粉末(純度99.8%、粒径3〜7μm)約5gを金属イリジウム換算で1mg/cmを含む塩化イリジウム酸および金属白金換算で1mg/cmを含む塩化白金酸の混合溶液50cm中に約60分間浸漬した後、空気雰囲気中の電気炉で470℃、2分間加熱処理した(粉末1)。粉末1をXPSおよびEDXにより分析した結果、粉末1の表面に酸化イリジウムおよび白金が担持されていることを確認した。粉末1とニッケル粉末(純度99.8%、粒径3〜7μm)と市販のPTFE(ポリテトラフルオロエチレン)粒子懸濁液を攪拌混合して粘土状とした後、室温で約30分間乾燥させた。この時、粉末1、ニッケル粉末、PTFE粒子の質量比を30:60:10とした。乾燥させたものをニッケル網上に100kg/cmでディスク状にプレス成形してから、窒素雰囲気中370℃で12分間熱処理して空気極を作製した。
(Comparative Example 1)
The air electrode was produced as follows. A mixed solution of about 5 g of nickel powder (purity 99.8%, particle size 3-7 μm) containing iridium acid containing 1 mg / cm 3 in terms of metal iridium and chloroplatinic acid containing 1 mg / cm 3 in terms of metal platinum 50 cm 3 After being immersed therein for about 60 minutes, it was heated at 470 ° C. for 2 minutes in an electric furnace in an air atmosphere (powder 1). As a result of analyzing powder 1 by XPS and EDX, it was confirmed that iridium oxide and platinum were supported on the surface of powder 1. Powder 1 and nickel powder (purity 99.8%, particle size 3 to 7 μm) and commercially available PTFE (polytetrafluoroethylene) particle suspension were mixed by stirring to form a clay, and then dried at room temperature for about 30 minutes. It was. At this time, the mass ratio of powder 1, nickel powder, and PTFE particles was set to 30:60:10. The dried product was pressed into a disk shape at 100 kg / cm 2 on a nickel net, and then heat-treated at 370 ° C. for 12 minutes in a nitrogen atmosphere to produce an air electrode.

上記実施例1、比較例1で得られた各空気極について、対極に白金板(14cm)、参照極に水銀−酸化水銀電極、電解液に7mol/dmのKOH水溶液を用いて定電流法による分極曲線の作成を行った。なお、測定方法は定法に従い、電解液中に対極を浸漬し、電解液と参照極間は液絡で接続し、空気極はテフロン(登録商標)製ホルダーを用いて一方が電解液に、他方が空気に接触する構成とした。酸素発生反応(アノード分極)、酸素還元反応(カソード分極)のそれぞれの分極特性図を図1に示した。また、同じ構成で空気極に電流密度±50mA/cm、電流印可時間10分、休止時間1分として、周期的に極性を反転させるパルス電流を印可し、その際の電位の変化を測定した。尚、特性評価は60℃で行った。 For each air electrode obtained in Example 1 and Comparative Example 1, a constant current using a platinum plate (14 cm 2 ) as a counter electrode, a mercury-mercury oxide electrode as a reference electrode, and a 7 mol / dm 3 KOH aqueous solution as an electrolyte. A polarization curve was created by the method. The measuring method is in accordance with a standard method. The counter electrode is immersed in the electrolytic solution, the electrolytic solution and the reference electrode are connected with a liquid junction, and the air electrode is used as the electrolytic solution with a Teflon (registered trademark) holder. Was configured to be in contact with air. The respective polarization characteristics of the oxygen generation reaction (anode polarization) and the oxygen reduction reaction (cathode polarization) are shown in FIG. In addition, with the same configuration, a pulse current that periodically reverses the polarity was applied to the air electrode at a current density of ± 50 mA / cm 2 , a current application time of 10 minutes, and a rest time of 1 minute, and the change in potential at that time was measured. . The characteristic evaluation was performed at 60 ° C.

図1に示したように、本発明の空気極(実施例1)は、比較例1の空気極に対して酸素還元時の分極が小さく、極めて高い触媒能を有することが判った。特に、高い電流密度での酸素発生・還元が可能であり、この空気極を用いることで高い出力密度が得られる空気二次電池を作製できることが判った。   As shown in FIG. 1, it was found that the air electrode (Example 1) of the present invention had a very high catalytic ability because the polarization during oxygen reduction was smaller than that of the air electrode of Comparative Example 1. In particular, it was found that oxygen can be generated and reduced at a high current density, and that an air secondary battery capable of obtaining a high output density can be produced by using this air electrode.

さらに、図2には各空気極について正電流を印可した際(酸素発生)の電流遮断直前の電位と負電流を印可した際(酸素還元)の電流遮断直前の電位を、連続する正電流印可と負電流印可を1サイクルとして、サイクル数に対する変化を示したものである。図2から明らかなように、比較例1に対して、実施例1の空気極では酸素還元時の電位がより高く、放電に伴う分極が抑制されていた。さらに、比較例1の空気極では約500サイクル以降で酸素還元に対する電位が急激に低下して680サイクルで通電が出来なくなったのに対して、実施例1の空気極ではサイクル数に対する電位の変化は酸素発生と酸素還元のいずれに対しても小さく、また2000サイクルを超える通電が可能であることが判った。すなわち、本発明の空気極は極めて高い耐久性を有することが明らかとなった。   Further, FIG. 2 shows a continuous positive current applied to each air electrode when a positive current is applied (oxygen generation) and a potential immediately before the current interruption is applied and when a negative current is applied (oxygen reduction). The change with respect to the number of cycles is shown with the negative current applied as one cycle. As is clear from FIG. 2, compared with Comparative Example 1, the air electrode of Example 1 had a higher potential during oxygen reduction, and polarization associated with discharge was suppressed. Furthermore, in the air electrode of Comparative Example 1, the potential for oxygen reduction suddenly decreased after about 500 cycles, and the current could not be supplied in 680 cycles, whereas in the air electrode of Example 1, the change in potential with respect to the number of cycles. Was small for both oxygen generation and oxygen reduction, and it was found that energization exceeding 2000 cycles was possible. That is, it became clear that the air electrode of the present invention has extremely high durability.

(実施例2)
図3は本発明の空気二次電池の概略構成図であり、本図において、1は空気極、2は負極、3は電解液、4はケース、5は正極端子、6は負極端子である。
(Example 2)
FIG. 3 is a schematic configuration diagram of the air secondary battery of the present invention, in which 1 is an air electrode, 2 is a negative electrode, 3 is an electrolyte, 4 is a case, 5 is a positive electrode terminal, and 6 is a negative electrode terminal. .

実施例1の空気極を正極とし、負極にLaNi系水素吸蔵合金(15mm×15mm×3mm)を、電解液に7mol/dmのKOH水溶液を用いて、図3に示した構造の空気二次電池をテフロン(登録商標)製容器を使って作製した。尚、正極と負極の端子として、ニッケル線をそれぞれに接続した。この電池の起電力は約1Vで、50mA/cm(正極表面積あたり)での充放電に対して電流効率はほぼ100%であった。また、100サイクルを超える充放電において、充放電電圧に変化は認められず、高い耐久性を有することが判った。 The air electrode of Example 1 was used as the positive electrode, LaNi 5- based hydrogen storage alloy (15 mm × 15 mm × 3 mm) was used as the negative electrode, and 7 mol / dm 3 KOH aqueous solution was used as the electrolytic solution. A secondary battery was prepared using a Teflon (registered trademark) container. In addition, the nickel wire was connected to each as a terminal of a positive electrode and a negative electrode. The electromotive force of this battery was about 1 V, and the current efficiency was almost 100% with respect to charging / discharging at 50 mA / cm 2 (per positive electrode surface area). Moreover, in charging / discharging more than 100 cycles, a change was not recognized by the charging / discharging voltage, and it turned out that it has high durability.

本発明は、モバイル機器、パソコン、メモリーバックアップ用電池、小型電子機器、補聴器、ハイブリッド自動車、電気自動車、分散型家庭用電源、分散型事業用電源、電力貯蔵用電池等に利用可能である。   The present invention can be used for mobile devices, personal computers, memory backup batteries, small electronic devices, hearing aids, hybrid vehicles, electric vehicles, distributed household power sources, distributed business power sources, power storage batteries, and the like.

実施例1および比較例1の空気極の分極曲線を示す。The polarization curve of the air electrode of Example 1 and Comparative Example 1 is shown. 実施例1および比較例1の充放電電位のサイクル特性を示す。The cycle characteristics of the charge / discharge potential of Example 1 and Comparative Example 1 are shown. 本発明の空気二次電池の概略構成を示す。The schematic structure of the air secondary battery of this invention is shown.

符号の説明Explanation of symbols

1 空気極
2 負極
3 電解液
4 ケース
5 正極端子
6 負極端子
DESCRIPTION OF SYMBOLS 1 Air electrode 2 Negative electrode 3 Electrolytic solution 4 Case 5 Positive electrode terminal 6 Negative electrode terminal

Claims (4)

ニッケル粉末と、イリジウムを含むパイロクロア型酸化物と、結着剤とを混合してなる空気極。 An air electrode formed by mixing nickel powder, pyrochlore oxide containing iridium, and a binder. イリジウムを含むパイロクロア型酸化物がビスマスイリジウム酸化物である請求項1に記載の空気極。   The air electrode according to claim 1, wherein the pyrochlore oxide containing iridium is bismuth iridium oxide. 請求項1または2に記載の空気極を正極とし、亜鉛、鉄、アルミニウム、水素のいずれか1つを活物質とする負極を備えている空気二次電池。   An air secondary battery comprising a negative electrode having the air electrode according to claim 1 as a positive electrode and any one of zinc, iron, aluminum, and hydrogen as an active material. 負極が水素吸蔵合金である請求項3に記載の空気二次電池。   The air secondary battery according to claim 3, wherein the negative electrode is a hydrogen storage alloy.
JP2005007216A 2005-01-14 2005-01-14 Air electrode and air secondary battery using the air electrode Expired - Fee Related JP4568124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007216A JP4568124B2 (en) 2005-01-14 2005-01-14 Air electrode and air secondary battery using the air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007216A JP4568124B2 (en) 2005-01-14 2005-01-14 Air electrode and air secondary battery using the air electrode

Publications (2)

Publication Number Publication Date
JP2006196329A JP2006196329A (en) 2006-07-27
JP4568124B2 true JP4568124B2 (en) 2010-10-27

Family

ID=36802225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007216A Expired - Fee Related JP4568124B2 (en) 2005-01-14 2005-01-14 Air electrode and air secondary battery using the air electrode

Country Status (1)

Country Link
JP (1) JP4568124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126754A (en) * 2019-02-04 2020-08-20 Fdk株式会社 Air electrode catalyst for air secondary battery and air secondary battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977475B1 (en) * 2005-12-06 2012-02-29 ReVolt Technology Ltd Bifunctional air electrode
JP5626872B2 (en) * 2010-09-16 2014-11-19 学校法人同志社 Hydrogen / air secondary battery
GB201021352D0 (en) * 2010-12-16 2011-01-26 Johnson Matthey Plc Catalyst layer
CN103370831B (en) * 2011-02-16 2016-05-11 富士通株式会社 Air secondary battery
JP6195231B2 (en) * 2013-09-25 2017-09-20 日産自動車株式会社 Battery system
DE102014111701A1 (en) * 2014-08-15 2016-02-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gas diffusion electrode, method for producing a gas diffusion electrode and battery
JP6444205B2 (en) * 2015-02-16 2018-12-26 学校法人同志社 Positive electrode, manufacturing method thereof, and air secondary battery using the positive electrode
JP2017076538A (en) * 2015-10-15 2017-04-20 Fdk株式会社 Method for manufacturing air electrode of air secondary battery, and air-hydrogen secondary battery
JP7161376B2 (en) 2018-11-05 2022-10-26 Fdk株式会社 Air electrode for air secondary battery and air secondary battery
JP2021070863A (en) * 2019-11-01 2021-05-06 東洋アルミニウム株式会社 Electrode for alkaline water electrolysis
JP7364317B2 (en) * 2019-12-20 2023-10-18 Fdk株式会社 Air electrode catalyst for air secondary batteries and its manufacturing method, and air secondary batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485196A (en) * 1977-12-02 1979-07-06 Exxon Research Engineering Co Bismuthhrich pyrochlor compounds and electrochemical apparatus containing them
JPS5485197A (en) * 1977-12-02 1979-07-06 Exxon Research Engineering Co Method of manufacturing leaddrich and bismuthhrich pyrochlor compounds by use of alkaline medium
JPS5537479A (en) * 1978-08-31 1980-03-15 Exxon Research Engineering Co Production of stoichiometric lead and bismuth pyrochlor compound by using alkaline medium
JPS5988321A (en) * 1982-09-30 1984-05-22 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Manufacture of pyrochlore structure compound
JP2003123773A (en) * 2001-10-16 2003-04-25 Nissan Motor Co Ltd Air electrode for solid electrolyte fuel cell and fuel cell using the same
JP2003217598A (en) * 2002-01-18 2003-07-31 Kyushu Electric Power Co Inc Electrode material for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485196A (en) * 1977-12-02 1979-07-06 Exxon Research Engineering Co Bismuthhrich pyrochlor compounds and electrochemical apparatus containing them
JPS5485197A (en) * 1977-12-02 1979-07-06 Exxon Research Engineering Co Method of manufacturing leaddrich and bismuthhrich pyrochlor compounds by use of alkaline medium
JPS5537479A (en) * 1978-08-31 1980-03-15 Exxon Research Engineering Co Production of stoichiometric lead and bismuth pyrochlor compound by using alkaline medium
JPS5988321A (en) * 1982-09-30 1984-05-22 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Manufacture of pyrochlore structure compound
JP2003123773A (en) * 2001-10-16 2003-04-25 Nissan Motor Co Ltd Air electrode for solid electrolyte fuel cell and fuel cell using the same
JP2003217598A (en) * 2002-01-18 2003-07-31 Kyushu Electric Power Co Inc Electrode material for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126754A (en) * 2019-02-04 2020-08-20 Fdk株式会社 Air electrode catalyst for air secondary battery and air secondary battery
JP7149525B2 (en) 2019-02-04 2022-10-07 Fdk株式会社 Air electrode catalyst for air secondary battery and air secondary battery

Also Published As

Publication number Publication date
JP2006196329A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
Jörissen Bifunctional oxygen/air electrodes
JP5192613B2 (en) Magnesium metal air battery
KR101256327B1 (en) Catalyst for air battery, and air battery using same
US7238446B2 (en) Active electrode composition with conductive polymeric binder
EA011752B1 (en) Electrode, method of its production, metal-air fuel cell and metal hydride cell
JP5626872B2 (en) Hydrogen / air secondary battery
WO2005094410A2 (en) Integrated hybrid electrochemical device
JP4590533B2 (en) Air electrode, manufacturing method thereof, and air secondary battery using the air electrode
WO2014119549A1 (en) Positive electrode catalyst and device
JP7161376B2 (en) Air electrode for air secondary battery and air secondary battery
Lianos A brief review on solar charging of Zn–air batteries
US20200358156A9 (en) Secondary cell, accumulator comprising one or more secondary cells, and method for charging and discharging
US3791896A (en) Bi-functional gas electrode
JP6963596B2 (en) Electrochemical cell
JPH0587950B2 (en)
US3230114A (en) Catalyst electrodes and process for storing electrical energy
JP2010221157A (en) Oxygen reduction catalyst, method for producing the catalyst, electrode, method for producing the electrode, fuel cell, air cell and electronic device
KR101793477B1 (en) Improved charge and discharge characteristics of positive electrode for metal air battery, and method for preparing the positive electrode
JPS60225363A (en) Fuel cell
US3446675A (en) Electrochemical power supply
WO1991020102A1 (en) Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same
JP2001266886A (en) Non-sintering type positive electrode for alkaline storage battery and alkaline storage battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
US3405009A (en) Fuel cell and fuel cell electrode containing nickel-transition metal intermetallic catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees