JPS6260606B2 - - Google Patents

Info

Publication number
JPS6260606B2
JPS6260606B2 JP57229620A JP22962082A JPS6260606B2 JP S6260606 B2 JPS6260606 B2 JP S6260606B2 JP 57229620 A JP57229620 A JP 57229620A JP 22962082 A JP22962082 A JP 22962082A JP S6260606 B2 JPS6260606 B2 JP S6260606B2
Authority
JP
Japan
Prior art keywords
fuel
coal
combustion
nox
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57229620A
Other languages
Japanese (ja)
Other versions
JPS59115904A (en
Inventor
Kenichi Soma
Norio Arashi
Shigeru Azuhata
Kyoshi Narato
Tooru Inada
Keizo Ootsuka
Takao Hishinuma
Tadahisa Masai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP22962082A priority Critical patent/JPS59115904A/en
Publication of JPS59115904A publication Critical patent/JPS59115904A/en
Publication of JPS6260606B2 publication Critical patent/JPS6260606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、微粉炭の燃焼法、特に、微粉炭の燃
焼時における窒素酸化物(以下、NOxと称す
る)の発生の少ない微粉体の燃焼法に関するもの
である。 〔従来の技術〕 化石燃料中には、炭素や水素等の成分の他に、
窒素分が含まれている。特に石炭の場合には気体
燃料や液体燃料に比較して窒素の含有量が多い。
従つて、石炭の燃焼時に発生するNOxは、気体
燃料や液体燃料の燃焼時に発生するNOxよりも
多く、これを低減することが要望されている。 燃焼時に発生するNOxは、サーマルNOxとフ
ユーエルNOxとに分類される。サーマルNOx
は、燃焼用空気中の窒素が酸素によつて酸化され
て、生成するものである。フユーエルNOxは燃
料中の窒素分の酸化により生成するものである。
これらのNOx発生を抑止するための燃焼法とし
て、従来、燃焼用空気を多段に分割して供給する
多段燃焼法、低酸素濃度の燃焼排ガスを燃焼領域
に混入する排ガス再循環法等がある。 燃料を2段に分割供給する燃焼法には、例えば
一つの燃焼火炉に対して複数個のバーナを使用
し、燃料の2段供給燃焼を行なうものがある。こ
の燃焼法は主バーナからの火炎を空気比1以上に
することにより、主燃焼を行なう工程と、ここで
発生したNOxを還元するために2段目のバーナ
から燃料を供給して空気比1より小なる還元領域
を形成する工程、さらに3段目のバーナから空気
を供給して、還元領域での余剰燃料を燃焼する工
程からなるものである。 この燃焼法によりNOxの低減が可能なことは
よく知られているが、NOx低減効果を高めるた
めには1段目、2段目、さらに3段目バーナ間の
距離を大きくし、各燃焼領域の区分を明瞭にする
必要があるため、燃焼炉が大きくなり、実用上は
経済的に不利になる。また、実機燃焼炉を考えた
場合、燃焼炉断面積が大きく、主バーナからの主
流と、炉壁に設置した2段目、3段目バーナから
噴出させる燃料及び空気とを完全に混合させるこ
とは非常に難しい。従つて、炉内に燃料と空気の
不均一分布が生じ、これに伴つてNOx濃度の不
均一分布が生じることとなり、NOxの低減効果
は少なくなる。特に、3段目バーナからの空気の
混合が不良な時には、未燃分量が増加するため、
燃焼効率の低下を生じる。 また、このような欠点を補うと同時に、さらに
NOx低減効果を向上させるために、単一バーナ
により燃料の2段供給燃焼を行なわせる方法も提
案されており、この方法は角型セル状バーナを縦
に複数個重ねて単一バーナとし燃料の2段供給燃
焼を行なわせ、単一火炎内でNOxの発生及び還
元を行なわせている。この方法、燃焼炉の大型化
防止には有効であるが、未だNOx低減効果の点
では十分ではない。 すなわち、従来の低NOx燃焼法に共通の原理
は、燃焼火炎に温度を低下させることにより、窒
素と酸素の反応を抑制することにある。前述の二
種類のNOxの中で、燃焼温度の低下によつて発
生を抑止できるのはサーマルNOxであり、フユ
ーエルNOxの発生は燃焼温度に対する依存性が
低い。従つて、火炎温度の低下を目的とする燃焼
法は、窒素分含有量の少ない燃料からのNOx低
減には有効であるが、発生するNOxの80%近く
が、フユーエルNOxである微粉炭燃焼に対して
は効果が小さい。 〔発明の目的〕 本発明はこのような問題点を除去し、効果的な
NOxの還元を可能とし、微粉体燃焼拝ガス中に
含有するNOx濃度を低減することを目的とする
ものである。 〔発明の概要〕 本発明は、石炭を一次燃料と二次燃料とに分割
して供給する微粉炭の燃焼法において、前記一次
燃料の燃焼によつて形成される空気比1より小な
る領域において、前記微粉炭中の揮発性窒素化合
物をNOxまで酸化することなく還元性窒素化合
物とする第一の工程と、該還元性窒素化合物によ
り前記二次燃料を燃焼する空気比1以上の領域で
発生するNOxを還元する第2の工程とよりな
り、前記第一の工程が、前記一次燃料としてアン
モニアを多量に発生しやすい石炭を燃料とし、燃
料石炭と該燃料石炭の搬送を兼ねる一次燃焼空気
とを空気比1より小なる低空気比で円筒状バーナ
の中心部に設けられた一次燃料ノズルから噴出燃
焼させ、アンモニアを多量に発生しやすい雰囲気
酸素濃度で燃焼させる工程であり、前記第2の工
程が、前記燃料石炭及び該燃料石炭搬送を兼ねた
二次燃焼空気とを空気比1以上の高空気比で、前
記一次燃料ノズルの外周に該燃料ノズルと同心円
となるように設けられ旋回流発生装置を具備した
二次燃料ノズルから噴出燃焼させる工程であるこ
とを特徴とするものである。 石炭中の可燃成分は、揮発成分と固体成分とに
大別できる。この、石炭特有の性質に従つて、微
粉炭の燃焼機構は揮発分が放出される微粉炭の熱
分解過程、更に熱分解後の可燃性固体成分(以下
チヤーと称する)の燃焼過程からなる。揮発成分
の燃焼速度は固体成分の燃焼速度より速く、揮発
成分は燃焼の初期過程で燃焼する。また、熱分解
過程では、石炭中に含有される窒素分のうち、他
の可燃分と同様に揮発、放出されるものと、チヤ
ーに残るものとに分れる。従つて、微粉炭燃焼時
に発生するフユーエルNOxは、揮発性窒素分か
らのNOxとチヤー中の窒素分からのNOxとに分
れる。この2種類のフユーエルNOxの中で、チ
ヤーからのフユーエルNOxは、比較的発生量が
小なく、揮発成分からのNOxがフユーエルNOx
の大半を占める。 揮発性窒素分は、燃焼の初期過程及び酸素不足
の燃焼領域においてNH3,HCN等の化合物にな
ることが知られている。これらの窒素化合物は、
酸素と反応してNOxになる他に、発生したNOx
と反応して、NOxを窒素にする還元剤にもなり
得る。この窒素化合物によるNOx還元反応は、
NOxとの共存系において進行するものであり、
NOxが共存しない反応系においては、窒素化合
物の大半は酸化されてNOxとなる。 従つて、微粉炭燃焼時のNOxの低減法として
は、還元性を有する揮発性窒素化合物とNOxと
を共存させ、還元反応を起こさせてNOxを窒素
にする燃焼法が有効である。即ち、NOxの前駆
物質である窒素化合物をNOxの還元に利用する
ことにより、発生したNOxとNOx前駆物質の消
滅を行なわせる燃焼法がNOx低減には有効であ
る。 本発明は、これらの原理に基づきなされたもの
で、例えば、石炭を一次燃料と二次燃料として分
割して供給する燃焼法を単一バーナーにより効率
良く具現化し、低NOxを図るもので、特に、一
次燃料噴出ノズルの外周同心円上に環状の二次燃
料噴出ノズルを設置した微粉炭燃焼用バーナーを
用いて、一次燃料を空気比が1より小なる状態で
燃焼し、二次燃料を空気比1以上で燃焼させ、し
かも、一次燃料によつて形成される火炎を内炎と
し、二次燃料によつて形成される火炎を外炎して
燃焼させることによつて、空気不足領域からの反
応生成物と空気過剰領域からの反応生成物との混
合を良好として低NOx燃焼を可能とするもので
ある。また、内炎の外周を外炎に旋回を与えるこ
とによつて完全に包囲し、外炎からの輻射熱によ
つて内炎内で進む空気不足下での微粉炭の熱分解
反応領域を長時間保持し反応を促進させるもので
ある。 すなわち、一次燃料の燃焼によつて形成される
空気不足の領域において、微粉炭中の揮発性窒素
化合物をNOx迄酸化することなく、NH3,HCN
等の還元性窒素化合物にし、この還元性窒素化合
物により二次燃料を燃焼する空気過剰領域で発生
するNOxを還元するものである。 なお、石炭はその生成過程が種々様々であるた
め、炭種によつて性質が大きく異り、炭種によつ
て揮発性成分が多い、いわゆる低燃料比炭と、揮
発性成分が少ない、いわゆる高燃料比炭とに大別
され、また、低燃料比炭の中でも、揮発性窒素化
合物が多く、NOxの還元に有効なNH3等を石炭の
熱分解時に多量に発生させるものと、そうでない
ものとに分けられる。すなわち一次燃料として用
いる炭種は、より効果的な低NOx燃焼を考える
際には、どの様な炭種でも可能であるという訳で
はなく、揮発性窒素化合物を多く含み、熱分解時
にNH3等NOxの還元に有効な窒素化合物を多く発
生しやすい石炭を用いて、熱分解時に、それら窒
素化合物を多量に発生しやすい条件下で燃焼させ
る必要がある訳である。 第1図は3種類の石炭について雰囲気酸素濃度
と石炭中揮発性N化合物のNH3への転換率との関
係を示すもので、横軸に雰囲気O2(%)、縦軸に
転換率(%)が示してあり、A,B,Cはそれぞ
れ外国炭(オーストラリア、ブレアソール
炭)、外国炭)、外国炭(中国、大同炭)、国内
炭(太平洋炭)である。これは任意の酸素濃度
で任意量の石炭を熱分解させ、その時に発生して
[Field of Application of the Invention] The present invention relates to a method of combusting pulverized coal, and particularly to a method of combusting pulverized powder that generates less nitrogen oxides (hereinafter referred to as NOx) during combustion of pulverized coal. [Conventional technology] In addition to components such as carbon and hydrogen, fossil fuels also contain
Contains nitrogen. In particular, coal has a higher nitrogen content than gaseous or liquid fuels.
Therefore, NOx generated during combustion of coal is greater than NOx generated during combustion of gaseous fuel or liquid fuel, and it is desired to reduce this. NOx generated during combustion is classified into thermal NOx and fuel NOx. Thermal NOx
is produced when nitrogen in the combustion air is oxidized by oxygen. Fuel NOx is produced by the oxidation of nitrogen in fuel.
Conventional combustion methods for suppressing the generation of NOx include a multistage combustion method in which combustion air is divided into multiple stages and supplied, and an exhaust gas recirculation method in which combustion exhaust gas with a low oxygen concentration is mixed into the combustion region. As a combustion method in which fuel is supplied in two stages, for example, a plurality of burners are used for one combustion furnace, and fuel is supplied and burned in two stages. This combustion method involves the process of performing main combustion by increasing the flame from the main burner to an air ratio of 1 or more, and the process of supplying fuel from the second stage burner to reduce the NOx generated during this process. This process consists of a step of forming a smaller reduction region, and a step of supplying air from the third stage burner to burn excess fuel in the reduction region. It is well known that NOx can be reduced by this combustion method, but in order to increase the NOx reduction effect, the distance between the first, second, and third stage burners must be increased and each combustion area Since it is necessary to clearly distinguish between the two, the combustion furnace becomes large, which is economically disadvantageous in practical use. In addition, when considering an actual combustion furnace, the cross-sectional area of the combustion furnace is large, and it is necessary to completely mix the main flow from the main burner with the fuel and air ejected from the second and third stage burners installed on the furnace wall. is very difficult. Therefore, non-uniform distribution of fuel and air occurs within the furnace, which in turn causes non-uniform distribution of NOx concentration, reducing the NOx reduction effect. In particular, when the air from the third stage burner is poorly mixed, the amount of unburned matter increases.
This causes a decrease in combustion efficiency. In addition to compensating for these shortcomings, we also
In order to improve the NOx reduction effect, a method has been proposed in which two-stage fuel supply combustion is performed using a single burner. Two-stage feed combustion is performed to generate and reduce NOx within a single flame. Although this method is effective in preventing the combustion furnace from increasing in size, it is still not sufficient in terms of NOx reduction effect. That is, the common principle of conventional low NOx combustion methods is to suppress the reaction between nitrogen and oxygen by lowering the temperature of the combustion flame. Of the two types of NOx mentioned above, thermal NOx can be suppressed from generation by lowering the combustion temperature, and the generation of fuel NOx is less dependent on combustion temperature. Therefore, combustion methods aimed at lowering the flame temperature are effective in reducing NOx from fuels with low nitrogen content, but nearly 80% of the NOx generated is fuel NOx, which is caused by pulverized coal combustion. The effect is small for [Object of the invention] The present invention eliminates such problems and provides effective
The purpose is to enable the reduction of NOx and reduce the NOx concentration contained in the fine powder combustion gas. [Summary of the Invention] The present invention provides a pulverized coal combustion method for supplying coal by dividing it into primary fuel and secondary fuel, in which the air ratio is smaller than 1, which is formed by the combustion of the primary fuel. , a first step of converting the volatile nitrogen compounds in the pulverized coal into reducing nitrogen compounds without oxidizing them to NOx, and burning the secondary fuel with the reducing nitrogen compounds in an air ratio region of 1 or more. The first step uses coal, which tends to generate a large amount of ammonia, as the primary fuel, and combines fuel coal with primary combustion air that also serves as a transport for the fuel coal. This is a process in which the fuel is ejected from a primary fuel nozzle provided in the center of a cylindrical burner at a low air ratio smaller than 1, and is burned at an atmospheric oxygen concentration that tends to generate a large amount of ammonia. The step is a swirling flow in which the fuel coal and the secondary combustion air which also serves to transport the fuel coal are provided around the outer periphery of the primary fuel nozzle so as to be concentric with the fuel nozzle at a high air ratio of 1 or more. This process is characterized by ejecting and burning the secondary fuel from a secondary fuel nozzle equipped with a generator. Combustible components in coal can be roughly divided into volatile components and solid components. In accordance with this unique property of coal, the combustion mechanism of pulverized coal consists of a thermal decomposition process of the pulverized coal in which volatile matter is released, and a combustion process of combustible solid components (hereinafter referred to as char) after the thermal decomposition. The burning rate of volatile components is faster than that of solid components, and volatile components are burned in the initial process of combustion. In addition, during the thermal decomposition process, the nitrogen contained in the coal is divided into two parts: one is volatilized and released like other combustible substances, and the other remains in the coal. Therefore, fuel NOx generated during pulverized coal combustion is divided into NOx from volatile nitrogen and NOx from nitrogen in the coal. Of these two types of fuel NOx, fuel NOx from the air is relatively small in amount, and NOx from volatile components is
accounting for the majority of It is known that volatile nitrogen becomes compounds such as NH 3 and HCN in the initial stage of combustion and in the oxygen-deficient combustion region. These nitrogen compounds are
In addition to reacting with oxygen to become NOx, the generated NOx
It can also act as a reducing agent that converts NOx to nitrogen by reacting with it. This NOx reduction reaction by nitrogen compounds is
It progresses in a coexisting system with NOx,
In a reaction system where NOx does not coexist, most of the nitrogen compounds are oxidized to NOx. Therefore, an effective method for reducing NOx during pulverized coal combustion is a combustion method in which NOx is caused to coexist with a volatile nitrogen compound having reducing properties, and a reduction reaction is caused to convert NOx to nitrogen. That is, a combustion method that eliminates generated NOx and NOx precursors by using nitrogen compounds, which are precursors of NOx, to reduce NOx is effective for reducing NOx. The present invention has been made based on these principles. For example, the present invention efficiently realizes a combustion method in which coal is dividedly supplied as a primary fuel and a secondary fuel using a single burner, thereby achieving low NOx. Using a pulverized coal combustion burner with an annular secondary fuel injection nozzle installed concentrically around the outer circumference of the primary fuel injection nozzle, the primary fuel is burned at an air ratio of less than 1, and the secondary fuel is heated at an air ratio of less than 1. 1 or more, and by burning the flame formed by the primary fuel as an inner flame and the flame formed by the secondary fuel as an outer flame, the reaction from an air-deficient region can be achieved. This allows for good mixing of the products and the reaction products from the air-excess region, making it possible to achieve low NOx combustion. In addition, by swirling the outer flame to completely surround the outer periphery of the inner flame, radiant heat from the outer flame allows the thermal decomposition reaction region of pulverized coal to proceed within the inner flame for a long period of time. It holds and promotes the reaction. In other words, in the air-deficient region formed by the combustion of primary fuel, volatile nitrogen compounds in pulverized coal are not oxidized to NOx, and NH 3 , HCN
This reduces NOx generated in the air-excess region where secondary fuel is burned. Coal has many different production processes, so its properties differ greatly depending on the type of coal. Depending on the type of coal, there are two types of coal: low fuel ratio coal, which has a lot of volatile components, and so-called low fuel ratio coal, which has a lot of volatile components. It is roughly divided into high fuel ratio coal, and among low fuel ratio coal, there are those that contain many volatile nitrogen compounds and generate large amounts of NH 3 etc., which are effective in reducing NOx, during thermal decomposition of coal, and those that do not. It can be divided into things. In other words, when considering more effective low NOx combustion, the type of coal used as the primary fuel does not necessarily mean that any type of coal is possible; it contains many volatile nitrogen compounds and releases NH 3 etc. during thermal decomposition. This means that it is necessary to use coal that tends to generate a large amount of nitrogen compounds that are effective in reducing NOx, and to burn it under conditions that tend to generate a large amount of nitrogen compounds during thermal decomposition. Figure 1 shows the relationship between the atmospheric oxygen concentration and the conversion rate of volatile N compounds in the coal to NH 3 for three types of coal, with the horizontal axis representing atmospheric O 2 (%) and the vertical axis representing the conversion rate (%). %), and A, B, and C are foreign coal (Australia, Blairsall Coal), foreign coal (China, Datong Coal), and domestic coal (Pacific Coal), respectively. This is generated when a given amount of coal is pyrolyzed at a given oxygen concentration.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の微粉炭の燃焼法の一実施例を
実施するのに用いられる外炎旋回型燃料二段供給
バーナの断面図である。このバーナには、噴出ノ
ズルとして一次燃料ノズル5と、この一次燃料ノ
ズル5の外周に位置する二次燃料ノズル6の2つ
の燃料微粉炭の噴出ノズルと、二次空気ノズル7
と三次空気ノズル8と着火用燃料ノズル9が設け
られている。一次燃料、二次燃料に区分される微
粉炭は一次燃料ノズル5及び二次燃料ノズル6か
ら噴出されるが、二次燃料ノズル6は一次燃料ノ
ズル5と同心円となる環状ノズルとなつているの
で、一次燃料で形成される火炎の外周を二次燃料
で形成される火炎で包囲するようになる。また二
次燃料の燃焼によつて形成される火炎に旋回流を
与える手段として二次燃料ノズル6、二次空気ノ
ズル7、三次空気ノズル8にはそれぞれ、軸流式
の施回流発生器(スワラ)10,11,12が設
けられている。第5図に模式的に示すように、施
回流発生器13によつて形成された矢印のように
流れる旋回流は火炎の内部の静圧を低くする効果
があるため、二次燃料混合物の施回が減衰し始め
る火炎後流方向からバーナ先端に向う逆向きの流
れを発生し、外炎と内炎とからの生成物の混合を
促進することができる。 燃焼用空気は、微粉炭を搬送する一次空気と、
二次、三次空気に分割され、二次、三次空気はそ
れぞれ二次空気ノズル7、三次空気ノズル8から
噴出される。これらの二次空気ノズル7及び三次
空気ノズル8は二次燃焼ノズル6と同様に、一次
燃料ノズル5と同心円上に設置された環状ノズル
となつており、二次空気ノズル7は一次燃料ノズ
ル5と二次燃料ノズル6との間に設置して内炎の
空気比を制御するようにし、三次空気ノズル8は
二次燃料ノズル6の外周に設置し、外炎の空気比
を制御するようになつている。 第6図は、このバーナを用い、1時間に20Kgの
微粉炭の燃焼負荷を持つ小型燃焼炉を用いて、一
次燃料によつて形成される内炎の空気比は1より
小さく、二次燃料によつて形成される外炎の空気
比は1以上として微粉炭の低NOx燃焼試験を行
なつた結果を示すもので、横軸、縦軸には、それ
ぞれ灰中未燃分量(%)、排ガス中NOx濃度
(ppm)が示してある。Dは外炎旋回型燃料2段
供給試験を行なつたもので、一次燃料、二次燃料
ともに、国内炭又は外国炭を用いた結果であ
り、Eは一次燃料として外国炭、二次燃料とし
て国内炭、外国炭あるいは外国炭を用いて
同様に実験した結果を示すもので、例えば、灰中
未燃分量が5%の時の排ガス中NOx濃度の値を
比較してみると、Dでは約100ppmに対して、E
では約50ppmと半減していて、一次燃料として
外国炭を用いることが、低NOx燃焼に非常に
有効であることを示している。 以上の如く、実施例によれば、石炭が熱分解時
に発生する窒素化合物、特にアンモニアをNOx
の還元に利用することにより、効果的にNOxを
還元することが出来、微粉炭燃焼排ガス中に含有
されるNOx濃度を低減することが出来る。ま
た、発電所等でこの微粉炭の燃焼法を実施する場
合にもアンモニア発生装置の設置は必要なく、使
用する石炭の選択によつて目的の達成が可能であ
る。 〔発明の効果〕 本発明の微粉炭の燃焼法は、効果的なNOxの
還元を可能とし、微粉体燃焼排ガス中に含有する
NOx濃度を低減することを可能とするもので、
産業上の効果の大なるものである。
FIG. 4 is a sectional view of an external flame swirl type fuel supply burner in two stages used to carry out an embodiment of the pulverized coal combustion method of the present invention. This burner has two fuel pulverized coal injection nozzles, a primary fuel nozzle 5 and a secondary fuel nozzle 6 located on the outer periphery of the primary fuel nozzle 5, and a secondary air nozzle 7.
A tertiary air nozzle 8 and an ignition fuel nozzle 9 are provided. Pulverized coal, which is divided into primary fuel and secondary fuel, is ejected from the primary fuel nozzle 5 and secondary fuel nozzle 6, but the secondary fuel nozzle 6 is an annular nozzle that is concentric with the primary fuel nozzle 5. , the outer periphery of the flame formed by the primary fuel is surrounded by the flame formed by the secondary fuel. In addition, each of the secondary fuel nozzle 6, secondary air nozzle 7, and tertiary air nozzle 8 is equipped with an axial flow generator (swirler) as a means for giving a swirling flow to the flame formed by the combustion of the secondary fuel. ) 10, 11, 12 are provided. As schematically shown in FIG. 5, the swirling flow formed by the swirling flow generator 13, which flows in the direction of the arrow, has the effect of lowering the static pressure inside the flame, so the secondary fuel mixture is It is possible to generate a flow in the opposite direction from the flame wake direction where the heat wave starts to decay toward the burner tip to promote mixing of products from the outer flame and the inner flame. Combustion air consists of primary air that carries pulverized coal,
The air is divided into secondary and tertiary air, and the secondary and tertiary air are ejected from a secondary air nozzle 7 and a tertiary air nozzle 8, respectively. Like the secondary combustion nozzle 6, these secondary air nozzles 7 and tertiary air nozzles 8 are annular nozzles installed concentrically with the primary fuel nozzle 5. and the secondary fuel nozzle 6 to control the air ratio of the inner flame, and the tertiary air nozzle 8 is installed around the outer periphery of the secondary fuel nozzle 6 to control the air ratio of the outer flame. It's summery. Figure 6 shows that using this burner and a small combustion furnace with a combustion load of 20 kg of pulverized coal per hour, the air ratio of the inner flame formed by the primary fuel is less than 1, and the secondary fuel The graph shows the results of a low NOx combustion test of pulverized coal, where the air ratio of the outer flame formed by was set to 1 or more. The NOx concentration (ppm) in exhaust gas is shown. D is the result of a two-stage external flame swirl fuel supply test, using domestic coal or foreign coal as both the primary fuel and secondary fuel, and E is the result with foreign coal as the primary fuel and foreign coal as the secondary fuel. This shows the results of similar experiments using domestic coal, foreign coal, or foreign coal. For example, when comparing the values of NOx concentration in exhaust gas when the amount of unburned matter in ash is 5%, in D For 100ppm, E
This has been halved to approximately 50 ppm, indicating that using foreign coal as the primary fuel is extremely effective for low NOx combustion. As described above, according to the example, nitrogen compounds generated when coal is thermally decomposed, especially ammonia, are converted into NOx.
By using it to reduce NOx, NOx can be effectively reduced, and the NOx concentration contained in pulverized coal combustion exhaust gas can be reduced. Further, when implementing this pulverized coal combustion method at a power plant or the like, it is not necessary to install an ammonia generator, and the purpose can be achieved by selecting the coal to be used. [Effects of the Invention] The pulverized coal combustion method of the present invention enables effective reduction of NOx, which is contained in the pulverized combustion exhaust gas.
It makes it possible to reduce NOx concentration,
This has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、雰囲気酸素濃度と石炭中揮発性N化
合物のNH3への転換率との関係を示す特性図、第
2図は外炎施回の効果を調べるためのコールドモ
デルの断面図、第3図は第2図のコールドモデル
によつて求めた外炎旋回の効果を示す等酸素濃度
曲線を外炎旋回なしの場合と比較して示した特性
線図、第4図は本発明の微粉体の燃焼法の一実施
例で用い外炎旋回型燃料二段供給バーナの断面
図、第5図は第4図の要部の旋回流発生器の作用
を模式的に示す説明図、第6図は本発明の微粉体
の燃焼法の効果を示す特性線図である。 5…一次燃料ノズル、6…二次燃料ノズル、7
…二次空気ノズル、8…三次空気ノズル、9…着
火用燃料ノズル、10,11,12,13…旋回
流発生器。
Figure 1 is a characteristic diagram showing the relationship between atmospheric oxygen concentration and the conversion rate of volatile N compounds in coal to NH3 , Figure 2 is a cross-sectional view of a cold model for investigating the effect of external flame operation, Fig. 3 is a characteristic diagram showing the iso-oxygen concentration curve showing the effect of external flame swirl determined by the cold model of Fig. 2, comparing it with the case without external flame swirl. FIG. 5 is a cross-sectional view of an external flame swirl type fuel supply burner used in an embodiment of the combustion method for fine powder; FIG. FIG. 6 is a characteristic diagram showing the effects of the fine powder combustion method of the present invention. 5...Primary fuel nozzle, 6...Secondary fuel nozzle, 7
...Secondary air nozzle, 8...Tertiary air nozzle, 9...Ignition fuel nozzle, 10, 11, 12, 13...Swirling flow generator.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭を一次燃料と二次燃料とに分割して供給
する微粉炭の燃焼法において、前記一次燃料の燃
焼によつて形成される空気比1より小なる領域に
おいて、前記微粉炭中の揮発性窒素化合物を
NOxまで酸化することなく還元性窒素化合物と
する第一の工程と、該還元性窒素化合物により前
記二次燃料を燃焼する空気比1以上の領域で発生
するNOxを還元する第2の工程とよりなり、前
記第1の工程が、前記一次燃料としてアンモニア
を多量に発生しやすい石炭を燃料とし、燃料石炭
と該燃料石炭の搬送を兼ねる一次燃焼空気とを空
気比1より小なる低空気比で円筒状バーナの中心
部に設けられた一次燃料ノズルから噴出燃焼さ
せ、アンモニアを多量に発生しやすい雰囲気酸素
濃度で燃焼させる工程であり、前記第2の工程
が、前記燃料石炭及び該燃料石炭搬送を兼ねた二
次燃焼空気とを空気比1以上の高空気比で、前記
一次燃料ノズルの外周に該燃料ノズルと同心円と
なるように設けられ旋回流発生装置を具備した二
次燃料ノズルから噴出燃焼させる工程であること
を特徴とする微粉炭の燃焼法。
1 In a pulverized coal combustion method in which coal is divided into a primary fuel and a secondary fuel and supplied, the volatility in the pulverized coal is nitrogen compounds
A first step of converting the secondary fuel into a reducing nitrogen compound without oxidizing it to NOx, and a second step of reducing the NOx generated in the air ratio region of 1 or more when the secondary fuel is combusted by the reducing nitrogen compound. In the first step, coal, which tends to generate a large amount of ammonia, is used as the primary fuel, and the fuel coal and the primary combustion air, which also serves as conveyance of the fuel coal, are mixed at a low air ratio smaller than 1. This is a process in which the fuel is ejected from a primary fuel nozzle provided in the center of a cylindrical burner and burned in an atmosphere with an oxygen concentration that tends to generate a large amount of ammonia. The secondary combustion air which also serves as a secondary combustion air is ejected at a high air ratio of 1 or more from a secondary fuel nozzle provided on the outer periphery of the primary fuel nozzle so as to be concentric with the fuel nozzle and equipped with a swirl flow generating device. A method of combustion of pulverized coal, which is characterized by a process of combustion.
JP22962082A 1982-12-23 1982-12-23 Combustion of pulverized coal Granted JPS59115904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22962082A JPS59115904A (en) 1982-12-23 1982-12-23 Combustion of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22962082A JPS59115904A (en) 1982-12-23 1982-12-23 Combustion of pulverized coal

Publications (2)

Publication Number Publication Date
JPS59115904A JPS59115904A (en) 1984-07-04
JPS6260606B2 true JPS6260606B2 (en) 1987-12-17

Family

ID=16895039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22962082A Granted JPS59115904A (en) 1982-12-23 1982-12-23 Combustion of pulverized coal

Country Status (1)

Country Link
JP (1) JPS59115904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041748A (en) * 2018-09-11 2020-03-19 株式会社Ihi Burner and boiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229370Y2 (en) * 1984-11-12 1990-08-07
US7168947B2 (en) * 2004-07-06 2007-01-30 General Electric Company Methods and systems for operating combustion systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533551A (en) * 1978-08-31 1980-03-08 Mitsubishi Heavy Ind Ltd Pulverized-coal burner
JPS5570325A (en) * 1978-11-17 1980-05-27 Mitsubishi Heavy Ind Ltd Reduction of oxides of nitrogen in exhaust gas
JPS5726309A (en) * 1980-07-22 1982-02-12 Mitsubishi Heavy Ind Ltd Combustion apparatus for fines fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533551A (en) * 1978-08-31 1980-03-08 Mitsubishi Heavy Ind Ltd Pulverized-coal burner
JPS5570325A (en) * 1978-11-17 1980-05-27 Mitsubishi Heavy Ind Ltd Reduction of oxides of nitrogen in exhaust gas
JPS5726309A (en) * 1980-07-22 1982-02-12 Mitsubishi Heavy Ind Ltd Combustion apparatus for fines fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041748A (en) * 2018-09-11 2020-03-19 株式会社Ihi Burner and boiler

Also Published As

Publication number Publication date
JPS59115904A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
CA1238570A (en) Method of reducing the no.sub.x emissions during combustion of nitrogen-containing fuels
RU2442929C1 (en) Method of reduction of nitrogen oxides in the boiler working with dispenced carbon where internal combustion type burners are used
US4422391A (en) Method of combustion of pulverized coal by pulverized coal burner
US4515094A (en) Fuel jet method and apparatus for pulverized coal burner
JP2005291524A (en) Combustion equipment and method of biomass fuel
JPS6260606B2 (en)
JPH0627561B2 (en) Pulverized coal combustion equipment
JPS6138961B2 (en)
KR102261150B1 (en) A Low-NOx combustor capable of internal recirculation of flue gas by using venturi effect through improvement of burner structure
CN102338374B (en) In-furnace grading low-NOx combustion system of low-temperature plasma rotational flow coal powder furnace
JP2565620B2 (en) Combustion method of pulverized coal
JPS6234090Y2 (en)
JPH0229369Y2 (en)
JPS604704A (en) Combustion device
JPH09126412A (en) Low nox boiler
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion
CN212511112U (en) Novel boiler low-nitrogen burner
CN202281219U (en) Deep-graded low-NOx burning system in low-temperature plasma direct-current pulverized coal furnace
Yuan et al. Computational modeling of flow field in boiler before and after urea injection under different conditions
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPH0221107A (en) Low nox combustion method for pulverized coal
CN117469676A (en) Multistage ammonia-doped coal-ammonia stable mixed combustion low-NO x Preheating combustion cyclone burner
JPH03244915A (en) Combustion of gas containing nox
JP2001065804A (en) Repowering apparatus and repowering method for boiler
JPS58102006A (en) Low nox pulverized coal burner