JPS604704A - Combustion device - Google Patents

Combustion device

Info

Publication number
JPS604704A
JPS604704A JP11191183A JP11191183A JPS604704A JP S604704 A JPS604704 A JP S604704A JP 11191183 A JP11191183 A JP 11191183A JP 11191183 A JP11191183 A JP 11191183A JP S604704 A JPS604704 A JP S604704A
Authority
JP
Japan
Prior art keywords
air
nox
passage
combustion
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11191183A
Other languages
Japanese (ja)
Other versions
JPH0323804B2 (en
Inventor
Shigeki Morita
茂樹 森田
Tadahisa Masai
政井 忠久
Toshio Uemura
俊雄 植村
Hitoshi Migaki
三垣 仁志
Shigeto Nakashita
中下 成人
Yoshito Kawaguchi
河口 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11191183A priority Critical patent/JPS604704A/en
Publication of JPS604704A publication Critical patent/JPS604704A/en
Publication of JPH0323804B2 publication Critical patent/JPH0323804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply

Abstract

PURPOSE:To restrict the generation of NOx and reduce non-combustioned component in the ash by a method wherein a guide plate for arranging air in an external air passage to outside of the passage is installed at the extremity end of an outer cylinder and a circulating means for forcedly circulating air flow stronger than the air flow in the inner air passage is arranged in the external air passage. CONSTITUTION:A guide plate 16 for arranging air in an external air passage 13 outwardly is arranged at the extremity end of an outer cylinder 11 and at the same time a circulating means 17 for forcedly circulating the air flow stronger than the air flow in the inner air passage 12 is arranged in the external air passage 13. Thus, the external air in the external air passage 13 is baffled by a guide plate 16 to be injected outwardly, so that the air is injected into a furnace 1 while suctioning a part of the inner air in the inner air passage 12, resulting in that the root part of the fine coal supplying nozzle 3 shows a high O2 area, NOx is produced from component of N in the fuel to cause O2 to be consumed, thereafter the reducing material is produced at the downstream side of the passage, NOx and the reducing material are reacted with each other and reduced to N2.

Description

【発明の詳細な説明】 本発明は液体、固体燃料等の燃料を専焼、あるいは混焼
する燃焼装置に係り、特に排ガス中の窒素酸化物(以下
NOxという)を低減する燃焼装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device that exclusively burns or co-burns fuel such as liquid or solid fuel, and particularly relates to a combustion device that reduces nitrogen oxides (hereinafter referred to as NOx) in exhaust gas.

化石燃料中には、C,H等の燃料成分の他にN分が含ま
れ、特に微粉炭には気体燃料や液体燃料に比較してN分
合有量が多い。
Fossil fuels contain N in addition to fuel components such as C and H, and pulverized coal in particular has a larger amount of N than gaseous fuels or liquid fuels.

従って、微粉炭の燃焼時に発生するNOxは気体燃料お
よび液体燃料の燃焼時に発生するNOxよりも多く、こ
のためにNOxを権力低減させることが要望されている
Therefore, NOx generated during combustion of pulverized coal is larger than NOx generated during combustion of gaseous fuel and liquid fuel, and therefore, it is desired to reduce the power of NOx.

各種燃料の燃焼時に発生するNOxは、サーマル(Tb
e rma 1 ) NOxと7 x −x A/ (
Fue、l )NOxとに大別されるが、サーマルNO
xは燃焼用空気中の窒素が酸化されて発生するものであ
り、火炎温度の依存性が太き(、高温になる程発生量が
増加し、一方)−一エルNOxは燃料中の窒素外が酸化
されて発生するものであり、火炎内の酸素濃度の依存性
が大きく、温度依存性は/J%さく酸素が過剰に存在す
る程燃料中のN分はツー−エルNOxになりやすい。
NOx generated during combustion of various fuels is thermal (Tb
e rma 1 ) NOx and 7 x −x A/ (
Fue, l) NOx, thermal NO.
x is generated by the oxidation of nitrogen in the combustion air, and has a strong dependence on flame temperature (the higher the temperature, the greater the amount generated) - NOx is produced by nitrogen other than nitrogen in the fuel It is generated by the oxidation of NOx, and has a strong dependence on the oxygen concentration in the flame, and a temperature dependence on /J%.

これらのNOx発生を抑制するだめの燃焼方法としては
、燃焼用空気を多段に分割して注入する多段燃焼法、低
酸素濃度の燃焼排ガスを燃焼領域に混入する排ガス再循
環法等があるが、これらの低NOx燃焼法はいずれも低
酸素燃焼によって燃焼火炎の温度を下げることによりサ
ーマルNOxの発生を抑制することにある。
Combustion methods that can suppress the generation of NOx include a multistage combustion method in which combustion air is divided into multiple stages and injected, and an exhaust gas recirculation method in which combustion exhaust gas with a low oxygen concentration is mixed into the combustion area. All of these low NOx combustion methods are aimed at suppressing the generation of thermal NOx by lowering the temperature of the combustion flame through low oxygen combustion.

ところが、サーマルNOxと7ユーエルNOxの中で、
燃焼温度の低下によってそのNOx発生量を抑制できる
のはサーマルNOxであり、フューエルNOxの発生量
は燃焼温度に対する依存性は少ない。
However, between thermal NOx and 7UEL NOx,
It is thermal NOx that can suppress the amount of NOx generated by lowering the combustion temperature, and the amount of fuel NOx generated has little dependence on the combustion temperature.

従って、火炎温度の低下を目的とした従来の燃焼方法は
、N分の含有量の少ない気体燃料の燃焼には有効である
が、発生するNOxの80%近くがフューエルNOxで
ある微粉炭燃料の燃焼や、微粉炭と重油を混合した混炭
燃料(Coal Oil Mxxture略してCOM
という)、粗粉炭、微粉炭と水を混合した混炭燃料(C
oal Water Mixture略してCWMとい
う)の燃焼に対しては効果が小さい。
Therefore, conventional combustion methods aimed at lowering the flame temperature are effective for combustion of gaseous fuels with low N content, but they are not suitable for pulverized coal fuels, where nearly 80% of the NOx generated is fuel NOx. Coal oil mixed fuel (abbreviated as COM) is a mixture of pulverized coal and heavy oil.
), coarse pulverized coal, mixed coal fuel (C
It has little effect on the combustion of oil water mixture (abbreviated as CWM).

一方、微粉炭の燃焼機構は、揮発成分が放出される微粉
炭の熱分解過程、放出された揮発成分の一燃焼過程、更
に、熱分解後の可燃性固体成分(以下チャーとりう)の
燃焼過程からなる。
On the other hand, the combustion mechanism of pulverized coal consists of a thermal decomposition process of pulverized coal in which volatile components are released, a combustion process of the released volatile components, and a combustion process of combustible solid components (hereinafter referred to as char) after thermal decomposition. Consists of processes.

この揮発成分の燃焼速度は固体成分の燃焼速度よりもは
るかに早(、揮発成分は燃焼の初期で燃焼する。また熱
分解過程“では、微粉炭中に含有されたN分も、他の可
燃成分と同様に揮発されて放出されるものと、チャー中
に残るものとに分かれる。
The combustion rate of these volatile components is much faster than that of the solid components (volatile components are burned at the beginning of combustion. Also, in the pyrolysis process, the N content in the pulverized coal is also absorbed by other combustible components). Like other components, it is divided into those that are volatilized and released, and those that remain in the char.

従って、微粉炭燃焼時に発生するフューエルNOxは、
揮発性N分からのNOxと、チャー中のN分からのNO
xとに分れ、7ユーエルNOxの中で、チャーからの7
ユーエルNOxはチャーが燃焼することによって初めて
生成するため、燃焼の後半までNOxの生成が続き、こ
の対策が重要なポイントとなる。
Therefore, fuel NOx generated during pulverized coal combustion is
NOx from volatile N minutes and NO from N minutes in char
x, in 7 uel NOx, 7 from char
Since NOx is only generated when char is burned, NOx continues to be generated until the latter half of combustion, and countermeasures against this are an important point.

揮発性N分は、燃焼の初期過程および酸素不足の燃焼領
域でNH3、HCN等の化合物になることが知られてい
る。これらの窒素化合物は、酸素と反応してNOxにな
る他に、発生したNOxを窒素に分解する還元剤にもな
り得る。
It is known that volatile N becomes compounds such as NH3 and HCN in the initial process of combustion and in the oxygen-deficient combustion region. In addition to reacting with oxygen to form NOx, these nitrogen compounds can also serve as reducing agents that decompose the generated NOx into nitrogen.

この窒素化合物によるNOx還元反応は、NOxとの共
存系において進行するものであり、NOxが共存しない
反応系では、大半の窒素化合物はNOxに。
This NOx reduction reaction by nitrogen compounds proceeds in a system in which NOx coexists; in a reaction system in which NOx does not coexist, most of the nitrogen compounds convert to NOx.

酸化される。また、還元物質の生成は低酸素濃度雰囲気
になる程進行しやすい。
Oxidized. Further, the generation of reducing substances progresses more easily in an atmosphere with a lower oxygen concentration.

このように微粉炭燃焼時のNOx低減法としては、還元
性をもつ揮発性窒素化合物とNOxとを共存させ、窒素
化合物によりNOxを窒素に還元する燃焼方法が有効で
ある。
As described above, an effective method for reducing NOx during combustion of pulverized coal is a combustion method in which a volatile nitrogen compound having reducing properties and NOx coexist, and the nitrogen compound reduces NOx to nitrogen.

すなわち、NOxの前駆物質であるN)(3等の還元性
窒素化合物をNOxの還元に利用することにより、発生
したNOxの消滅とNOx前駆物質の消滅を行なわせる
燃焼方法がNOx低減には有効である。
In other words, a combustion method that eliminates the generated NOx and the NOx precursor by using a reducing nitrogen compound such as N (N) (3), which is a precursor of NOx, is effective for reducing NOx. It is.

第1図は従来の重油、COM、cstと微粉炭を専焼、
または混焼する燃焼装置の縦断面図である。
Figure 1 shows the conventional combustion of heavy oil, COM, CST and pulverized coal.
Alternatively, it is a longitudinal cross-sectional view of a combustion device that performs co-combustion.

微粉炭バーナは、微粉炭と一次空気、あるいは微粉炭と
排ガスの混合流体を火炉1内に噴射する微粉炭供給ノズ
ル2と、曲成されたエルボ3によって構成され、このエ
ルボ3には混合流体の流れ方向を変えるスプラッシュプ
レート4が配置されて微粉炭燃料供給通路5aが形成さ
れ、この微粉炭燃料供給通路5a内には重油、cod 
CWMバーナなどの液体、混炭燃料供給通路5bが配置
されて、微粉炭と重油、COM、CWMを専焼、または
混焼できるように形成されている。
The pulverized coal burner is composed of a pulverized coal supply nozzle 2 that injects a mixed fluid of pulverized coal and primary air or pulverized coal and exhaust gas into a furnace 1, and a curved elbow 3. A splash plate 4 for changing the flow direction of the pulverized coal is arranged to form a pulverized coal fuel supply passage 5a, and in this pulverized coal fuel supply passage 5a, heavy oil, cod
A liquid such as a CWM burner and a mixed coal fuel supply passage 5b are arranged so that pulverized coal, heavy oil, COM, and CWM can be fired exclusively or mixedly.

そして、この微粉炭燃料供給通路5a、液体、混炭燃料
供給通路5bはウィンドボックス6から炉壁7のバーナ
ボート8へ配置され、ウィンドボックス6内を仕切板9
,10、外筒11によって内側空気通路12、外側空気
通路13に区画し、内側空気通路12、外側空気通路1
3には空気ベーン14.15を設け、通路12 、13
の空気量を制御する。
The pulverized coal fuel supply passage 5a, liquid and mixed coal fuel supply passage 5b are arranged from the wind box 6 to the burner boat 8 of the furnace wall 7, and the inside of the wind box 6 is connected to a partition plate 9.
, 10, partitioned into an inner air passage 12 and an outer air passage 13 by an outer cylinder 11, and an inner air passage 12 and an outer air passage 1.
3 are provided with air vanes 14.15, and the passages 12, 13
control the amount of air.

この様な構造において、微粉炭燃料供給通路5a、ある
いは液体、混炭燃料供給通路5bからの燃料はその先端
から火炉1内へ噴射され、内側空気通路12、外側空気
通路13かもの燃焼用空気によって燃焼する。
In such a structure, the fuel from the pulverized coal fuel supply passage 5a or the liquid or mixed coal fuel supply passage 5b is injected into the furnace 1 from its tip, and is injected into the furnace 1 by the combustion air from the inner air passage 12 and the outer air passage 13. Burn.

ところが、従来の燃焼装置においては、微粉炭燃料供給
通路5a、あるいは液体、混炭燃料供給通路5bからの
燃料を折角内側空気通路12の燃焼用空気によって低空
気比で燃焼させようとしても、外側空気通路13の燃焼
用空気の一部が燃焼用空気として巻き込まれて根元部で
の低空気比が阻害され、これによって低NOx化を計る
ことができない。
However, in conventional combustion devices, even if the fuel from the pulverized coal fuel supply passage 5a or the liquid/mixed coal fuel supply passage 5b is attempted to be combusted at a low air ratio by the combustion air in the inner air passage 12, the outer air A part of the combustion air in the passage 13 is drawn in as combustion air, inhibiting the low air ratio at the root, and thereby making it impossible to achieve low NOx.

本発明はかかる従来の欠点を等消しようとするもので、
その目的とするところは、排ガス中のNOxを低減する
ことができ、しかも未燃分を低下させることができる燃
焼装置を得ようとするものである。
The present invention attempts to eliminate such conventional drawbacks,
The objective is to obtain a combustion device that can reduce NOx in exhaust gas and also reduce unburned content.

本発明は前述の目的を達成するために、外筒の先端に外
側空気通路の空気を外側へ整流する案内板を投げ、かつ
この外側空気通路内に内側空気通路の空気流よりも強く
旋回させる旋回手段を設けたのである。
In order to achieve the above-mentioned object, the present invention provides a guide plate at the tip of the outer cylinder to rectify the air in the outer air passage to the outside, and causes the air flow in the outer air passage to swirl more strongly than the air flow in the inner air passage. A turning means was provided.

以下本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図および第4図は本発明の燃焼装置の縦断面図であ
り、第3図は本発明の燃焼装置における燃料、空気の流
動状態を説明する斜視図である。
2 and 4 are longitudinal sectional views of the combustion apparatus of the present invention, and FIG. 3 is a perspective view illustrating the flow state of fuel and air in the combustion apparatus of the present invention.

第2図から第4図において、符号1〜14までは従来の
ものと同一のものを示す。
In FIGS. 2 to 4, numerals 1 to 14 indicate the same parts as the conventional ones.

16は外筒11の先端に配置された案内板で、この案内
板16は外側空気通路13の外側空気をより外向きに整
流し、バーナ根元部への燃焼用空気を低空気比にする邪
魔板でもある。17は例えばエアレジスタのように外側
空気通路13の外側空気流へ強旋回力を与える旋回手段
、18は外筒11と案内板16を前、後進させる操作杆
、19はハンドルである。
Reference numeral 16 denotes a guide plate disposed at the tip of the outer cylinder 11. This guide plate 16 rectifies the outside air of the outside air passage 13 more outward, and serves as an obstacle to lowering the air ratio of the combustion air to the burner root. It's also a board. Reference numeral 17 is a turning means, such as an air register, which applies a strong turning force to the outer air flow of the outer air passage 13, 18 is an operating rod for moving the outer cylinder 11 and the guide plate 16 forward and backward, and 19 is a handle.

この様な構造において、第2図の外側空気通路13内の
外側空気は旋回手段17によって旋回流となり、案内板
16にそって旋回させられながら外向きにバーナスロー
ト8より火炉1内に噴射される。
In such a structure, the outside air in the outside air passage 13 in FIG. Ru.

この様に外側空気通路13内の外側空気は、案内板16
に邪魔されて外向きに噴射されるために、内側空気通路
12内の内側空気の一部を吸引しながら火炉1内に噴射
されるので、微粉炭供給ノズル3の根元部では高02領
域となって燃料中のN分からNOxが生成して02が消
費され、その後流部(先端部)では0□が消費された低
0□領域となり、この低02領域ではN1−13等の還
元物質が生成して、前述のNOxとこの還元物質が反応
してN2に還元されるのである。
In this way, the outside air in the outside air passage 13 is transferred to the guide plate 16.
Since the pulverized coal is injected into the furnace 1 while sucking a part of the inner air in the inner air passage 12, the base of the pulverized coal supply nozzle 3 has a high 02 area. As a result, NOx is generated from the N in the fuel and 02 is consumed, and the trailing end (tip) becomes a low 0□ region where 0□ is consumed, and in this low 02 region, reducing substances such as N1-13 are The above-mentioned NOx reacts with this reducing substance and is reduced to N2.

つまり、第3図にその様子を示すが、外側空気を第2図
の旋回手段17によって強旋回させることによって、燃
焼装置の外向きに矢印Aで示す如く旋回流Aが形成され
る。
That is, as shown in FIG. 3, by strongly swirling the outside air by the swirling means 17 shown in FIG. 2, a swirling flow A is formed outward from the combustion apparatus as shown by arrow A.

この旋回流Aによって内側空気通路12内の内側空気の
一部は吸引され負圧となり、旋回流人の減衰する後流に
おいては、内側に向う循環流Bが発生する。
A part of the inner air in the inner air passage 12 is sucked by this swirling flow A and becomes a negative pressure, and an inward circulating flow B is generated in the attenuating wake of the swirling flow.

一方、微粉炭供給ノズル2の根元部Cでは内側空気通路
12からの内側空気によって高02領域となり、NOx
が発生する。他方、根元部Cの後流部りでは、旋回流A
の旋回力によって内側空気の一部が吸引されて少なくな
り、また根元部Cでの燃焼用空気の消費によって後流部
りでは低02領域となるために、この低02領域ではN
H3,HCN等の還元物質が発生する。
On the other hand, at the base C of the pulverized coal supply nozzle 2, the inner air from the inner air passage 12 creates a high 02 region, and NOx
occurs. On the other hand, in the wake of the base C, the swirling flow A
A part of the inside air is sucked in by the swirling force of
Reducing substances such as H3 and HCN are generated.

従って、根元部CでのNOxは後流部りでの還元物質と
循環流Bによって混合され、NOxはN2に還元される
のである。
Therefore, the NOx at the base C is mixed with the reducing substance at the downstream part by the circulating flow B, and the NOx is reduced to N2.

そして、発明者等の燃焼実験によれば微粉炭供給ノズル
2の根元部Cでは内側空気が燃焼によって消費されてN
Oxは増加するが、この内側空気00□量が少なくなる
につれて後流部りではNH3、HCN等の還元物質の発
生量が増加する傾向が観察され、一方では外側空気通路
13の外側空気を案内板16によって外向きに広げるこ
とによって微粉炭供給ノズル2の根元部Cでの保炎効果
も向上することが観察された。
According to the combustion experiments conducted by the inventors, at the root C of the pulverized coal supply nozzle 2, the inner air is consumed by combustion and N
Ox increases, but as the amount of this inner air 00□ decreases, it is observed that the amount of reducing substances such as NH3 and HCN generated increases in the downstream area, and on the other hand, it is observed that as the amount of inner air 00□ decreases, the amount of reducing substances such as NH3 and HCN increases. It was observed that the flame holding effect at the root C of the pulverized coal supply nozzle 2 was also improved by expanding it outward by the plate 16.

第4図は第2図の他の実施例を示したもので、第4図の
ものはハンドル19と操作杆18によって外筒11およ
び案内板16を前、後進させることによって外側空気通
路13内の外側空気の外向き角度を微量調整するように
したものであり、他の説明は第2図のものと同一である
FIG. 4 shows another embodiment of FIG. 2, in which the outer cylinder 11 and the guide plate 16 are moved forward and backward using the handle 19 and the operating rod 18 to move the outer cylinder 11 and the guide plate 16 forward and backward. The outward angle of the outside air is slightly adjusted, and the other explanations are the same as those shown in FIG.

なお、第4図のものにおいては、前述の外側空気の微量
調整のほかに、燃焼装置の消火時には外筒11および案
内板16を実線の位置から点線の位置へ後退させること
によって焼損、破損防止をすることもできる。
In the case shown in Fig. 4, in addition to the above-mentioned fine adjustment of the outside air, when the combustion equipment is extinguished, the outer cylinder 11 and the guide plate 16 are moved back from the position shown by the solid line to the position shown by the dotted line to prevent burnout and damage. You can also do

以下、本発明者等の行なった実験データを紹介する。Below, experimental data conducted by the present inventors will be introduced.

表は高さ16000闘、巾3000 x 4200關の
石炭1.5T/H焚き燃焼テスト炉(バーナ使用本数1
8本)を用いて第1図、第2図および第4図の燃焼装置
を燃焼させて得た実験データである。
The table shows a coal-fired 1.5T/H combustion test furnace with a height of 16,000mm and a width of 3,000mm x 4,200mm (number of burners used: 1).
This is experimental data obtained by burning the combustion devices shown in FIGS.

なおNOx 、未燃分v ヘA/ (NOxはPP77
1−6%02換算、未燃分は灰中の未燃カーボンwt%
)の実験データで、旋回手段17の上流側圧力(静圧)
は空気ベーン14の上流側圧力(静圧)に対し12倍と
し、案内板16の傾斜角度は20〜90°とし、第4図
のものにおいては外筒11および案内板16を微量調整
した。
Note that NOx, unburned content v Hair A/ (NOx is PP77
1-6%02 conversion, unburned content is unburned carbon wt% in ash
), the upstream pressure (static pressure) of the swirling means 17
was set to be 12 times the upstream side pressure (static pressure) of the air vane 14, and the inclination angle of the guide plate 16 was set to 20 to 90 degrees, and in the one shown in FIG. 4, the outer cylinder 11 and the guide plate 16 were slightly adjusted.

この時の火炉出口02濃度は3.5〜4.0%であった
The concentration at the furnace outlet 02 at this time was 3.5 to 4.0%.

本発明は外筒の先端に外側空気通路の空気を外側へ整流
する案内板を設け、かつこの外側空気通路内に内側空気
通路の空気流よりも強く旋回させる旋回手段を設けたの
で、排ガス中のNOxを低減し、灰中未燃分の増加を防
止することができ、既設の燃焼装置であっても簡単に改
造することができる。
In the present invention, a guide plate is provided at the tip of the outer cylinder to rectify the air in the outer air passage to the outside, and a swirling means is provided in the outer air passage to swirl the air more strongly than the air flow in the inner air passage. It is possible to reduce NOx in the ash, prevent an increase in unburned content in the ash, and even existing combustion equipment can be easily modified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃焼装置を示す縦断面図、第2図および
第4図は本発明の実施例に係る燃焼装置の縦断面、第3
図は本発明の燃焼装置における空気の流動状態を説明す
る斜視図である。 5a、 5b・・・・・・燃料供給通路、11・・・・
・・外筒、12・・・・・・内側空気通路、13・・・
・・・外側空気通路、16・・・・・・案内板、17・
・・・・・旋回手段。 第1 図 第2図 )・53図 第4図
FIG. 1 is a vertical cross-sectional view showing a conventional combustion device, FIGS. 2 and 4 are vertical cross-sections of a combustion device according to an embodiment of the present invention, and FIG.
The figure is a perspective view illustrating the flow state of air in the combustion apparatus of the present invention. 5a, 5b...Fuel supply passage, 11...
...Outer tube, 12...Inner air passage, 13...
...Outside air passage, 16...Guidance plate, 17.
...Turning means. (Fig. 1, Fig. 2), Fig. 53, Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 燃料供給通路の外周に外筒を設けて内側空気通路と外側
空気通路に仕切り、燃料供給通路からの燃料を空気通路
からの燃焼用空気によって燃焼するものにおいて、前記
外筒の先端に外側空気通路の空気を外側へ整流する案内
板を設け、かつこの外側空気通路内に内側空気通路の空
気流よりも強く旋回させる旋回手段を設けたことを特徴
とする燃焼装置。
An outer cylinder is provided on the outer periphery of the fuel supply passage to partition the fuel supply passage into an inner air passage and an outer air passage, and the fuel from the fuel supply passage is combusted by combustion air from the air passage. A combustion device characterized in that a guide plate is provided to rectify the air to the outside, and a swirling means is provided in the outer air passage to swirl the air more strongly than the air flow in the inner air passage.
JP11191183A 1983-06-23 1983-06-23 Combustion device Granted JPS604704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11191183A JPS604704A (en) 1983-06-23 1983-06-23 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11191183A JPS604704A (en) 1983-06-23 1983-06-23 Combustion device

Publications (2)

Publication Number Publication Date
JPS604704A true JPS604704A (en) 1985-01-11
JPH0323804B2 JPH0323804B2 (en) 1991-03-29

Family

ID=14573206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11191183A Granted JPS604704A (en) 1983-06-23 1983-06-23 Combustion device

Country Status (1)

Country Link
JP (1) JPS604704A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757205A2 (en) * 1995-08-04 1997-02-05 Air Products And Chemicals, Inc. Method and apparatus for reducing NOX production during air-oxygen-fuel combustion
JP2015014451A (en) * 2014-09-11 2015-01-22 三菱日立パワーシステムズ株式会社 Fuel burner, solid fuel firing burner, and solid fuel firing boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
WO2019155976A1 (en) * 2018-02-09 2019-08-15 株式会社神戸製鋼所 Binary power generation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757205A2 (en) * 1995-08-04 1997-02-05 Air Products And Chemicals, Inc. Method and apparatus for reducing NOX production during air-oxygen-fuel combustion
EP0757205A3 (en) * 1995-08-04 1999-01-07 Air Products And Chemicals, Inc. Method and apparatus for reducing NOX production during air-oxygen-fuel combustion
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
JP2015014451A (en) * 2014-09-11 2015-01-22 三菱日立パワーシステムズ株式会社 Fuel burner, solid fuel firing burner, and solid fuel firing boiler
WO2019155976A1 (en) * 2018-02-09 2019-08-15 株式会社神戸製鋼所 Binary power generation system

Also Published As

Publication number Publication date
JPH0323804B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JPS62276310A (en) Burner for low nox combustion
JPH05507140A (en) Collective concentric angular combustion system
BG106652A (en) Solid fuel burner and combustion method using solid fuel burner
JPS6026922B2 (en) pulverized coal burner
US4509915A (en) Liquid fuel combustion apparatus
JP2791029B2 (en) Pulverized coal burner
JPS604704A (en) Combustion device
JPS624606B2 (en)
JPH10274405A (en) Pulverized coal combustion burner and combustion method thereof
JPS60126508A (en) Finely powdered coal burning device
JPS6138961B2 (en)
JPH09137916A (en) Low nitrogen oxide generation combustion method and device therefor
Straitz III et al. Combat NOx with better burner design
JPH0555763B2 (en)
JP2749365B2 (en) Pulverized coal burner
JPS6011286B2 (en) Combustion method and combustion device
JP3816243B2 (en) Burner
JPS58102006A (en) Low nox pulverized coal burner
JPH05264040A (en) Discharging gas recombustion type complex power generating plant
JP2667607B2 (en) Structure of low NOx boiler
JPH01281307A (en) Pulverized coal combustion device
JPS5986809A (en) Pulverized coal burner for forming reducing flame
JPS60218505A (en) Burner
JPS58164912A (en) Boiler device
JPH0794881B2 (en) Low NO ▲ Lower x ▼ Combustion burner