JP2015014451A - Fuel burner, solid fuel firing burner, and solid fuel firing boiler - Google Patents

Fuel burner, solid fuel firing burner, and solid fuel firing boiler Download PDF

Info

Publication number
JP2015014451A
JP2015014451A JP2014184838A JP2014184838A JP2015014451A JP 2015014451 A JP2015014451 A JP 2015014451A JP 2014184838 A JP2014184838 A JP 2014184838A JP 2014184838 A JP2014184838 A JP 2014184838A JP 2015014451 A JP2015014451 A JP 2015014451A
Authority
JP
Japan
Prior art keywords
air
solid fuel
burner
fuel
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014184838A
Other languages
Japanese (ja)
Other versions
JP5799443B2 (en
Inventor
啓吾 松本
Keigo Matsumoto
啓吾 松本
皓太郎 藤村
Kotaro Fujimura
皓太郎 藤村
和宏 堂本
Kazuhiro Domoto
和宏 堂本
一ノ瀬 利光
Toshimitsu Ichinose
利光 一ノ瀬
直文 阿部
Naofumi Abe
直文 阿部
潤 葛西
Jun Kasai
潤 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014184838A priority Critical patent/JP5799443B2/en
Publication of JP2015014451A publication Critical patent/JP2015014451A/en
Application granted granted Critical
Publication of JP5799443B2 publication Critical patent/JP5799443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid fuel firing burner capable of reducing the final NOx generation amount by depressing the residual area of high-temperature oxygen formed on the outer periphery of flames.SOLUTION: A solid fuel firing burner 20 that charges powder solid fuel and air into a furnace includes a fuel burner 21, and secondary air input ports 30. The fuel burner 21 includes a coal primary port 22 having internal holding flames and charging solid fuel and primary air into the furnace, and a coal secondary port 23 which does not hold flames and is provided to surround the circumference of the coal primary port 22 for charging a part of secondary air. The secondary air input ports 30 are arranged at respective vertical and/or horizontal positions of the fuel firing burner 20 and each of the secondary air input ports 30 includes flow-rate regulating means. The internal flame holding is executed by one or a plurality of split members 24 that are arranged in the front part of the flow channel of the coal primary port 22 and do not charge air.

Description

本発明は、たとえば微粉炭等の固体燃料(粉体燃料)を焚く燃料バーナ、固体燃料焚きバーナ及び固体燃料焚きボイラに関する。   The present invention relates to a fuel burner that burns solid fuel (pulverized fuel) such as pulverized coal, a solid fuel burning burner, and a solid fuel burning boiler.

従来、固体燃料焚きのボイラには、たとえば固体燃料として微粉炭(石炭)を焚く微粉炭焚きボイラがある。このような微粉炭焚きボイラにおいては、旋回燃焼ボイラ及び対向燃焼ボイラという二種類の燃焼方式が知られている。
このうち、微粉炭焚きの旋回燃焼ボイラにおいては、燃料の微粉炭とともに石炭焚きバーナ(固体燃料焚きバーナ)から投入される1次空気の上下に2次空気投入用の2次空気投入ポートを設置して、石炭焚きバーナ周囲の2次空気について流量調整を行っている。(たとえば、特許文献1参照)
Conventionally, solid fuel-fired boilers include, for example, pulverized coal-fired boilers that burn pulverized coal (coal) as solid fuel. In such a pulverized coal fired boiler, two types of combustion systems are known: a swirl combustion boiler and an opposed combustion boiler.
Of these, in the pulverized coal-fired swirl combustion boiler, secondary air input ports for supplying secondary air are installed above and below the primary air supplied from the coal-fired burner (solid fuel-fired burner) together with the pulverized coal of fuel. The flow rate of the secondary air around the coal burning burner is adjusted. (For example, see Patent Document 1)

上述した1次空気は、燃料の微粉炭を搬送するために必要な空気量であるから、石炭を粉砕して微粉炭とするローラミル装置において空気量が規定される。
上述した2次空気は、旋回燃焼ボイラ内において火炎全体を形成するために必要となる空気量を吹き込むものである。従って、旋回燃焼ボイラの2次空気量は、概ね微粉炭の燃焼に必要な全空気量から1次空気量を差し引いたものとなる。
The primary air described above is an amount of air necessary for conveying the pulverized coal of fuel, and therefore, the amount of air is defined in a roller mill device that pulverizes coal into pulverized coal.
The secondary air mentioned above blows in the air quantity required in order to form the whole flame in a swirl combustion boiler. Therefore, the secondary air amount of the swirl combustion boiler is approximately the total air amount necessary for the combustion of the pulverized coal minus the primary air amount.

一方、対向燃焼ボイラのバーナにおいては、1次空気(微粉炭供給)の外側に2次空気及び3次空気を導入して空気導入量の微調整を行うことが提案されている。(たとえば、特許文献2参照)   On the other hand, in the burner of the opposed combustion boiler, it has been proposed to finely adjust the air introduction amount by introducing secondary air and tertiary air outside the primary air (pulverized coal supply). (For example, see Patent Document 2)

特許第3679998号公報Japanese Patent No. 3679998 特開2006−189188号公報JP 2006-189188 A

ところで、上述した従来の旋回燃焼ボイラにおいては、石炭焚きバーナの上下に設けられる2次空気投入用の2次空気投入ポートが各々1本とされ、2次空気投入ポートから投入される2次空気量の微調整はできない構成となっている。このため、火炎の外周には高温酸素残存領域が形成されることとなり、特に2次空気が集中する領域では、高温酸素残存領域が強くなってNOx発生量を増加させる要因となるため好ましくない。   By the way, in the conventional swirl combustion boiler described above, there is one secondary air input port for secondary air input provided above and below the coal burning burner, and secondary air input from the secondary air input port. The amount cannot be finely adjusted. For this reason, a high temperature oxygen residual region is formed on the outer periphery of the flame, and particularly in a region where the secondary air is concentrated, the high temperature oxygen residual region becomes strong and causes an increase in the amount of NOx generation.

また、従来の石炭焚きバーナは、バーナ外周に保炎機構(先端角度の調整、旋回等)を設置し、さらに、すぐ外周に近接して2次空気(あるいは3次空気)の投入ポートを設置することが一般的である。このため、火炎の外周で着火が起こり、火炎の外周において大量の空気が混合されることとなる。この結果、火炎外周の燃焼は、火炎外周の高温酸素残存領域において酸素濃度が高い高温状態で進行することになり、従って、NOxは火炎外周で発生していた。
このようにして、火炎外周の高温酸素残存領域で発生したNOxは、火炎の外周を通過するので、火炎内部と比較して還元が遅れることとなり、これが石炭焚きボイラからNOxを発生させる要因となっていた。
In addition, conventional coal-fired burners have a flame holding mechanism (adjustment of tip angle, swivel, etc.) on the outer periphery of the burner, and a secondary air (or tertiary air) input port immediately adjacent to the outer periphery. It is common to do. For this reason, ignition occurs at the outer periphery of the flame, and a large amount of air is mixed at the outer periphery of the flame. As a result, the combustion around the flame proceeds in a high temperature state where the oxygen concentration is high in the high temperature oxygen remaining region around the flame, and therefore NOx is generated around the flame.
Thus, since NOx generated in the high temperature oxygen remaining region on the outer periphery of the flame passes through the outer periphery of the flame, reduction is delayed as compared with the inside of the flame, which becomes a factor for generating NOx from the coal-fired boiler. It was.

一方、対向燃焼ボイラにおいても、旋回により、火炎外周で着火するため、火炎の外周で同様にNOxが発生する要因となっていた。   On the other hand, the counter-fired boiler is also ignited on the outer periphery of the flame by turning, and this is a factor that NOx is similarly generated on the outer periphery of the flame.

このような背景から、上述した従来の石炭焚きバーナ及び石炭焚きボイラのように、粉体の固体燃料を焚く固体燃料焚きバーナ及び固体燃料焚きボイラにおいては、火炎の外周に形成される高温酸素残存領域を抑制し、追加空気投入部から排出される最終的なNOx発生量を低減することが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、火炎の外周に形成される高温酸素残存領域を抑制(弱く)することにより、追加空気投入部から排出される最終的なNOx発生量の低減を可能にした燃料バーナ、固体燃料焚きバーナ及び固体燃料焚きボイラを提供することにある。
From such a background, in the solid fuel-fired burner and the solid fuel-fired boiler that burn the solid fuel of the powder, such as the conventional coal-fired burner and the coal-fired boiler described above, the high-temperature oxygen remaining formed on the outer periphery of the flame It is desired to suppress the region and reduce the final NOx generation amount discharged from the additional air input unit.
The present invention has been made in view of the above circumstances, and its object is to suppress (weaken) the high-temperature oxygen residual region formed on the outer periphery of the flame, thereby exhausting it from the additional air input unit. It is an object of the present invention to provide a fuel burner, a solid fuel-fired burner, and a solid fuel-fired boiler that can reduce the final NOx generation amount.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の請求項1に係る燃料バーナは、固体燃料及び空気を固体燃料焚きボイラの炉内へ投入する燃料バーナであって、内部保炎を有し前記固体燃料及び1次空気を炉内へ投入する固体燃料空気1次ポートと、該固体燃料空気1次ポートの周囲を取り囲むように設けられて2次空気を炉内へ投入する保炎しない燃料バーナ用空気2次ポートとを備え、前記内部保炎が、前記固体燃料空気1次ポートの流路前方部に配設され、空気投入をしない1または複数のスプリット部材によりなされることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A fuel burner according to claim 1 of the present invention is a fuel burner for charging solid fuel and air into a furnace of a solid fuel-fired boiler, and has an internal flame holding so that the solid fuel and primary air enter the furnace. A solid fuel air primary port to be charged, and a fuel burner air secondary port which is provided so as to surround the solid fuel air primary port and which does not hold the flame for charging the secondary air into the furnace, The internal flame holding is performed by one or a plurality of split members which are disposed in front of the flow path of the solid fuel air primary port and do not input air.

このような本発明の燃料バーナによれば、内部保炎を有し固体燃料及び1次空気を炉内へ投入する固体燃料空気1次ポートと、固体燃料空気1次ポートの周囲を取り囲むように設けられて2次空気の一部を投入する保炎しない燃料バーナ用空気2次ポートとを備えている。内部保炎は、固体燃料空気1次ポートの流路前方部に配設され、空気投入をしない1または複数のスプリット部材によりなされるので、追加空気投入部の空気量(追加空気投入量)を低減することができる。   According to such a fuel burner of the present invention, the solid fuel air primary port having an internal flame holding and supplying the solid fuel and the primary air into the furnace and the periphery of the solid fuel air primary port are surrounded. An air secondary port for a fuel burner that is provided and that does not hold the flame for supplying a part of the secondary air is provided. Since the internal flame holding is performed by one or a plurality of split members that are disposed in the front portion of the flow path of the solid fuel air primary port and do not input air, the amount of air in the additional air input portion (additional air input amount) is reduced. Can be reduced.

上述した追加空気投入量の低減は、内部保炎を有する燃料バーナの固体燃料空気1次ポート及び保炎しない燃料バーナ用空気2次ポートの採用により、燃料バーナの着火が固体燃料空気1次ポートの内部保炎により強化されることと、火炎内部への空気拡散が良好になり、火炎内に形成される酸素残存領域が抑制されることとによって可能になる。すなわち、火炎の外周に形成される高温酸素残存領域が抑制され、しかも、着火の強化により火炎内でNOxを発生させて効果的なNOx還元が行われるようになるので、追加空気投入部に到達するNOx量は減少する。さらに、追加空気投入部においては、追加空気投入量が減少しているので、追加空気投入部で発生するNOx量も減少し、この結果、最終的に排出されるNOx量を低減することができる。
また、保炎しない燃料バーナ用空気2次ポートの採用は、火炎外周で発生するNOx量の低減にも有効である。
The reduction of the additional air input amount described above is achieved by adopting the solid fuel air primary port of the fuel burner having internal flame holding and the fuel burner air secondary port that does not hold flame, so that the ignition of the fuel burner is the solid fuel air primary port. It is possible to be strengthened by the internal flame holding and to improve the air diffusion into the flame and to suppress the remaining oxygen region formed in the flame. That is, the high-temperature oxygen remaining region formed on the outer periphery of the flame is suppressed, and further, NOx is generated in the flame by the enhancement of ignition, so that effective NOx reduction is performed, so that the additional air introduction unit is reached. The amount of NOx to be reduced decreases. Further, since the additional air input amount is decreased in the additional air input unit, the NOx amount generated in the additional air input unit is also decreased, and as a result, the NOx amount finally discharged can be reduced. .
The adoption of a fuel burner air secondary port that does not hold the flame is also effective in reducing the amount of NOx generated on the outer periphery of the flame.

そして、本発明の燃料バーナは、固体燃料空気1次ポートの流路前方部に配設された1または複数のスプリット部材を備えているので、このスプリット部材は、燃料バーナの出口開口中央付近で内部保炎機構として機能する。このスプリット部材により、内部保炎が可能となるため、中央部がより空気不足となってNOx還元が進行する。   The fuel burner according to the present invention includes one or a plurality of split members disposed in the front part of the flow path of the solid fuel air primary port, so that the split member is located near the center of the outlet opening of the fuel burner. Functions as an internal flame holding mechanism. This split member makes it possible to hold the internal flame, so that the central portion becomes more air deficient and NOx reduction proceeds.

本発明の請求項2に係る燃料バーナは、固体燃料及び空気を固体燃料焚きボイラの炉内へ投入する燃料バーナであって、内部保炎を有し前記固体燃料及び1次空気を炉内へ投入する固体燃料空気1次ポートと、該固体燃料空気1次ポートの周囲を取り囲むように設けられて2次空気を炉内へ投入する保炎しない燃料バーナ用空気2次ポートとを備え、前記内部保炎が、前記固体燃料空気1次ポートの流路前方部に配設された複数方向の流路分割をして空気投入をしないスプリット部材によりなされることを特徴とするものである。
このような燃料バーナによれば、固体燃料及び空気を炉内へ投入する燃料バーナが、固体燃料空気1次ポートの流路前方部に配設された複数方向の流路分割をして空気投入をしないスプリット部材を備えているので、燃料バーナの出口開口中央付近に対し、内部保炎機構として機能するスプリット部材の交差部を容易に設けることができる。
A fuel burner according to claim 2 of the present invention is a fuel burner for charging solid fuel and air into a furnace of a solid fuel-fired boiler, and has an internal flame holding so that the solid fuel and primary air enter the furnace. A solid fuel air primary port to be charged, and a fuel burner air secondary port which is provided so as to surround the solid fuel air primary port and which does not hold the flame for charging the secondary air into the furnace, The internal flame holding is performed by a split member that is divided into a plurality of flow paths arranged in front of the flow path of the solid fuel air primary port and does not input air.
According to such a fuel burner, the fuel burner for charging solid fuel and air into the furnace is divided into a plurality of flow paths arranged at the front of the flow path of the solid fuel air primary port, and the air is input. Since the split member is not provided, the intersection of the split member that functions as an internal flame holding mechanism can be easily provided near the center of the outlet opening of the fuel burner.

このため、スプリット部材が交差する燃料バーナの固体燃料空気1次ポート出口開口中央付近においては、固体燃料及び空気の流れが流路を分割するスプリット部材の存在により乱される。この結果、空気の混合・拡散が火炎の内部まで促進され、さらに着火面が細分化されることになるため、着火位置が火炎の中央に寄り、燃料の未燃分が低減される。すなわち、スプリット部材に沿って火炎の中心部まで酸素が入り込みやすくなるので、火炎外周の高温酸素残存領域を抑制して内部着火が効果的に行われるようになる。こうして火炎内部の着火が促進されることにより、火炎外周の高温酸素残存領域で着火する場合と比較すれば、火炎内部で迅速な還元が行われるようになるため、NOxの発生量は低減する。
なお、このような燃料バーナでは、従来バーナ外周に設置していた保炎器をなくしたほうが望ましく、これにより、火炎外周でのNOx発生をより抑制することができる。
For this reason, in the vicinity of the center of the solid fuel air primary port outlet opening of the fuel burner where the split member intersects, the flow of solid fuel and air is disturbed by the presence of the split member that divides the flow path. As a result, air mixing / diffusion is promoted to the inside of the flame, and the ignition surface is further subdivided, so that the ignition position is closer to the center of the flame and the unburned portion of the fuel is reduced. That is, oxygen easily enters the center of the flame along the split member, so that internal ignition is effectively performed while suppressing the high-temperature oxygen remaining region on the outer periphery of the flame. By accelerating the ignition inside the flame in this way, compared with the case where ignition is performed in the high temperature oxygen remaining region on the outer periphery of the flame, rapid reduction is performed inside the flame, so the amount of NOx generated is reduced.
In such a fuel burner, it is desirable to eliminate the flame holder that has conventionally been installed on the outer periphery of the burner, and this can further suppress the generation of NOx on the outer periphery of the flame.

また、本発明の燃料バーナは、前記スプリット部材により形成される着火面長さ(Lf)を前記固体燃料空気1次ポートの出口開口周長(L)よりも大きく(Lf>L)なるように設定することが好ましい。
このようにしてスプリット部材の長さを設定すると、火炎外周で着火させるよりも着火面長さ(Lf)によって与えられる着火面が広くなるので、火炎外周着火と比較して内部着火が強化され、火炎内部における迅速な還元が促進される。
さらに、スプリット部材により火炎が内部で細分化されるため、火炎内部における迅速な燃焼が可能になる。
In the fuel burner of the present invention, the ignition surface length (Lf) formed by the split member is larger than the outlet opening circumferential length (L) of the solid fuel air primary port (Lf> L). It is preferable to set.
When the length of the split member is set in this way, the ignition surface given by the ignition surface length (Lf) becomes wider than that at the flame outer periphery, so that the internal ignition is enhanced compared to the flame outer periphery ignition, Rapid reduction inside the flame is promoted.
Furthermore, since the flame is subdivided inside by the split member, rapid combustion inside the flame becomes possible.

また、本発明の燃料バーナは、前記スプリット部材が、前記固体燃料空気1次ポートの出口開口中央を密にして配置されていることが好ましい。
このようにして、内部保炎機構であるスプリット部材の配置が出口開口の中央で密になると、スプリット部材は燃料バーナの中央部に集中して配置されているので、火炎中央部の着火がより一層促進され、NOxは火炎内部で発生して迅速に還元される。
また、中央に配置するスプリット部材を密にすると、燃料バーナ内部のフリーエリアが小さくなるので、スプリット部材の圧力損失は相対的に大きくなる。従って、燃料バーナ内部を流れる固体燃料及び空気の流速が低下し、より迅速な着火を生じさせることができる。
In the fuel burner of the present invention, it is preferable that the split member is arranged with a dense center of an outlet opening of the solid fuel air primary port.
In this way, when the arrangement of the split member, which is an internal flame holding mechanism, becomes dense at the center of the outlet opening, the split member is concentrated in the central portion of the fuel burner, so that the ignition at the central portion of the flame is further improved. Further promoted, NOx is generated within the flame and reduced rapidly.
Further, when the split member arranged at the center is dense, the free area inside the fuel burner is reduced, so that the pressure loss of the split member is relatively increased. Accordingly, the flow rates of the solid fuel and air flowing inside the fuel burner are reduced, and more rapid ignition can be caused.

また、本発明の燃料バーナは、前記固体燃料及び前記1次空気の流れに圧力損失を付与する整流機構を前記スプリット部材の上流側に設けておくことが望ましい。
このような整流機構は、流路に設けられたベンドを通過することにより生じた固体燃料の流量偏差を解消するので、スプリット部材による内部保炎機構を有効に活用することができる。
In the fuel burner of the present invention, it is preferable that a rectifying mechanism for imparting pressure loss to the flow of the solid fuel and the primary air is provided on the upstream side of the split member.
Since such a rectification mechanism eliminates the flow deviation of the solid fuel caused by passing through the bend provided in the flow path, the internal flame holding mechanism by the split member can be effectively utilized.

また、本発明の固体燃料焚きバーナは、上述したいずれかの燃料バーナと、前記燃料バーナの上下及び/または左右に各々配置されて、前記2次空気をさらに投入する2次空気投入ポートとを備えている。
そして、前記2次空気投入ポートは、各々に流量調整手段を有する独立した複数の流路に分割されていることが好ましい。
このように構成した固体燃料焚きバーナは、火炎の外周に投入される2次空気量について、複数に分割された流路毎に流量調整手段を操作して所望の値となるよう流量配分を行うことが可能になる。従って、火炎外周に投入される2次空気量の適正化により、高温酸素残存領域の形成を抑制または防止することができる。
The solid fuel burning burner of the present invention includes any one of the above-described fuel burners, and a secondary air input port that is disposed above and / or below the fuel burner and further inputs the secondary air. I have.
The secondary air input port is preferably divided into a plurality of independent flow paths each having flow rate adjusting means.
The solid fuel-burning burner configured as described above distributes the flow rate so that the secondary air amount introduced into the outer periphery of the flame becomes a desired value by operating the flow rate adjusting means for each of the divided flow paths. It becomes possible. Therefore, the formation of the high temperature oxygen remaining region can be suppressed or prevented by optimizing the amount of secondary air supplied to the flame periphery.

また、本発明の固体燃料焚きバーナは、前記2次空気投入ポートが各々流量調整手段を有する独立した複数の流路に分割され、かつ、前記燃料バーナの流路前方部にスプリット部材を配設することが好ましい。   In the solid fuel-burning burner according to the present invention, the secondary air input port is divided into a plurality of independent flow paths each having flow rate adjusting means, and a split member is disposed at the front of the flow path of the fuel burner. It is preferable to do.

このような固体燃料焚きバーナによれば、2次空気投入ポートは、各々流量調整手段を有する独立した複数の流路に分割され、かつ、燃料バーナの流路前方部に配設したスプリット部材を備えているので、火炎の外周に投入される2次空気量について、複数に分割された流路毎に流量調整手段を操作して所望の値となるよう流量配分を行うことができる。従って、火炎外周に投入される2次空気量を適正化することにより、高温酸素残存領域の形成を抑制または防止することができる。   According to such a solid fuel-fired burner, the secondary air input port is divided into a plurality of independent flow paths each having flow rate adjusting means, and the split member disposed at the front part of the flow path of the fuel burner is provided. Therefore, the flow rate distribution can be performed so that the secondary air amount introduced into the outer periphery of the flame becomes a desired value by operating the flow rate adjusting means for each of the divided flow paths. Therefore, the formation of the high temperature oxygen remaining region can be suppressed or prevented by optimizing the amount of secondary air introduced into the flame periphery.

また、燃料バーナの流路前方部にスプリット部材を設けたことにより、固体燃料及び空気の流れに乱れを生じさせて火炎内部で着火させることが可能になる。この結果、NOxは火炎内部で発生し、発生したNOxは還元作用がある炭化水素類を多く含み、空気不足である火炎内で迅速に還元される。すなわち、スプリット部材により内部保炎を強化し、高温酸素残存領域の形成を防止または抑制することができる。
従って、このような固体燃料焚きバーナでは、従来バーナ外周に設置していた保炎器はないほうが望ましい。
Further, by providing the split member at the front part of the flow path of the fuel burner, it becomes possible to cause the solid fuel and the air flow to be disturbed and ignite inside the flame. As a result, NOx is generated inside the flame, and the generated NOx contains a large amount of hydrocarbons having a reducing action, and is quickly reduced in the flame that is short of air. That is, the internal flame can be strengthened by the split member, and the formation of the high temperature oxygen remaining region can be prevented or suppressed.
Therefore, in such a solid fuel-fired burner, it is desirable that there is no flame holder that has been conventionally installed on the outer periphery of the burner.

また、本発明の固体燃料焚きバーナにおいて、前記2次空気投入ポートは、角度調整機構を備えていることが望ましい。
このように、2次空気投入ポートが角度調整機構を備えていれば、2次空気ポートから火炎のさらに外側へ向けて、最適な2次空気の供給が可能となる。さらに、旋回を利用しないため、火炎の過剰な拡がりを防止しながら、高温酸素残存領域の形成を防止または抑制することができる。
In the solid fuel burning burner of the present invention, it is preferable that the secondary air input port is provided with an angle adjusting mechanism.
Thus, if the secondary air input port is provided with an angle adjustment mechanism, the optimal secondary air can be supplied from the secondary air port to the outside of the flame. Furthermore, since the swirl is not used, the formation of the high temperature oxygen remaining region can be prevented or suppressed while preventing the flame from spreading excessively.

また、本発明の固体燃料焚きバーナは、前記2次空気投入ポートから投入される空気量の配分を、未燃分及び窒素酸化物(NOx)排出量に基づいてフィードバック制御することが望ましい。
このようなフィードバック制御を実施することにより、2次空気の配分を自動的に最適化することができる。この制御において、たとえば未燃分が多い場合には、火炎の外周面に近い内側への2次空気配分を増加させ、窒素酸化物の排出量が高い場合には、火炎の外周面から遠い外側への2次空気配分を増加させる。
なお、未燃分の計測については、たとえば採取した灰を都度分析してもよいし、あるいは、レーザー光の散乱から炭素濃度を測定する計器を採用してもよい。
In the solid fuel-burning burner of the present invention, it is desirable to feedback control the distribution of the amount of air input from the secondary air input port based on the unburned component and the nitrogen oxide (NOx) discharge amount.
By performing such feedback control, the distribution of secondary air can be automatically optimized. In this control, for example, when there is a large amount of unburned fuel, the distribution of secondary air to the inside near the outer peripheral surface of the flame is increased. When the amount of nitrogen oxide is high, the outer side far from the outer peripheral surface of the flame is increased. Increase secondary air distribution to
For measurement of unburned matter, for example, collected ash may be analyzed each time, or a meter that measures carbon concentration from scattering of laser light may be employed.

また、本発明の固体燃料焚きバーナにおいて、前記2次空気投入ポートから投入される空気量は、前記燃料バーナから追加空気投入部までの領域を還元雰囲気とする空気の多段投入との間で分配されることが望ましい。
このようして空気量を分配すると、火炎外周に形成される高温酸素残存領域の抑制による窒素酸化物低減と、還元雰囲気にして燃焼排ガス中の窒素酸化物を低減することとの相乗効果により、窒素酸化物の発生量をより一層低減することができる。
Further, in the solid fuel-fired burner of the present invention, the amount of air input from the secondary air input port is distributed between multistage input of air having a reducing atmosphere in the region from the fuel burner to the additional air input portion. It is desirable that
When the amount of air is distributed in this way, due to the synergistic effect of reducing nitrogen oxides by suppressing the high temperature oxygen remaining region formed on the flame periphery and reducing nitrogen oxides in the combustion exhaust gas in a reducing atmosphere, The amount of nitrogen oxides generated can be further reduced.

また、本発明の固体燃料焚きバーナは、前記燃料バーナの燃料バーナ用空気2次ポートへ空気を供給する系統と、前記2次空気投入ポートへ空気を供給する系統とを分離することが望ましい。
このような空気供給系統にすれば、2次空気投入ポートが複数に分割された多段になっても、空気量の調整を確実に実施することができる。
In the solid fuel burning burner of the present invention, it is desirable to separate a system for supplying air to the fuel burner air secondary port of the fuel burner and a system for supplying air to the secondary air input port.
With such an air supply system, it is possible to reliably adjust the air amount even if the secondary air input port is divided into a plurality of stages.

また、本発明の固体燃料焚きバーナにおいて、前記2次空気投入ポートの複数の流路は、前記燃料バーナを円形として外周方向へ同心円状の多段に設けられていることが望ましい。
このように構成された固体燃料焚きバーナは、特に、対向燃焼ボイラ用のバーナとして適用可能である。また、円周から均一に空気が導入されることから、より精密に高温高酸素領域を低減できる。
In the solid fuel-burning burner of the present invention, it is preferable that the plurality of flow paths of the secondary air input port are provided in multiple stages concentrically in the outer circumferential direction with the fuel burner being circular.
The solid fuel-burning burner configured in this way is particularly applicable as a burner for an opposed combustion boiler. Moreover, since air is uniformly introduced from the circumference, the high-temperature and high-oxygen region can be reduced more precisely.

本発明の固体燃料焚きボイラは、前記固体燃料、前記1次空気、及び前記2次空気を炉内へ投入する上記のいずれかに記載の固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されていることを特徴とするものである。   A solid fuel-fired boiler according to the present invention is the solid fuel-fired burner according to any one of the above, wherein the solid fuel, the primary air, and the secondary air are charged into a furnace. It is arrange | positioned at the part.

本発明の固体燃料焚きボイラによれば、固体燃料、前記1次空気、及び前記2次空気を炉内へ投入する上記のいずれかに記載の固体燃料焚きバーナを備えているので、燃料バーナの固体燃料空気1次ポート出口開口中央付近に配置されて内部保炎機構として機能するスプリット部材が固体燃料及び空気の流路を分割して流れを乱す。この結果、空気の混合及び拡散が火炎の内部まで促進され、さらに着火面が細分化されることにより、着火位置が火炎の中央に寄って燃料の未燃分を低減する。すなわち、火炎の中心部まで酸素が入り込みやすくなるので、内部着火が効果的に行われるようになり、従って、火炎内部で迅速な還元が行われてNOxの発生量は低減される。   According to the solid fuel-fired boiler of the present invention, since the solid fuel-fired burner according to any one of the above is provided to put the solid fuel, the primary air, and the secondary air into the furnace, A split member disposed near the center of the solid fuel air primary port outlet opening and functioning as an internal flame holding mechanism divides the flow path of the solid fuel and air to disturb the flow. As a result, the mixing and diffusion of air is promoted to the inside of the flame, and the ignition surface is subdivided, so that the ignition position approaches the center of the flame and the unburned portion of the fuel is reduced. That is, oxygen easily enters the center of the flame, so that internal ignition is effectively performed, and therefore, rapid reduction is performed inside the flame and the amount of NOx generated is reduced.

本発明の参考例となる固体燃料焚きバーナの運転方法は、バーナ部と追加空気投入部とに分けて低NOx燃焼を行う固体燃料焚きボイラの前記バーナ部に用いられ、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、前記固体燃料及び空気を炉内へ投入する燃料バーナと、2次空気を投入する2次空気投入ポートとを備え、さらに、前記燃料バーナが、内部保炎を有し前記固体燃料及び1次空気を炉内へ投入するコール1次ポートと、該コール1次ポートの周囲を取り囲むように設けられて前記2次空気の一部を投入する保炎しないコール2次ポートとを備え、前記燃料バーナの空気比を0.85以上に設定して運転することを特徴とするものである。   A method for operating a solid fuel-fired burner, which is a reference example of the present invention, is used in the burner portion of a solid fuel-fired boiler that performs low NOx combustion separately in a burner portion and an additional air input portion. A solid fuel-fired burner for introducing air into the furnace includes a fuel burner for introducing the solid fuel and air into the furnace, and a secondary air input port for introducing secondary air, and the fuel burner comprises: A Cole primary port having an internal flame holding and introducing the solid fuel and primary air into the furnace, and a Cavity primary port that surrounds the Cole primary port and that holds a part of the secondary air. A non-flame call secondary port, and the fuel burner is operated with an air ratio set to 0.85 or more.

このような固体燃料焚きバーナの運転方法によれば、固体燃料焚きバーナの燃料バーナが、内部保炎を有し固体燃料及び1次空気を炉内へ投入するコール1次ポートと、コール1次ポートの周囲を取り囲むように設けられて2次空気の一部を投入する保炎しないコール2次ポートとを備え、燃料バーナの空気比が0.85以上に設定して運転されるので、追加空気投入部の空気量(追加空気投入量)は、たとえば空気比0.8の場合と比較して低減する。この結果、追加空気投入量が減少した追加空気投入部においては、最終的なNOx発生量が減少する。   According to such an operation method of the solid fuel burning burner, the fuel burner of the solid fuel burning burner has a call primary port that has internal flame holding and inputs solid fuel and primary air into the furnace, and a call primary. It is equipped with a call secondary port that does not hold flame and is provided so as to surround the periphery of the port, and is operated with the fuel burner air ratio set to 0.85 or more. The air amount (additional air input amount) of the air input unit is reduced as compared with, for example, an air ratio of 0.8. As a result, in the additional air input portion where the additional air input amount has decreased, the final NOx generation amount decreases.

上述した本発明の燃料バーナ、固体燃料焚きバーナ及び固体燃料焚きボイラによれば、固体燃料焚きバーナの燃料バーナが、内部保炎を有するコール1次ポートと、保炎しないコール2次ポートとを備えているので、追加空気投入量の低減により追加空気投入部のNOx発生量も低減する。
また、火炎の外周に形成される高温酸素残存領域が抑制され、予混合燃焼に近い燃焼をする火炎内部で発生したNOxが効果的に還元されることから、追加空気投入部に到達するNOx量の減少及び追加空気投入により発生するNOx量の減少により、追加空気投入部から最終的に排出されるNOx量が減少する。
According to the fuel burner, solid fuel-fired burner, and solid fuel-fired boiler of the present invention described above, the fuel burner of the solid fuel-fired burner has a call primary port having internal flame holding and a call secondary port not holding flame. Since it is provided, the amount of NOx generated in the additional air input portion is also reduced by reducing the additional air input amount.
In addition, since the high temperature oxygen remaining region formed on the outer periphery of the flame is suppressed and NOx generated inside the flame that burns close to premixed combustion is effectively reduced, the amount of NOx that reaches the additional air input portion The amount of NOx finally discharged from the additional air input portion decreases due to the decrease in the amount of NOx and the decrease in the amount of NOx generated by the additional air input.

そして、燃料バーナの固体燃料空気1次ポート出口開口に内部保炎機構として機能する複数方向のスプリット部材を設けたので、スプリット部材が交差する燃料バーナの出口開口中央付近では、固体燃料及び空気の流路を分割して流れを乱す。この結果、空気の混合及び拡散が火炎の内部まで促進され、さらに、スプリット部材が着火面を細分化するので、着火位置が火炎の中央に寄り、燃料の未燃分は低減される。これは、火炎の中心部まで酸素が入り込みやすくなるためであり、この酸素によって内部着火が効果的に行われるようになるので、火炎内部で迅速な還元が行われるようになり、固体燃料焚きボイラから最終的に排出されるNOxの発生量は低減される。   In addition, since a multi-directional split member functioning as an internal flame holding mechanism is provided at the solid fuel air primary port outlet opening of the fuel burner, the solid fuel and the air are separated near the center of the outlet opening of the fuel burner where the split members intersect. Divide the flow path to disturb the flow. As a result, the mixing and diffusion of air is promoted to the inside of the flame, and the split member subdivides the ignition surface, so that the ignition position is moved closer to the center of the flame, and the unburned portion of the fuel is reduced. This is because oxygen tends to enter the center of the flame, and internal ignition is effectively performed by this oxygen, so that rapid reduction is performed inside the flame, and a solid fuel-fired boiler The amount of NOx finally discharged from the fuel is reduced.

また、2次空気の投入を調整することにより、火炎外周に対する2次空気の集中を防止または抑制できるようになり、この結果、火炎の外周に形成される高温酸素残存領域を抑制して窒素酸化物(NOx)の発生量を低減することが可能になる。   Further, by adjusting the input of the secondary air, it becomes possible to prevent or suppress the concentration of the secondary air with respect to the outer periphery of the flame, and as a result, the high temperature oxygen remaining region formed on the outer periphery of the flame is suppressed and the nitrogen oxidation is suppressed. It is possible to reduce the amount of generated substances (NOx).

本発明に係る固体燃料焚き(石炭燃料焚きバーナ)について第1の実施形態を示す図で、(a)は固体燃料焚きバーナを火炉内から見た正面図、(b)は(a)に示す固体燃料焚きバーナのA−A断面図(固体燃料焚きバーナの縦断面図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment about the solid fuel burning (coal fuel burning burner) which concerns on this invention, (a) is the front view which looked at the solid fuel burning burner from the inside of a furnace, (b) shows to (a). It is AA sectional drawing (longitudinal sectional view of a solid fuel burning burner) of a solid fuel burning burner. 図1の固体燃料焚きバーナに空気を供給している空気供給系統を示す図である。It is a figure which shows the air supply system which is supplying air to the solid fuel burning burner of FIG. 本発明に係る固体燃料焚きボイラ(石炭焚きボイラ)の構成例を示す縦断面図である。It is a longitudinal section showing an example of composition of a solid fuel burning boiler (coal burning boiler) concerning the present invention. 図3の横(水平)断面図である。FIG. 4 is a horizontal (horizontal) cross-sectional view of FIG. 3. 追加空気投入部を備えて空気を多段投入する固体燃料焚きボイラの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the solid fuel fired boiler which is equipped with an additional air injection | throwing-in part and introduce | transduces air in multistage. 図1に示した固体燃料焚きバーナのスプリット部材について、(a)は断面形状の一例を示す図、(b)断面形状の第1変形例を示す図、(c)は断面形状の第2変形例を示す図、(d)は断面形状の第3変形例を示す図である。1A shows an example of a cross-sectional shape of the split member of the solid fuel burning burner shown in FIG. 1, FIG. 1B shows a first modification of the cross-sectional shape, and FIG. The figure which shows an example, (d) is a figure which shows the 3rd modification of cross-sectional shape. 図1に示す固体燃料焚きバーナのコール1次ポートについて、(a)はスプリット部材の配置が異なる第1変形例を示す正面図、(b)は着火面長さ(Lf)の定義を補足する説明図である。1A is a front view showing a first modified example in which the arrangement of the split members is different, and FIG. 1B supplements the definition of the ignition surface length (Lf). It is explanatory drawing. 図1に示す固体燃料焚きバーナのコール1次ポートについて、スプリット部材の配置が異なる第2変形例を示す正面図である。It is a front view which shows the 2nd modification from which the arrangement | positioning of a split member differs regarding the call primary port of the solid fuel burning burner shown in FIG. 第1の実施形態に係る固体燃料焚きバーナの第3変形例として、バーナ根元に整流機構を設けた構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example which provided the rectification | straightening mechanism in the burner base as a 3rd modification of the solid fuel burning burner which concerns on 1st Embodiment. 本発明に係る固体燃料焚きバーナについて、(a)は第2の実施形態を示す縦断面図、(b)は(a)に示す固体燃料焚きバーナを火炉内から見た正面図、(c)は(a)及び(b)の固体燃料焚きバーナに空気を供給している空気供給系統を示す図である。Regarding the solid fuel burning burner according to the present invention, (a) is a longitudinal sectional view showing the second embodiment, (b) is a front view of the solid fuel burning burner shown in (a) as seen from inside the furnace, and (c). These are the figures which show the air supply system which is supplying air to the solid fuel burning burner of (a) and (b). 図10に示した固体燃料焚きバーナの第1変形例として、(a)はスプリット部材を備えた固体燃料焚きバーナの構成例を示す縦断面図、(b)は(a)に示す固体燃料焚きバーナを火炉内から見た正面図である。As a first modification of the solid fuel burning burner shown in FIG. 10, (a) is a longitudinal sectional view showing a configuration example of a solid fuel burning burner provided with a split member, and (b) is a solid fuel burning shown in (a). It is the front view which looked at the burner from the inside of a furnace. 図10に示した固体燃料焚きバーナの第2変形例として、側部2次空気ポートを備えた固体燃料焚きバーナを火炉内から見た正面図である。It is the front view which looked at the solid fuel burning burner provided with the side part secondary air port from the inside of a furnace as a 2nd modification of the solid fuel burning burner shown in FIG. 図10(a)に示す固体燃料焚きバーナの2次空気投入ポートが角度調整機構を備えている構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example in which the secondary air injection port of the solid fuel burning burner shown to Fig.10 (a) is provided with the angle adjustment mechanism. 図10(c)に示す空気供給系統の変形例を示す図である。It is a figure which shows the modification of the air supply system shown in FIG.10 (c). 図9に示した第1の実施形態の第3変形例と、図10に示した第2の実施形態とを組み合わせた構成例を示す固体燃料焚きバーナの縦断面図である。It is a longitudinal cross-sectional view of the solid fuel burning burner which shows the structural example which combined the 3rd modification of 1st Embodiment shown in FIG. 9, and 2nd Embodiment shown in FIG. 対向燃焼ボイラに好適な固体燃料焚きバーナを火炉内から見た正面図である。It is the front view which looked at the solid fuel burning burner suitable for an opposed combustion boiler from the inside of a furnace. 内部保炎の保炎器位置(保炎器位置/実質微粉炭流幅)と、NOx発生量(相対値)との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the flame holder position (flame holder position / substantially pulverized coal flow width) of internal flame holding, and NOx generation amount (relative value). 図17に示したグラフの保炎器位置について、燃料バーナの比較例を示す図である。It is a figure which shows the comparative example of a fuel burner about the flame holder position of the graph shown in FIG. スプリット占有率とNOx発生量(相対値)との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between a split occupation rate and NOx generation amount (relative value). 同一方向スプリット及びクロススプリットについて、未燃分発生量の相対値を示す実験結果のグラフである。It is a graph of the experimental result which shows the relative value of unburned matter generation amount about the same direction split and cross split. 従来及び本発明について、バーナ部、バーナ部〜AA部間及びAA部におけるNOx発生量の相対値を示す実験結果のグラフである。It is a graph of the experimental result which shows the relative value of the NOx generation amount in the burner part, between a burner part-AA part, and AA part about the past and this invention. 従来及び本発明について、バーナ部〜AA部間の空気比とNOx発生量(相対値)との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the air ratio between a burner part-AA part, and NOx generation amount (relative value) about the past and this invention.

以下、本発明に係る燃料バーナ、固体燃料焚きバーナ及び固体燃料焚きボイラの一実施形態を図面に基づいて説明する。なお、本実施形態では、燃料バーナ、固体燃料焚きバーナ及び固体燃料焚きボイラの一例として、微粉炭(粉体の固体燃料である石炭)を燃料とする固体燃料焚きバーナを備えた旋回燃焼ボイラについて説明するが、これに限定されることはない。
図3〜図5に示す旋回燃焼ボイラ10は、火炉11内へ空気を多段で投入することにより、バーナ部12から追加空気投入部(以下、「AA部」と呼ぶ)14までの領域を還元雰囲気にして燃焼排ガスの低NOx化を図っている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of a fuel burner, a solid fuel burning burner, and a solid fuel burning boiler according to the present invention will be described with reference to the drawings. In the present embodiment, as an example of a fuel burner, a solid fuel burning burner, and a solid fuel burning boiler, a swirl combustion boiler provided with a solid fuel burning burner that uses pulverized coal (coal that is a powdered solid fuel) as fuel. Although explained, it is not limited to this.
The swirl combustion boiler 10 shown in FIG. 3 to FIG. 5 reduces the region from the burner unit 12 to the additional air input unit (hereinafter referred to as “AA unit”) 14 by inputting air into the furnace 11 in multiple stages. The atmosphere is designed to reduce NOx in combustion exhaust gas.

図中の符号20は微粉炭(粉体の固体燃料)及び空気を投入する固体燃料焚きバーナ、15は追加空気を投入する追加空気投入ノズルである。固体燃料焚きバーナ20には、たとえば図3に示すように、微粉炭を1次空気で搬送する微粉炭混合気輸送管16及び2次空気を供給する送気ダクト17が接続され、追加空気投入ノズル15には、2次空気を供給する送気ダクト17が接続されている。
このように、上述した旋回燃焼ボイラ10は、粉体燃料の微粉炭(石炭)及び空気を火炉11内へ投入する固体燃料焚きバーナ20が各段の各コーナ部に配置される旋回燃焼方式のバーナ部12とされ、各段にそれぞれ1または複数の旋回火炎が形成される旋回燃焼方式を採用している。
Reference numeral 20 in the figure denotes a solid fuel-fired burner that inputs pulverized coal (powdered solid fuel) and air, and reference numeral 15 denotes an additional air injection nozzle that inputs additional air. For example, as shown in FIG. 3, the solid fuel-burning burner 20 is connected to a pulverized coal mixture transport pipe 16 that transports pulverized coal by primary air and an air supply duct 17 that supplies secondary air. An air supply duct 17 that supplies secondary air is connected to the nozzle 15.
Thus, the above-described swirl combustion boiler 10 is of the swirl combustion type in which the solid fuel-burning burner 20 for charging the pulverized coal (coal) and air of the pulverized fuel into the furnace 11 is arranged at each corner portion of each stage. The burner unit 12 is adopted, and a swirl combustion method is employed in which one or more swirl flames are formed in each stage.

<第1の実施形態>
図1に示す固体燃料焚きバーナ20は、微粉炭及び空気を投入する微粉炭バーナ(燃料バーナ)21と、微粉炭バーナ21の上下に各々配置された2次空気投入ポート30とを備えている。
2次空気投入ポート30は、ポート毎の空気流量調整を可能にするため、たとえば図2に示すように、送気ダクト17から分岐した2次空気の供給ライン毎に、流量調整手段として開度調整可能なダンパ40を備えている。
<First Embodiment>
A solid fuel burning burner 20 shown in FIG. 1 includes a pulverized coal burner (fuel burner) 21 that inputs pulverized coal and air, and secondary air input ports 30 that are respectively disposed above and below the pulverized coal burner 21. .
The secondary air input port 30 has an opening degree as a flow rate adjusting means for each secondary air supply line branched from the air supply duct 17, for example, as shown in FIG. An adjustable damper 40 is provided.

上述した微粉炭バーナ21は、1次空気により搬送された微粉炭を投入する矩形状のコール1次ポート(固体燃料空気1次ポート)22と、コール1次ポート22の周囲を取り囲むように設けられて2次空気の一部を投入するコール2次ポート(燃料バーナ用空気2次ポート)23とを備えている。なお、コール2次ポート23についても、図2に示すように、流量調整手段として開度調整可能なダンパ40を備えている。なお、コール1次ポート22は、円形や楕円でもよい。   The pulverized coal burner 21 described above is provided so as to surround the rectangular coal primary port (solid fuel air primary port) 22 into which the pulverized coal conveyed by the primary air is introduced and the coal primary port 22. And a call secondary port (fuel burner air secondary port) 23 for supplying a part of the secondary air. As shown in FIG. 2, the call secondary port 23 also includes a damper 40 capable of adjusting the opening degree as a flow rate adjusting means. Note that the call primary port 22 may be circular or elliptical.

微粉炭バーナ21の流路前方部には、すなわち、コール1次ポート22の流路前方部には、複数方向のスプリット部材24が配設されている。このスプリット部材24は、たとえば図1(a)に示すように、コール1次ポート22の出口開口部において上下方向及び左右方向に各々2本ずつ、合計4本が所定の間隔を有する格子状に配設されている。
すなわち、4本のスプリット部材24は、上下方向及び左右方向の異なる2方向に向けて格子状に配設されることで、微粉炭バーナ21におけるコール1次ポート22の出口開口部を細分化(9分割)している。
A split member 24 in a plurality of directions is disposed in the front portion of the flow path of the pulverized coal burner 21, that is, in the front portion of the flow path of the primary coal port 22. As shown in FIG. 1A, for example, two split members 24 are arranged in a lattice shape in which a total of four split members 24 are arranged at predetermined intervals in the outlet opening portion of the primary call port 22 in the vertical direction and the horizontal direction. It is arranged.
That is, the four split members 24 are arranged in a lattice shape in two different directions, the vertical direction and the horizontal direction, thereby subdividing the outlet opening of the coal primary port 22 in the pulverized coal burner 21 ( 9 divisions).

上述したスプリット部材24は、たとえば図6(a)〜図6(d)に示すような断面形状を採用することにより、微粉炭及び空気の流れをスムーズに分離させて乱すことができる。
図6(a)に示すスプリット部材24は、三角形の断面形状を有している。図示の三角形は正三角形や二等辺三角形であり、火炉11内に向けた出口側の一辺が微粉炭及び空気の流れ方向と略直交するように配置されている。換言すれば、三角形断面を形成する角部の1つを、微粉炭及び空気の流れ方向に向けた配置が採用されている。
The split member 24 described above can disrupt the flow of pulverized coal and air smoothly by adopting, for example, a cross-sectional shape as shown in FIGS. 6 (a) to 6 (d).
The split member 24 shown in FIG. 6A has a triangular cross-sectional shape. The illustrated triangle is an equilateral triangle or an isosceles triangle, and is arranged so that one side of the outlet side toward the furnace 11 is substantially orthogonal to the flow direction of pulverized coal and air. In other words, an arrangement is adopted in which one of the corners forming the triangular cross section is oriented in the direction of flow of pulverized coal and air.

図6(b)に示すスプリット部材24Aは、略T字状の断面形状を有し、火炉11内に向けた出口側に微粉炭及び空気の流れ方向と略直交する面が配置されている。なお、このような略T字状断面形状を変形させることにより、たとえば図6(c)に示すように、台形状の断面形状を有するスプリット部材24A′としてもよい。   The split member 24 </ b> A shown in FIG. 6B has a substantially T-shaped cross-sectional shape, and a surface substantially orthogonal to the flow direction of pulverized coal and air is arranged on the outlet side facing the furnace 11. In addition, by deforming such a substantially T-shaped cross-sectional shape, for example, as shown in FIG. 6C, a split member 24A ′ having a trapezoidal cross-sectional shape may be used.

また、図6(d)に示すスプリット部材24Bは、略L字状の断面形状を有している。すなわち、上述した略T字状の一部を切り取ったような断面形状であり、特に、左右(水平)方向に配置する場合においては、上方の凸部を除去した略L字形状にすれば、スプリット部材24Bに微粉炭が堆積することを防止できる。なお、上方の凸部を除去した分、下方の凸部を大きくすることで、スプリット部材24Bに必要な分離性能を確保することができる。
しかし、上述したスプリット部材24等の断面形状については、たとえば略Y字形状等のように、図示の例に限定されることはない。
Further, the split member 24B shown in FIG. 6D has a substantially L-shaped cross-sectional shape. That is, it is a cross-sectional shape obtained by cutting out a part of the above-described substantially T-shape, and in particular, when arranged in the left-right (horizontal) direction, if the L-shape is formed by removing the upper convex portion, It is possible to prevent pulverized coal from being deposited on the split member 24B. Note that the separation performance necessary for the split member 24B can be ensured by enlarging the lower protrusion by the amount corresponding to the removal of the upper protrusion.
However, the above-described cross-sectional shape of the split member 24 or the like is not limited to the illustrated example, for example, a substantially Y shape.

このように構成した固体燃料焚きバーナ20において、微粉炭バーナ21の出口開口中央付近に設置したスプリット部材24は、微粉炭及び空気の流路を分割して流れを内部で乱すとともにスプリットの前方に再循環域が形成されるため、内部保炎機構として機能する。
一般に、従来の固体燃料焚きバーナ20は、火炎外周で輻射を受けて燃料の微粉炭に着火する。火炎外周で微粉炭に着火すると、NOxは高温の酸素が残存する火炎外周の高温酸素残存領域H(図1(b)参照)で発生し、十分に還元されないまま残存してNOx排出量を増加させている。
In the solid fuel burning burner 20 configured in this way, the split member 24 installed near the center of the outlet opening of the pulverized coal burner 21 divides the flow path of the pulverized coal and air to disturb the flow inside and to the front of the split. Since a recirculation zone is formed, it functions as an internal flame holding mechanism.
In general, the conventional solid fuel-burning burner 20 receives radiation around the flame periphery and ignites the pulverized coal of fuel. When pulverized coal is ignited on the outer periphery of the flame, NOx is generated in the high-temperature oxygen residual region H (see FIG. 1 (b)) on the outer periphery of the flame where high-temperature oxygen remains, and it remains without being fully reduced to increase NOx emissions. I am letting.

しかし、内部保炎機構として機能するスプリット部材24が設けられたことにより、微粉炭は火炎内部で着火するようになる。このため、NOxは火炎内部で発生し、火炎内部で発生したNOxは還元作用を有する炭化水素類を多く含んでいることから、空気不足の状態にある火炎内で迅速に還元される。従って、火炎外周に保炎器を設置する保炎をやめて、すなわち、バーナ外周に保炎機構を設置しない構造の固体燃料焚きバーナ20とし、火炎外周でのNOx発生を抑制することも可能になる。   However, since the split member 24 functioning as an internal flame holding mechanism is provided, the pulverized coal comes to ignite inside the flame. For this reason, NOx is generated inside the flame, and the NOx generated inside the flame contains a large amount of hydrocarbons having a reducing action, so that it is rapidly reduced in the flame in the air-deficient state. Accordingly, it is possible to stop flame holding by installing a flame holder on the outer periphery of the flame, that is, to obtain a solid fuel-burning burner 20 having a structure in which no flame holding mechanism is installed on the outer periphery of the burner, thereby suppressing NOx generation on the outer periphery of the flame. .

特に、複数方向のスプリット部材24を配設することにより、微粉炭バーナ21の出口開口中央付近に対し、異なる方向のスプリット部材24を交差させた交差部を容易に設けることができる。このような交差部が微粉炭バーナ21の出口開口中央付近に存在していると、微粉炭バーナ21の出口開口においては、中央付近で微粉炭及び空気の流路が複数に分割されるので、複数に分流する際に流れが乱される。
すなわち、スプリット部材24が左右一方向の場合、中央部における空気の拡散や着火が遅れて未燃分増加の原因になるが、スプリット部材24を複数方向に配設して交差部が形成されると、空気の混合が促進されるとともに着火面が細分化されるので、火炎の中心部まで空気(酸素)が入り込みやすくなり、結果として未燃分の低減が可能になる。
In particular, by arranging the split members 24 in a plurality of directions, it is possible to easily provide an intersection where the split members 24 in different directions intersect with each other near the center of the outlet opening of the pulverized coal burner 21. When such an intersection exists near the center of the outlet opening of the pulverized coal burner 21, the pulverized coal and air flow paths are divided into a plurality of portions near the center at the outlet opening of the pulverized coal burner 21, The flow is disturbed when diverting to multiple.
That is, when the split member 24 is in one left-right direction, air diffusion and ignition in the central portion are delayed, causing an increase in the unburned amount. However, the split member 24 is arranged in a plurality of directions to form an intersection. Then, the mixing of air is promoted and the ignition surface is subdivided, so that air (oxygen) can easily enter the center of the flame, and as a result, unburned content can be reduced.

換言すれば、交差部を形成するようにスプリット部材24を配設すれば、空気の混合・拡散が火炎の内部まで促進され、さらに着火面が細分化されることにより、着火位置が火炎の中央部(軸中心部)に寄って微粉炭の未燃分を低減する。すなわち、火炎の中心部まで酸素が入り込みやすくなるので、内部着火が効果的に行われるようになり、従って、火炎内部で迅速な還元が行われてNOxの発生量は低減される。
この結果、火炎外周に設置した保炎器による保炎をやめ、火炎外周に保炎器のない固体燃料焚きバーナ20を用いて火炎外周でのNOx発生を抑制することは、より一層容易になる。
In other words, if the split member 24 is disposed so as to form an intersection, air mixing / diffusion is promoted to the inside of the flame, and the ignition surface is subdivided, so that the ignition position is at the center of the flame. Reduce the unburned content of pulverized coal by moving to the center (shaft center). That is, oxygen easily enters the center of the flame, so that internal ignition is effectively performed, and therefore, rapid reduction is performed inside the flame and the amount of NOx generated is reduced.
As a result, it is much easier to stop the flame holding by the flame holder installed on the flame periphery and to suppress the generation of NOx on the flame periphery using the solid fuel burning burner 20 having no flame holder on the flame periphery. .

続いて、図1(a)に示した固体燃料焚きバーナ20のコール1次ポート22について、スプリット部材24の配置が異なる第1変形例を図7(a)及び図7(b)に基づいて説明する。
この変形例では、コール1次ポート22の流路前方部に、出口開口の上下方向に配設した2本のスプリット部材24と、出口開口の左右方向に配設した1本のスプリット部材24とを備えている。
Subsequently, with respect to the call primary port 22 of the solid fuel burning burner 20 shown in FIG. 1A, a first modified example in which the arrangement of the split member 24 is different is based on FIGS. 7A and 7B. explain.
In this modified example, two split members 24 disposed in the vertical direction of the outlet opening and one split member 24 disposed in the left-right direction of the outlet opening are provided in the channel front portion of the primary call port 22. It has.

図示のスプリット部材24においては、スプリット部材24により形成される着火面長さ(Lf)が、微粉炭バーナ21を構成するコール1次ポート22の出口開口周長(L)より大きく(Lf>L)なるように設定されている。
ここで、コール1次ポート22の出口周長(L)は、矩形を構成する4辺の長さを合計したものであるから、縦寸法H及び横寸法Wにより、L=2H+2Wで表される。
In the illustrated split member 24, the ignition surface length (Lf) formed by the split member 24 is larger than the outlet opening circumferential length (L) of the primary coal port 22 constituting the pulverized coal burner 21 (Lf> L ).
Here, since the outlet peripheral length (L) of the call primary port 22 is the sum of the lengths of the four sides constituting the rectangle, it is expressed by L = 2H + 2W by the vertical dimension H and the horizontal dimension W. .

一方、スプリット部材24の着火面長さ(Lf)は、幅を有するスプリット部材24の両側に着火面が形成されることから、スプリット部材24の長さをSとすれば、3本あるスプリット部材24の両側の合計長さは、Lf=6Sで表される。この場合の長さSは、上下方向に配設した短いスプリット部材24の長さを採用しているので、交差部の存在を考慮しても、算出される着火面長さ(Lf)は安全サイドの概算値となる。
なお、着火面長さ(Lf)については、たとえば図7(b)に示すように、スプリット製作の方法等により両端部に細い部分24aを有する構造のスプリット部材24′の場合、両端の細い部分24aも着火面として考える。
On the other hand, since the ignition surface length (Lf) of the split member 24 is formed on both sides of the split member 24 having a width, if the length of the split member 24 is S, there are three split members. The total length of both sides of 24 is represented by Lf = 6S. In this case, the length S of the short split member 24 arranged in the vertical direction is adopted, and therefore the calculated ignition surface length (Lf) is safe even if the existence of the intersection is taken into consideration. Estimated side.
As for the ignition surface length (Lf), for example, as shown in FIG. 7 (b), in the case of a split member 24 'having a thin portion 24a at both ends by a split manufacturing method or the like, a narrow portion at both ends. 24a is also considered as an ignition surface.

このようにしてスプリット部材24の長さを設定すると、火炎外周で着火させるよりも着火面長さ(Lf)によって与えられる着火面が広くなる。従って、出口開口周長(L)により定まる火炎外周着火と比較すれば、着火面長さ(Lf)により定まる内部着火が強化されるので、火炎内で発生したNOxの迅速な還元が可能となる。
さらに、スプリット部材24により火炎が内部で細分化されるため、火炎の中心部まで空気(酸素)が入り込みやすくなり、火炎内部における迅速な燃焼により未燃分の低減が可能になる。
When the length of the split member 24 is set in this manner, the ignition surface given by the ignition surface length (Lf) becomes wider than the ignition at the flame outer periphery. Therefore, as compared with the flame outer periphery ignition determined by the outlet opening peripheral length (L), the internal ignition determined by the ignition surface length (Lf) is enhanced, so that the NOx generated in the flame can be quickly reduced. .
Further, since the flame is subdivided inside by the split member 24, air (oxygen) can easily enter the center of the flame, and unburned content can be reduced by rapid combustion inside the flame.

続いて、図1(a)に示した固体燃料焚きバーナ20のコール1次ポート22について、スプリット部材24の配置が異なる第2変形例を図8に基づいて説明する。
この変形例では、5本のスプリット部材24が、燃料バーナのコール1次ポート22において、出口開口中央を密にして格子状に配置されている。すなわち、上下方向に3本及び左右方向に2本を配設したスプリット部材24は、コール1次ポート22の中央部において互いの間隔を狭めた状態で配置されている。このため、スプリット部材24により格子状に細分化された出口開口面積は、コール1次ポート22の中央部が外周側よりも小さくなっている。
Next, a second modified example in which the arrangement of the split member 24 is different will be described with reference to FIG. 8 with respect to the primary port 22 of the coal-fired burner 20 shown in FIG.
In this modification, five split members 24 are arranged in a lattice pattern in the coal primary port 22 of the fuel burner with the center of the outlet opening being dense. That is, the split members 24 having three in the vertical direction and two in the horizontal direction are arranged in the center portion of the call primary port 22 in a state where the distance between them is narrowed. For this reason, the outlet opening area subdivided into a lattice shape by the split member 24 is smaller in the central portion of the primary call port 22 than on the outer peripheral side.

このようにして、内部保炎機構であるスプリット部材24の配置がコール1次ポート22の中央で密になると、スプリット部材22は微粉炭バーナ21の中央部に集中して配置されているので、火炎中央部の着火がより一層促進され、NOxは火炎内部で迅速に発生して還元される。   Thus, when the arrangement of the split member 24, which is an internal flame holding mechanism, becomes dense at the center of the primary call port 22, the split member 22 is concentrated in the center of the pulverized coal burner 21, Ignition in the center of the flame is further promoted, and NOx is rapidly generated and reduced inside the flame.

また、中央に配置するスプリット部材24を密にすると、微粉炭バーナ21の内部においてはフリーエリアが小さくなる。すなわち、微粉炭バーナ21のコール1次ポート22を流れる微粉炭及び空気は、障害のない略真っ直ぐな流路断面積を通過する割合が小さくなるので、スプリット部材24の圧力損失は相対的に大きくなる。従って、燃料バーナ21においては、コール1次ポート22の内部を流れる微粉炭及び空気の流速が圧力損失増加の影響を受けて低下するので、より迅速な着火を生じさせることができる。   Further, when the split member 24 arranged in the center is dense, the free area is reduced inside the pulverized coal burner 21. That is, since the ratio of the pulverized coal and air flowing through the coal primary port 22 of the pulverized coal burner 21 passes through a substantially straight channel cross-sectional area without an obstacle is small, the pressure loss of the split member 24 is relatively large. Become. Therefore, in the fuel burner 21, the flow speeds of the pulverized coal and air flowing through the inside of the primary coal port 22 are lowered due to the influence of the increase in pressure loss, so that quicker ignition can be caused.

続いて、図1(a)に示した固体燃料焚きバーナ20のコール1次ポート22について、バーナ根元に整流機構を設けた第3変形例の構成例を図9に基づいて説明する。なお、図示の構成例では略T字状の断面形状を有するスプリット部材24Aを採用しているが、これに限定されることはない。
この構成例では、微粉炭及び空気の流れに圧力損失を付与するため、スプリット部材24Aの上流側に整流機構25が設けられている。この整流機構25は、ポート断面方向における流量偏差を防止するものであり、たとえば流路断面積を2/3程度まで、望ましくは1/2程度まで絞ることができるオリフィスやベンチュリの設置が有効である。
Next, a configuration example of a third modification in which a rectifying mechanism is provided at the base of the burner 20 for the call primary port 22 of the solid fuel burning burner 20 shown in FIG. 1A will be described with reference to FIG. In the illustrated configuration example, the split member 24A having a substantially T-shaped cross-sectional shape is employed, but the present invention is not limited to this.
In this configuration example, a rectifying mechanism 25 is provided on the upstream side of the split member 24A in order to impart pressure loss to the flow of pulverized coal and air. This rectifying mechanism 25 prevents a flow rate deviation in the port cross-sectional direction. For example, it is effective to install an orifice or a venturi that can restrict the flow path cross-sectional area to about 2/3, preferably about 1/2. is there.

このような整流機構25は、燃料の微粉炭を1次空気により搬送する粉体輸送の流れに対して、一定の圧力損失を与えることができればどのような構成でもよく、従って、オリフィスに限定されることはない。
また、上述した整流機構25は、固体燃料焚きバーナ20と一体である必要はなく、スプリット部材24Aの上流側において、微粉炭及び1次空気が流れる流路の最終的な直管部(ベントやダンパ等がないストレートな流路部分)に設置されていればよい。
Such a rectifying mechanism 25 may have any configuration as long as it can give a constant pressure loss to the flow of powder transport for conveying the pulverized coal of fuel by primary air, and is thus limited to the orifice. Never happen.
Further, the rectifying mechanism 25 described above does not have to be integrated with the solid fuel burning burner 20, and the final straight pipe portion (vent or vent) of the flow path through which the pulverized coal and the primary air flow is upstream of the split member 24A. It suffices if it is installed in a straight flow path portion without a damper or the like.

ところで、整流機構25がオリフィスである場合には、オリフィスによる影響が残らないようにするため、オリフィスの出口先端からコール1次ポート22の出口まで、具体的には、スプリット部材24Aの入口側端部まで延在する直管部(Lo)を設けることが望ましい。この直管部(Lo)としては、コール1次ポート22の高さをhとすれば、少なくとも2h以上の長さを確保する必要があり、より好ましい直管部(Lo)は、10h以上の長さを確保したものである。   By the way, when the rectifying mechanism 25 is an orifice, in order to prevent the influence of the orifice from remaining, from the outlet end of the orifice to the outlet of the primary call port 22, specifically, the inlet side end of the split member 24A. It is desirable to provide a straight pipe part (Lo) extending to the part. As the straight pipe portion (Lo), if the height of the call primary port 22 is h, it is necessary to secure a length of at least 2 h, and a more preferable straight pipe portion (Lo) is 10 h or more. The length is secured.

このような整流機構25を設けると、コール1次ポート22に微粉炭及び1次空気を供給する流路に設けられているベンドを通過することにより、粉体燃料の微粉炭が遠心力の影響を受けて流路断面上の分布に偏りを生じる流量偏差を解消することができる。
すなわち、1次空気で搬送される微粉炭は、ベンド通過により外側(ベンド大径側)へ偏った分布となるが、整流機構25を通過することにより、流路断面上の分布が解消されて略均一な状態でスプリット部材24Aに流入する。この結果、整流機構25を備えた微粉炭バーナ21は、スプリット部材24Aよる内部保炎機構を有効に活用することができる。
When such a rectifying mechanism 25 is provided, the pulverized coal of the pulverized fuel is affected by the centrifugal force by passing through the bend provided in the flow path for supplying the pulverized coal and primary air to the primary port 22 of the coal. The flow rate deviation that causes the distribution on the cross section of the flow path to be biased can be eliminated.
That is, the pulverized coal conveyed by the primary air has a distribution that is biased to the outside (bend large diameter side) due to the passage of the bend, but the distribution on the cross section of the flow path is canceled by passing through the rectifying mechanism 25. It flows into the split member 24A in a substantially uniform state. As a result, the pulverized coal burner 21 provided with the rectifying mechanism 25 can effectively utilize the internal flame holding mechanism by the split member 24A.

また、上述した実施形態及びその変形例では、コール1次ポート22の流路前方部に、複数方向(縦及び横)のスプリット部材24が配設されているが、たとえば横方向または縦方向に1または複数のスプリット部材を設けてもよい。このようなスプリット部材24を設けると、微粉炭バーナ21の出口開口中央付近で内部保炎機構として機能するので、スプリット部材24による内部保炎が可能となり、中央部がより空気不足となってNOx還元が進行する。   Further, in the above-described embodiment and its modification, the split member 24 in a plurality of directions (vertical and horizontal) is disposed in the flow path front portion of the primary call port 22, but for example in the horizontal direction or the vertical direction One or more split members may be provided. When such a split member 24 is provided, it functions as an internal flame holding mechanism in the vicinity of the center of the outlet opening of the pulverized coal burner 21, so that the internal flame holding by the split member 24 becomes possible, and the central portion becomes more short of air and NOx. Reduction proceeds.

<第2の実施形態>
次に、本発明の第2の実施形態に係る固体燃料焚きバーナを図10(a)〜図10(c)に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図示の固体燃料焚きバーナ20Aにおいて、微粉炭バーナ21は、1次空気により搬送された微粉炭を投入する矩形状のコール1次ポート22と、コール1次ポート22の周囲を取り囲むように設けられて2次空気の一部を投入するコール2次ポート23とを備えている。
<Second Embodiment>
Next, a solid fuel burning burner according to a second embodiment of the present invention will be described with reference to FIGS. 10 (a) to 10 (c). In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
In the illustrated solid fuel burning burner 20 </ b> A, a pulverized coal burner 21 is provided so as to surround a rectangular coal primary port 22 into which pulverized coal conveyed by primary air is introduced and a periphery of the coal primary port 22. And a call secondary port 23 through which a part of the secondary air is introduced.

固体燃料焚きバーナ21の上下には、2次空気投入用として2次空気投入ポート30Aが設けられている。この2次空気投入ポート30Aは、各々が独立した複数の流路及びポートに分割されており、各流路には、2次空気の流量調整手段として開度調整可能なダンパ40が設けられている。
図示の構成例では、微粉炭バーナ21の上下に配置された2次空気投入ポート30Aがいずれも上下方向に3分割されており、微粉炭バーナ21に近い内側から外側へ向けて、内部2次空気ポート31a,31b、中間2次空気ポート32a,32b及び外部2次空気ポート33a,33bの順に配置されている。なお、このような2次空気投入ポート30の分割数は3分割に限定されることはなく、諸条件に応じて適宜変更可能である。
A secondary air input port 30A is provided above and below the solid fuel burning burner 21 for supplying secondary air. The secondary air input port 30A is divided into a plurality of independent flow paths and ports, and each flow path is provided with a damper 40 capable of adjusting the opening degree as secondary air flow rate adjusting means. Yes.
In the illustrated configuration example, the secondary air input ports 30A arranged above and below the pulverized coal burner 21 are all divided into three in the vertical direction, and the internal secondary is directed from the inside close to the pulverized coal burner 21 to the outside. The air ports 31a and 31b, the intermediate secondary air ports 32a and 32b, and the external secondary air ports 33a and 33b are arranged in this order. In addition, the division | segmentation number of such a secondary air injection | throwing-in port 30 is not limited to 3 division, It can change suitably according to various conditions.

上述したコール2次ポート23、内部2次空気ポート31a,31b、中間2次空気ポート32a,32b及び外部2次空気ポート33a,33bの各ポートは、たとえば図10(c)に示すように、各ポートが図示しない空気供給源を有する空気供給ライン50に接続されている。空気供給ライン50から分岐して各ポートに連通する流路には、流路毎にダンパ40が設けられている。従って、各ダンパ40の開度を調整することにより、ポート毎に独立した2次空気供給量の調整が可能となっている。   The above-described call secondary port 23, internal secondary air ports 31a and 31b, intermediate secondary air ports 32a and 32b, and external secondary air ports 33a and 33b are, for example, as shown in FIG. Each port is connected to an air supply line 50 having an air supply source (not shown). A damper 40 is provided for each flow path in the flow path that branches from the air supply line 50 and communicates with each port. Therefore, the secondary air supply amount can be adjusted independently for each port by adjusting the opening degree of each damper 40.

このような固体燃料焚きバーナ20A及びこれを備えた旋回燃焼ボイラ10によれば、各固体燃料焚きバーナ20Aが、微粉炭及び空気を投入する微粉炭バーナ21及び微粉炭バーナ21の上下に配置された3分割の2次空気投入ポートを備えているので、3分割した2次空気投入ポート30Aのポート毎にダンパ40の開度を調整することにより、火炎Fの外周に投入される2次空気量を所望の値に流量配分することができる。
従って、たとえば火炎Fの外周に最も近い内部2次空気ポート31a,31bの2次空気投入量について配分割合を小さくし、その分中間2次空気ポート32a,32b及び外部2次空気ポート33a,33bへ投入する2次空気量の投入割合を順次大きくすれば、火炎Fの外周に形成されていた局所的な高温酸素残存領域(図中のハッチング部)Hを抑制することができる。
According to the solid fuel burning burner 20A and the swirl combustion boiler 10 equipped with such a solid fuel burning burner 20A, the respective solid fuel burning burners 20A are arranged above and below the pulverized coal burner 21 and the pulverized coal burner 21 into which pulverized coal and air are introduced. Since the secondary air input port is divided into three parts, the secondary air supplied to the outer periphery of the flame F is adjusted by adjusting the opening degree of the damper 40 for each of the three divided secondary air input ports 30A. The quantity can be distributed to a desired value.
Therefore, for example, the distribution ratio is reduced for the secondary air input amount of the internal secondary air ports 31a and 31b closest to the outer periphery of the flame F, and the intermediate secondary air ports 32a and 32b and the external secondary air ports 33a and 33b are correspondingly reduced. By sequentially increasing the charging rate of the secondary air amount to be introduced into the region, the local high-temperature oxygen remaining region (hatched portion in the figure) H formed on the outer periphery of the flame F can be suppressed.

すなわち、火炎Fから離間した外側に対する2次空気量の投入割合を増すとともに、火炎Fの外周近傍に投入される2次空気量の投入割合を小さく設定すれば、2次空気の拡散を遅くすることができる。この結果、火炎Fの周辺に2次空気が集中することを防止または抑制できるようになり、従って、局所的な高温酸素残存領域Hは弱く小さなものとなるため、旋回燃焼ボイラ10のNOx発生量を低減することができる。換言すれば、火炎Fの外周に投入される2次空気量の適正化により、高温酸素残存領域Hの形成を抑制または防止し、旋回燃焼ボイラ10の低NOx化を達成することができる。   That is, if the injection rate of the secondary air amount with respect to the outer side away from the flame F is increased and the injection rate of the secondary air amount injected near the outer periphery of the flame F is set small, the diffusion of the secondary air is delayed. be able to. As a result, it becomes possible to prevent or suppress the concentration of secondary air around the flame F, and therefore the local high temperature oxygen residual region H becomes weak and small. Therefore, the amount of NOx generated in the swirl combustion boiler 10 Can be reduced. In other words, by optimizing the amount of secondary air introduced into the outer periphery of the flame F, the formation of the high temperature oxygen residual region H can be suppressed or prevented, and the NOx reduction of the swirl combustion boiler 10 can be achieved.

一方、微粉炭の性状等により2次空気の拡散が必要となる場合には、2次空気投入ポート30Aの流量配分について、内外を逆転させて内部2次空気ポート31a,31bの配分割合を大きくすればよい。
すなわち、たとえば揮発分が多いなど燃料比が異なる石炭を粉砕した微粉炭を使用する場合でも、複数に分割された2次空気投入ポート30の各ポートから投入する2次空気の流量配分を適宜調整することにより、NOxまたは未燃分を低減した適正な燃焼を選択することができる。
このような2次空気投入ポート30Aの多段化は、上述した第1の実施形態で説明した固体燃料焚きバーナ20にも適用することができる。
On the other hand, when secondary air diffusion is required due to the properties of pulverized coal, etc., the flow rate distribution of the secondary air input port 30A is reversed inside and outside to increase the distribution ratio of the internal secondary air ports 31a and 31b. do it.
That is, even when using pulverized coal obtained by pulverizing coal having a different fuel ratio such as a large amount of volatile matter, the flow distribution of the secondary air supplied from each of the divided secondary air input ports 30 is appropriately adjusted. By doing so, it is possible to select appropriate combustion with reduced NOx or unburned content.
Such a multi-stage secondary air input port 30A can also be applied to the solid fuel burning burner 20 described in the first embodiment.

ところで、上述した固体燃料焚きバーナ20Aは、たとえば図11(a)及び図11(b)に示す本実施形態の第1変形例のように、微粉炭バーナ21のノズル先端部に開口面積を上下に分割するように設置したスプリット部材24を備えたものが望ましい。
図示のスプリット部材24は三角形断面を有しており、ノズル内部を流れる微粉炭及び1次空気を上下方向に分離して拡散させるような配置とすることにより、保炎が強化されるとともに、高温酸素残存領域Hの形成を抑制または防止することができる。
By the way, the above-described solid fuel burning burner 20A has an opening area that is vertically increased at the nozzle tip of the pulverized coal burner 21, as in the first modification of the present embodiment shown in FIGS. 11 (a) and 11 (b). It is desirable to have a split member 24 installed so as to be divided into two.
The split member 24 shown in the figure has a triangular cross section. By arranging the pulverized coal and the primary air flowing inside the nozzle so as to separate and diffuse in the vertical direction, flame holding is strengthened and high temperature is achieved. Formation of the oxygen remaining region H can be suppressed or prevented.

すなわち、スプリット部材24を通過することにより、微粉炭濃度の高い流れがスプリット部材24の外周で形成され、保炎の強化に有効となる。また、スプリット部材24を通過した微粉炭濃度の流れは、図中に破線矢印faで示すように、スプリット部材24の下流側に形成される負圧領域に流れ込む。この結果、この空気の流れにより火炎Fも負圧領域に引き込まれるので、保炎がさらに強化される結果、燃焼が促進されて酸素を早く消費することができる。
なお、スプリット部材24については1本に限定されることはなく、たとえば同方向の複数本や、第1の実施形態で説明したように異なる方向の複数本で形成されてもよく、また、スプリット部材24の断面形状についても、適宜形状を工夫してもよい。
That is, by passing through the split member 24, a flow having a high pulverized coal concentration is formed on the outer periphery of the split member 24, which is effective for strengthening flame holding. Further, the flow of the pulverized coal concentration that has passed through the split member 24 flows into a negative pressure region formed on the downstream side of the split member 24 as indicated by a broken line arrow fa in the drawing. As a result, the flame F is also drawn into the negative pressure region by this air flow, so that the flame holding is further strengthened. As a result, combustion is promoted and oxygen can be consumed quickly.
Note that the number of the split members 24 is not limited to one. For example, the split members 24 may be formed of a plurality of members in the same direction or a plurality of members in different directions as described in the first embodiment. The shape of the 24 cross-sectional shapes may be appropriately devised.

また、上述した固体燃料焚きバーナ20Aは、たとえば図12に示す本実施形態の第2変形例のように、微粉炭バーナ21の左右に1または複数の側部2次空気ポート34L、34Rを備えていることが好ましい。図示の構成例では、微粉炭バーナ21の左右に対して、各々がダンパ(不図示)を備えた1つの側部2次空気ポート34L,34Rを設けてあるが、複数に分割してそれぞれの流量制御を実施できるようにしてもよい。   Further, the above-described solid fuel burning burner 20A includes one or a plurality of side secondary air ports 34L and 34R on the left and right of the pulverized coal burner 21, as in a second modification of the present embodiment shown in FIG. It is preferable. In the illustrated configuration example, one side secondary air port 34L, 34R each provided with a damper (not shown) is provided on the left and right sides of the pulverized coal burner 21, but each is divided into a plurality of parts. You may enable it to implement flow control.

このような構成とすれば、2次空気を火炎Fの左右にも分配可能となるので、2次空気が火炎Fの上下で過剰になることを防止することができる。すなわち、火炎Fの外周に投入される2次空気量について、上下及び左右の分配を適宜調整することができるので、より精密な流量配分が可能になる。
このような側部2次空気ポート34L,34Rは、上述した第1の実施形態においても適用可能である。
With this configuration, the secondary air can be distributed to the left and right sides of the flame F, so that the secondary air can be prevented from becoming excessive above and below the flame F. That is, with respect to the amount of secondary air introduced into the outer periphery of the flame F, the vertical and horizontal distribution can be adjusted as appropriate, so that more precise flow rate distribution is possible.
Such side secondary air ports 34L and 34R are also applicable to the first embodiment described above.

また、上述した旋回燃焼ボイラ10において、2次空気投入ポート30Aは、たとえば図13に示すように、火炉11内へ向けた2次空気の投入方向を上下に変化させる角度調整機構を備えていることが望ましい。この角度調整機構は、水平を基準とした2次空気投入ポート30Aのチルト角度θを上下に変化させるものであり、2次空気の拡散を促進して高温酸素残存領域Hの形成を防止または抑制することができる。なお、この場合に好適なチルト角度θは±30度程度となり、より望ましいチルト角度θは±15度となる。   Further, in the above-described swirl combustion boiler 10, the secondary air input port 30A is provided with an angle adjustment mechanism that changes the input direction of the secondary air into the furnace 11 up and down as shown in FIG. It is desirable. This angle adjustment mechanism changes the tilt angle θ of the secondary air input port 30A up and down with respect to the horizontal, and promotes the diffusion of the secondary air to prevent or suppress the formation of the high-temperature oxygen residual region H. can do. In this case, a suitable tilt angle θ is about ± 30 degrees, and a more desirable tilt angle θ is ± 15 degrees.

このような角度調整機構を備えることにより、2次空気投入ポート30Aから火炉11内の火炎Fに向けて投入される2次空気の角度調整が可能になるので、火炉11内における空気拡散をより精密にコントロールすることができる。特に、微粉炭燃料の炭種が極端に変わった場合など、2次空気の投入角度を適宜変化させれば、低NOx化の効果をより一層向上させることができる。
このような角度調整機構は、上述した第1の実施形態においても適用可能である。
By providing such an angle adjustment mechanism, it is possible to adjust the angle of the secondary air that is introduced from the secondary air introduction port 30A toward the flame F in the furnace 11, so that the air diffusion in the furnace 11 can be further reduced. It can be controlled precisely. In particular, when the coal type of the pulverized coal fuel is extremely changed, the effect of reducing NOx can be further improved by appropriately changing the input angle of the secondary air.
Such an angle adjustment mechanism can also be applied to the first embodiment described above.

また、上述した旋回燃焼ボイラ10において、2次空気投入ポート30Aから投入される空気量の配分は、未燃分及びNOx排出量に基づいてダンパ40の開度をフィードバック制御して調整されることが望ましい。
すなわち、旋回燃焼ボイラ10において未燃分が多い場合には、火炎Fの外周面に近い内部2次空気ポート31a,31bへの2次空気配分を増加させ、NOx排出量が高い場合には、火炎Fの外周面から遠い外部2次空気ポート33a,33bへの2次空気配分を増加させる。
この場合、未燃分の計測については、たとえばレーザー光の散乱から炭素濃度を測定する計器を採用し、NOx排出量については、公知の測定機器を採用すればよい。
このようなフィードバック制御を行うことにより、2次空気の配分を燃焼状況に応じて自動的に最適化することができる旋回燃焼ボイラ10となる。
Further, in the above-described swirl combustion boiler 10, the distribution of the air amount input from the secondary air input port 30A is adjusted by feedback control of the opening degree of the damper 40 based on the unburned amount and the NOx discharge amount. Is desirable.
That is, when there is a large amount of unburned in the swirl combustion boiler 10, the secondary air distribution to the internal secondary air ports 31a and 31b close to the outer peripheral surface of the flame F is increased, and when the NOx emission amount is high, The secondary air distribution to the external secondary air ports 33a and 33b far from the outer peripheral surface of the flame F is increased.
In this case, for the measurement of unburned matter, for example, a meter that measures the carbon concentration from the scattering of laser light may be employed, and a known measuring device may be employed for the NOx emission amount.
By performing such feedback control, the swirl combustion boiler 10 can automatically optimize the distribution of secondary air according to the combustion state.

また、上述した旋回燃焼ボイラ10において、2次空気投入ポート30Aから投入される2次空気量は、バーナ部12からAA部14までの領域を還元雰囲気とする空気の多段投入との間で分配されることが望ましい。
すなわち、複数に分割された2次空気投入ポート30Aから投入する2次空気量については、AA部14から空気を多段投入する二段燃焼との併用により、2次空気投入ポート30Aから投入される2次空気量を低減できる。従って、火炎Fの外周に形成される高温酸素残存領域Hの抑制による低NOx化と、還元雰囲気にして燃焼排ガスの低NOx化を図ることとの相乗効果により、NOxの発生量をより一層低減することができる。
Further, in the above-described swirl combustion boiler 10, the amount of secondary air input from the secondary air input port 30A is distributed between the multistage input of air having a reducing atmosphere in the region from the burner unit 12 to the AA unit 14. It is desirable that
That is, the amount of secondary air that is input from the divided secondary air input port 30A is input from the secondary air input port 30A by the combined use with the two-stage combustion in which air is input in multiple stages from the AA section 14. The amount of secondary air can be reduced. Therefore, the amount of NOx generated is further reduced by the synergistic effect of reducing NOx by suppressing the high temperature oxygen residual region H formed on the outer periphery of the flame F and reducing NOx of the combustion exhaust gas in a reducing atmosphere. can do.

このように、上述した本発明の旋回燃焼ボイラ10によれば、複数に分割した2次空気投入ポート30Aから投入する2次空気量をポート毎に調整することにより、火炎Fの外周に対する2次空気の集中を防止または抑制できるようになり、この結果、火炎Fの外周に形成される高温酸素残存領域Hを抑制してNOxの発生量を低減することができる。
また、上述した実施形態では、バーナ部12からAA部14までの領域を還元雰囲気とする空気の多段投入の旋回燃焼ボイラ10として説明したが、本発明はこれに限定されることはない。
Thus, according to the above-described swirl combustion boiler 10 of the present invention, by adjusting the amount of secondary air supplied from the divided secondary air input port 30A for each port, the secondary to the outer periphery of the flame F is adjusted. As a result, the concentration of air can be prevented or suppressed, and as a result, the high-temperature oxygen remaining region H formed on the outer periphery of the flame F can be suppressed and the amount of NOx generated can be reduced.
Further, in the above-described embodiment, the swirl combustion boiler 10 in which the region from the burner unit 12 to the AA unit 14 is used as the reducing atmosphere is described as a swirl combustion boiler 10, but the present invention is not limited to this.

また、上述した固体燃料焚きバーナ20Aは、たとえば図14に示すように、微粉炭バーナ21のコール2次ポート23へ空気を供給する系統と、2次空気投入ポート30Aへ空気を供給する系統とを分離することが望ましい。図示の構成例では、空気供給ライン50がコール2次ポート供給ライン51及び2次空気投入ライン52に分岐され、それぞれの供給ライン50,51にダンパ41を備えている。   Further, the solid fuel burning burner 20A described above includes, for example, as shown in FIG. 14, a system for supplying air to the coal secondary port 23 of the pulverized coal burner 21, and a system for supplying air to the secondary air input port 30A. It is desirable to separate. In the illustrated configuration example, the air supply line 50 is branched into a call secondary port supply line 51 and a secondary air input line 52, and a damper 41 is provided in each of the supply lines 50 and 51.

このような空気供給系統を採用することにより、コール2次ポート供給ライン51及び2次空気投入ライン52毎にダンパ41の開度調整を行って空気量の分配を行い、さらに各ダンパ40の開度調整によってポート毎の空気量を調整することが可能になる。この結果、2次空気投入ポート30Aが複数に分割された多段になっても、各ポートの空気量を確実に調整することができる。   By adopting such an air supply system, the opening of the damper 41 is adjusted for each of the call secondary port supply line 51 and the secondary air input line 52 to distribute the air amount, and each damper 40 is opened. It becomes possible to adjust the air quantity for each port by adjusting the degree. As a result, even when the secondary air input port 30A is divided into a plurality of stages, the air amount of each port can be adjusted reliably.

上述した第1の実施形態及び第2の実施形態は、それぞれ単独で適用するだけでなく、二つを組み合わせた構成としてもよい。
図15に示す固体燃料焚きバーナ20Bは、図9に示した微粉炭バーナ21の上下に配置された2次空気投入ポート30Aがいずれも上下方向に3分割されている。すなわち、図示の固体燃料焚きバーナ20Bは、スプリット部材24及び整流機構25により達成される内部保炎と、多段2次空気ポートとを組み合わせた構成例である。
The first embodiment and the second embodiment described above are not only applied independently, but may be configured by combining two.
In the solid fuel burning burner 20B shown in FIG. 15, the secondary air input ports 30A arranged above and below the pulverized coal burner 21 shown in FIG. 9 are all divided into three in the vertical direction. That is, the illustrated solid fuel burning burner 20B is a configuration example in which the internal flame holding achieved by the split member 24 and the rectifying mechanism 25 is combined with a multistage secondary air port.

このように構成された固体燃料焚きバーナ20Bは、内部保炎によるNOx低減に加えて、2次空気の拡散速度を調整して火炎内の空気拡散を適正化できるので、揮発分やチャーの燃焼に必要な空気量を適正なタイミングで供給することができる。すなわち、内部保炎及び2次空気の拡散速度調整を実施することにより、両者の相乗効果によってさらなる低NOx化が可能となる。
なお、スプリット部材24の断面形状や配置、整流機構25の有無、2次空気投入ポート30Aの分割数や側部2次空気ポート34L,34Rの有無等については、図示の構成に限定されることはなく、適宜選択して組み合わせた構成が可能である。
The solid fuel-burning burner 20B configured in this way can adjust the diffusion speed of the secondary air and optimize the air diffusion in the flame in addition to the NOx reduction by the internal flame holding, so that the combustion of volatile matter and char Can be supplied at an appropriate timing. That is, by performing internal flame holding and secondary air diffusion rate adjustment, it is possible to further reduce NOx by the synergistic effect of both.
The cross-sectional shape and arrangement of the split member 24, the presence / absence of the rectifying mechanism 25, the number of divisions of the secondary air input port 30A, the presence / absence of the side secondary air ports 34L and 34R, and the like are limited to the illustrated configuration. However, it is possible to select and combine them appropriately.

また、2次空気投入ポート30Aを多段にした実施形態及び変形例においては、2次空気投入ポート30Aの一部をオイルポートとして使用することも可能である。
すなわち、旋回燃焼ボイラ10のような固体燃料焚きボイラにおいては、ボイラ運転の立ち上げ時にガスまたはオイルを燃料とする運用が必要であり、従って、火炉11内へオイルを投入するオイルバーナが必要となる。そこで、オイルバーナが必要な立ち上げ時に、多段とした2次空気投入ポート30Aのうち、たとえば外部2次空気ポート33a,33bを一時的にオイルポートとして使用すれば、固体燃料焚きバーナのポート数を低減してボイラ高さを抑制することができる。
Further, in the embodiment and the modified example in which the secondary air input port 30A is multistage, a part of the secondary air input port 30A can be used as an oil port.
That is, in a solid fuel-fired boiler such as the swirl combustion boiler 10, it is necessary to use gas or oil as fuel when starting up the boiler operation. Therefore, an oil burner for supplying oil into the furnace 11 is required. Become. Therefore, when the oil burner is started up, if the external secondary air ports 33a and 33b are temporarily used as the oil ports among the multi-staged secondary air input ports 30A, for example, the number of ports of the solid fuel burning burner It is possible to reduce the boiler height.

続いて、対向燃焼ボイラに好適な固体燃料焚きバーナについて、図16を参照して説明する。
図示の固体燃料焚きバーナ20Cには、円形断面としたコール1次ポート22Aの外周に、複数の同心円状とした2次空気投入ポート30Bが設けられている。図示の2次空気投入ポート30Bは、内部2次空気投入ポート31及び外部2次空気投入ポート33の2段で構成されるが、これに限定されることはない。
Next, a solid fuel-fired burner suitable for the opposed combustion boiler will be described with reference to FIG.
The illustrated solid fuel burning burner 20C is provided with a plurality of concentric secondary air input ports 30B on the outer periphery of a primary call port 22A having a circular cross section. The illustrated secondary air input port 30B includes two stages of an internal secondary air input port 31 and an external secondary air input port 33, but is not limited thereto.

また、コール1次ポート22Aの出口中心部には、異なる2方向(縦及び横)のスプリット部材24が格子状に合計4本配設されている。なお、この場合のスプリット部材24については、第1の実施形態で説明した数、配置及び断面形状等を適用可能である。
このように構成された固体燃料焚きバーナ20Cは、2次空気を徐々に供給するため極端な還元雰囲気にはならず、一般的に短炎で還元雰囲気が強く、発生した硫化水素による硫化腐食等も軽減することができる。
A total of four split members 24 in two different directions (longitudinal and lateral) are arranged in a lattice pattern at the center of the outlet of the primary call port 22A. Note that the number, arrangement, cross-sectional shape, and the like described in the first embodiment can be applied to the split member 24 in this case.
The solid fuel-burning burner 20C configured in this way does not have an extreme reducing atmosphere because the secondary air is gradually supplied, but generally has a short flame and a strong reducing atmosphere. Can also be reduced.

このように、上述した実施形態及び変形例の固体燃料焚きバーナは、微粉炭バーナの出口開口に内部保炎機構として機能する複数方向のスプリット部材を設けたことにより、スプリット部材が交差する燃料バーナの出口開口中央付近において、粉体燃料及び空気の流路を分割して流れを乱している。この乱れにより、空気の混合及び拡散は火炎の内部まで促進され、さらに、スプリット部材が着火面を細分化することにより、火炎の中心部まで酸素が入り込みやすくなるので、着火位置が火炎の中央に寄って燃料の未燃分は低減することとなる。すなわち、火炎中心部の酸素によって内部着火が効果的に行われるため、火炎内部で迅速な還元が行われるようになり、この結果、固体燃料焚きバーナを備えた固体燃料焚きボイラから最終的に排出されるNOxの発生量は低減される。   Thus, the solid fuel burning burner according to the embodiment and the modification described above is provided with a fuel burner in which the split members intersect by providing a multi-directional split member functioning as an internal flame holding mechanism at the outlet opening of the pulverized coal burner. In the vicinity of the center of the outlet opening, the flow path of the pulverized fuel and air is divided to disturb the flow. Due to this disturbance, the mixing and diffusion of air is promoted to the inside of the flame, and further, the split member subdivides the ignition surface, so that oxygen can easily enter the center of the flame, so that the ignition position is at the center of the flame. As a result, the unburned fuel content is reduced. In other words, since internal ignition is effectively performed by oxygen in the center of the flame, rapid reduction is performed inside the flame, and as a result, it is finally discharged from a solid fuel fired boiler equipped with a solid fuel fired burner. The amount of NOx generated is reduced.

また、2次空気投入ポートを多段にして2次空気の投入を調整すれば、火炎外周に対する2次空気の集中を防止または抑制できるようになるので、火炎の外周に形成される高温酸素残存領域を抑制して窒素酸化物(NOx)の発生量を低減することができる。
さらに、本発明の固体燃料焚きバーナ及びこれを備えた固体燃料焚きボイラは、火炎の内部で強力に着火するとともにバーナ部の空気比を増加できるので、ボイラ全体の過剰空気率を1.0〜1.1程度まで低減することができ、従って、ボイラ効率を向上させる効果もある。なお、従来の固体燃料焚きバーナ及び固体燃料焚きボイラは、通常1.15程度の過剰空気率で運用されているので、おおよそ0.05〜0.15程度の空気比低減が可能になる。
Further, if the secondary air input is adjusted by making the secondary air input port multi-stage, the concentration of the secondary air on the flame outer periphery can be prevented or suppressed, so the high temperature oxygen remaining region formed on the flame outer periphery. And the amount of nitrogen oxide (NOx) generated can be reduced.
Furthermore, since the solid fuel-fired burner of the present invention and the solid fuel-fired boiler equipped with the burner can ignite strongly inside the flame and increase the air ratio of the burner part, the excess air ratio of the entire boiler is set to 1.0 to It can be reduced to about 1.1, and therefore has the effect of improving boiler efficiency. In addition, since the conventional solid fuel burning burner and the solid fuel burning boiler are normally operated at an excess air ratio of about 1.15, an air ratio can be reduced by about 0.05 to 0.15.

図17〜図22は、本発明の作用効果を示す実験結果のグラフである。
図17は、内部保炎の保炎器位置と、NOx発生量(相対値)との関係を示す実験結果のグラフである。この場合の保炎器位置は、図18に示す比較例において、保炎器として機能するスプリット部材24Aの幅(高さ)を保炎器位置aとし、実際に微粉炭が流れる流路幅を実質微粉炭流幅bとして算出される「a/b」を横軸にして、縦軸にNOx発生量の相対値を示したグラフである。なお、図18では、図6(b)に示すスプリット部材24Aを採用しているが、これに限定されることはない。
この実験では、1次空気及び微粉炭の流速、2次空気の流速、及び1次空気/2次空気の空気配分を同一とし、図18に示す比較例1(a/b=0.77)及び比較例2(a/b=0.4)で発生したNOx量を測定した。
FIGS. 17-22 is a graph of the experimental result which shows the effect of this invention.
FIG. 17 is a graph of experimental results showing the relationship between the flame holder position of internal flame holding and the NOx generation amount (relative value). The flame holder position in this case is the width (height) of the split member 24A that functions as a flame holder in the comparative example shown in FIG. It is the graph which showed the relative value of NOx generation amount on the vertical axis | shaft on the horizontal axis "a / b" calculated as the actual pulverized coal flow width b. In FIG. 18, the split member 24 </ b> A shown in FIG. 6B is adopted, but the present invention is not limited to this.
In this experiment, the flow rate of primary air and pulverized coal, the flow rate of secondary air, and the air distribution of primary air / secondary air are the same, and Comparative Example 1 (a / b = 0.77) shown in FIG. And the amount of NOx generated in Comparative Example 2 (a / b = 0.4) was measured.

ここで、比較例1のコール1次ポート22は、流路内部に障害物となる逆中子26が設置されており、従って、微粉炭は逆中子26の内壁幅と略一致する幅bでそのまま流出することとなる。一方、比較例2のコール1次ポート22は、障害物のない流路内壁に沿って略そのままの幅bで流出する。このため、保炎器位置aが同じで、かつ、同じ内径のコール1次ポート22でも、障害物の有無により分母の実質微粉炭流幅bに差が生じ、この結果としてNOx発生量も異なっている。   Here, in the call primary port 22 of the comparative example 1, the reverse core 26 serving as an obstacle is installed inside the flow path. Therefore, the pulverized coal has a width b substantially equal to the inner wall width of the reverse core 26. It will flow out as it is. On the other hand, the call primary port 22 of the comparative example 2 flows out with the substantially same width b along the flow path inner wall without an obstacle. For this reason, even in the primary coal port 22 having the same flame holder position a and the same inner diameter, a difference occurs in the denominator substantial pulverized coal flow width b depending on the presence or absence of an obstacle, and as a result, the amount of NOx generated is also different. ing.

換言すれば、図17に示す実験結果は、スプリット部材の幅aが実質微粉炭流幅bに占める割合(a/b)について、概ね75%以下となるように設定すれば、NOx発生量が低減することを示している。
すなわち、この実験結果によれば、スプリット部材の幅aが実質微粉炭流幅bに占める割合(a/b)を0.77から0.4まで小さくすることにより、発生するNOx量の相対値が0.75まで低下して、約25%の減少をしていることが分かる。換言すれば、内部保炎機構として機能するスプリット部材は、スプリット部材の幅aを最適化することにより、固体燃料焚きバーナ及び固体燃料焚きボイラのNOx低減に有効であることが分かる。
このとき、整流機構25を設けずに偏流が生じた場合には、微粉炭の流れに対してスプリット部材が外側の位置となる可能性もあり、この結果としてNOxが増加するため、整流機構は重要である。
In other words, the experimental results shown in FIG. 17 show that the amount of NOx generated is approximately 75% or less with respect to the ratio (a / b) of the split member width a to the substantial pulverized coal flow width b. It shows that it reduces.
That is, according to this experimental result, the relative value of the amount of NOx generated by reducing the ratio (a / b) of the split member width a to the substantial pulverized coal flow width b from 0.77 to 0.4. It can be seen that the value decreases to 0.75, a decrease of about 25%. In other words, it is understood that the split member functioning as the internal flame holding mechanism is effective in reducing NOx of the solid fuel burning burner and the solid fuel burning boiler by optimizing the width a of the split member.
At this time, if a drift occurs without providing the rectifying mechanism 25, the split member may be positioned outside the flow of the pulverized coal. As a result, NOx increases. is important.

次の図19は、スプリット占有率とNOx発生量(相対値)との関係を示す実験結果のグラフである。すなわち、上述したスプリット部材の幅aが、コール1次ポート22の高さ(幅)に占める割合に応じて、NOx発生量がどのように変化するかを示す実験グラフである。
この実験結果によれば、スプリット占有率が大きくなるほどNOx発生量は減少しており、従って、スプリット部材の設置はNOx低減に有効であることが分かる。
一方、上述した図17の実験結果によれば、スプリット部材の幅aが実質微粉炭流幅bに占める割合(a/b)を小さくすると発生するNOx量の相対値も低下しているので、NOx発生量の低減には、適度な幅aを有するスプリット部材の設置が必要である。すなわち、内部保炎においては、適度なスプリット幅aを有するスプリット部材を設置して着火を強化し、これによりNOxをより早期に放出して還元することがNOx発生量の低減に重要である。
FIG. 19 is a graph of experimental results showing the relationship between the split occupancy ratio and the NOx generation amount (relative value). That is, it is an experimental graph showing how the amount of NOx generated changes according to the ratio of the width a of the split member described above to the height (width) of the primary call port 22.
According to this experimental result, it can be seen that the NOx generation amount decreases as the split occupancy increases, and therefore, the installation of the split member is effective in reducing NOx.
On the other hand, according to the experimental result of FIG. 17 described above, since the relative value of the amount of NOx generated when the ratio (a / b) of the width a of the split member to the substantial pulverized coal flow width b is reduced is also reduced, In order to reduce the amount of NOx generated, it is necessary to install a split member having an appropriate width a. That is, in internal flame holding, it is important to reduce the amount of NOx generated by installing a split member having an appropriate split width a to enhance ignition and thereby releasing and reducing NOx earlier.

図20は、未燃分の発生量について、スプリット部材を同一方向に配置した同一方向スプリットと、スプリット部材を複数方向に配設したクロススプリットとを比較したものである。この実験では、図17の実験と同様に諸条件を同一とし、同一方向スプリット及びクロススプリットについて未燃分発生量を比較している。
この実験結果によれば、同一方向スプリットで発生した未燃分量を基準にして、クロススプリットで発生した未燃分量の相対値は0.75であり、約25%減少していることが分かる。すなわち、スプリット部材を複数方向に配設するクロススプリットは、固体燃料焚きバーナ及び固体燃料焚きボイラの未燃分低減に有効であることが分かる。
FIG. 20 is a comparison of the amount of unburned matter generated between the same-direction split in which the split members are arranged in the same direction and the cross split in which the split members are arranged in a plurality of directions. In this experiment, the same conditions as in the experiment of FIG. 17 are used, and the unburned matter generation amount is compared for the same direction split and cross split.
According to this experimental result, it is understood that the relative value of the unburned amount generated in the cross split is 0.75, which is about 25% lower than the unburned amount generated in the same direction split. That is, it can be seen that the cross split in which the split members are arranged in a plurality of directions is effective in reducing the unburned portion of the solid fuel burning burner and the solid fuel burning boiler.

図20の実験結果により、スプリット部材を異なる方向に配置することで、火炎内部の着火がより強化されるとともに、火炎内部への空気拡散が良好となるため、未燃分が減少しているものと考えられる。
一方、同一方向スプリットの場合に未燃分が多くなるのは、外側の火炎に空気が供給され、内部に形成される火炎への空気拡散が遅れるためと考えられる。
According to the experimental results of FIG. 20, by arranging the split members in different directions, the ignition inside the flame is further enhanced, and the air diffusion into the flame is improved, so that the unburned portion is reduced. it is conceivable that.
On the other hand, in the case of splitting in the same direction, the unburned portion increases because air is supplied to the outer flame and air diffusion to the flame formed inside is delayed.

図21に示す実験結果は、従来型の固体燃料焚きバーナ及び本発明による固体燃料焚きバーナについて、バーナ部、バーナ部〜AA部、AA部について、それぞれの領域におけるNOx発生量を比較したものであり、従来のAA部におけるNOx発生量を基準値の1とした相対値が示されている。なお、この実験結果は、たとえば図1(a)に示すような複数方向のスプリット部材を採用している。   The experimental results shown in FIG. 21 compare NOx generation amounts in the respective regions for the conventional solid fuel burning burner and the solid fuel burning burner according to the present invention for the burner portion, burner portion to AA portion, and AA portion. There is shown a relative value in which the NOx generation amount in the conventional AA portion is set to 1 as a reference value. In this experimental result, for example, a split member in a plurality of directions as shown in FIG.

また、この実験結果は同一未燃分での比較であり、バーナ部〜AA部間の空気比(全空気投入量を基準として、全空気投入量から追加空気投入量を引いた空気投入量の割合を示す比)は、従来において0.8とし、本発明において0.9とした。ここでの全空気投入量は、過剰空気率を考慮して定める実際の空気投入量である。なお、追加空気投入率を30%とし、過剰空気率を1.15に設定すると、バーナ部〜AA部間の空気比は、略0.8となる。
(バーナ部〜AA部間の空気比=1.15×(1−0.3)≒0.8)
In addition, this experimental result is a comparison with the same unburned portion, and the air ratio between the burner part and the AA part (the air input amount obtained by subtracting the additional air input amount from the total air input amount on the basis of the total air input amount). The ratio indicating the ratio) was 0.8 in the prior art and 0.9 in the present invention. The total air input amount here is an actual air input amount determined in consideration of the excess air ratio. If the additional air input rate is set to 30% and the excess air rate is set to 1.15, the air ratio between the burner part and the AA part is approximately 0.8.
(Air ratio between burner part and AA part = 1.15 × (1-0.3) ≈0.8)

この実験結果によれば、AA部より発生する最終的なNOx発生量は、従来比で40%減の0.6まで低減した。これは、本発明は複数方向のスプリット部材を配設した内部保炎型とし、さらに、スプリット部材により着火が強化されることにより、火炎内でNOxを発生させ、効果的にNOx還元を実施しているためと考えられる。
また、本発明の場合、火炎内の混合が良好なため、燃焼が予混合燃焼に近くなり、より均一に燃焼されるため、空気比が0.9でも十分に還元力を有することを確認できた。
According to this experimental result, the final amount of NOx generated from the AA part was reduced to 0.6, which is 40% lower than the conventional amount. This is because the present invention adopts an internal flame holding type in which split members in multiple directions are arranged, and further, ignition is enhanced by the split members, so that NOx is generated in the flame and NOx reduction is effectively performed. It is thought that it is because.
In addition, in the case of the present invention, since the mixing in the flame is good, the combustion is close to premixed combustion, and it is burned more uniformly, so it can be confirmed that it has sufficient reducing power even at an air ratio of 0.9. It was.

すなわち、従来は火炎外周に高温高酸素領域が生じるため、十分なNOx還元を行うためには30%程度の追加空気投入(AA)が必要であるから、バーナ部〜AA部間の空気比は0.8程度まで下げる必要があった。このため、AA領域では、過剰空気率を考慮した全空気投入量の30%程度の空気が投入されるため、NOxはAA領域でも発生していた。
しかし、本発明の場合、バーナ部〜AA部間は、0.9程度の空気比でも燃焼可能であるため、追加空気投入量は、過剰空気率を考慮した全空気投入量の0〜20%程度まで低減できるようになり、従って、AA部でのNOx発生量も抑制することができるので、最終的には40%程度のNOx発生量低減が可能となっている。
That is, since a high temperature and high oxygen region is conventionally generated around the flame periphery, about 30% additional air injection (AA) is necessary to perform sufficient NOx reduction, so the air ratio between the burner part and the AA part is It had to be lowered to about 0.8. For this reason, in the AA region, about 30% of the total air input amount in consideration of the excess air rate is input, so NOx is also generated in the AA region.
However, in the case of the present invention, between the burner part and the AA part can be combusted even at an air ratio of about 0.9. Therefore, the additional air input amount is 0 to 20% of the total air input amount considering the excess air ratio. Therefore, the amount of NOx generated in the AA portion can also be suppressed, so that the amount of NOx generated can be reduced by about 40% in the end.

図22は、横軸を「バーナ部〜AA部間の空気比」とし、縦軸に「NOx発生量の相対値」を示したものである。この実験結果によれば、本発明の場合、バーナ付近の空気比が0.9で最適値をとり、約40%のNOx低減が確認された。従って、「過剰空気率を考慮した全空気投入量」と「全空気投入量から追加空気投入量を引いた空気投入量」との比である「バーナ部〜AA部間の空気比」は、図22より、約30%のNOxを低減できる0.85以上に設定することが好ましく、より好適には最適値の0.9以上に設定することが望ましい。   In FIG. 22, the horizontal axis indicates “the air ratio between the burner part and the AA part”, and the vertical axis indicates “the relative value of the NOx generation amount”. According to this experimental result, in the case of the present invention, an optimum value was obtained when the air ratio in the vicinity of the burner was 0.9, and it was confirmed that NOx was reduced by about 40%. Therefore, the “air ratio between the burner part and the AA part”, which is the ratio of the “total air input amount considering the excess air ratio” and the “air input amount obtained by subtracting the additional air input amount from the total air input amount”, From FIG. 22, it is preferable to set it to 0.85 or more that can reduce about 30% of NOx, and it is more preferable to set the optimal value to 0.9 or more.

本発明の実験結果において、0.8付近の空気比でNOx発生量が1以上に増加しているのは、追加空気投入によるNOx発生のためである。
また、空気比の上限は燃料比に応じて異なり、燃料比が1.5以上の場合は0.95となり、燃料比が1.5未満の場合は1.0となる。この場合の燃料比は、燃料中の固定炭素と揮発分との割合(固定炭素/揮発分)である。
In the experimental results of the present invention, the NOx generation amount increased to 1 or more at an air ratio of about 0.8 because of the generation of NOx due to the addition of additional air.
Further, the upper limit of the air ratio varies depending on the fuel ratio, and is 0.95 when the fuel ratio is 1.5 or more, and 1.0 when the fuel ratio is less than 1.5. The fuel ratio in this case is a ratio of fixed carbon and volatile matter in the fuel (fixed carbon / volatile matter).

このように、上述した本実施形態によれば、内部保炎を有する微粉炭バーナ21と、保炎しない2次空気投入ポート30とを備え、微粉炭バーナ21の空気比が0.85以上、好適には0.9以上に設定されているので、AA部14における追加空気投入量が低減されたことにより、AA部14のNOx発生量も低減する。また、火炎の外周に形成される高温酸素残存領域Hが抑制され、予混合燃焼に近い燃焼の火炎内部で発生したNOxが効果的に還元されることから、AA部14に到達するNOx量の減少と、AA部14で追加空気の投入により発生するNOx量の減少とにより、AA部14から最終的に排出されるNOx量は減少する。   Thus, according to this embodiment described above, the pulverized coal burner 21 having an internal flame holding and the secondary air input port 30 that does not hold the flame are provided, and the air ratio of the pulverized coal burner 21 is 0.85 or more, Since it is preferably set to 0.9 or more, the amount of NOx generated in the AA portion 14 is reduced by reducing the additional air input amount in the AA portion 14. Further, the high temperature oxygen remaining region H formed on the outer periphery of the flame is suppressed, and NOx generated inside the combustion flame close to premixed combustion is effectively reduced, so that the amount of NOx reaching the AA portion 14 is reduced. Due to the decrease and the decrease in the amount of NOx generated by the addition of additional air in the AA unit 14, the amount of NOx finally discharged from the AA unit 14 decreases.

この結果、AA部14から排出される最終的なNOx発生量を低減した固体燃料焚きバーナ20及び旋回燃焼ボイラ10となる。
また、微粉炭バーナ21の空気比を0.85以上に設定して運転する固体燃料焚きバーナの運転方法により、AA部14の空気量(追加空気投入量)は、たとえば空気比0.8の場合と比較して低減するので、追加空気投入量が減少したAA部14においては、最終的なNOx発生量が減少する。
なお、本発明は上述した実施形態に限定されることはなく、たとえば粉体の固体燃料が微粉炭に限定されないなど、その要旨を逸脱しない範囲内において適宜変更することができる。
As a result, the solid fuel-burning burner 20 and the swirl combustion boiler 10 with reduced final NOx generation amount discharged from the AA unit 14 are obtained.
Further, according to the operation method of the solid fuel burning burner which operates with the air ratio of the pulverized coal burner 21 set to 0.85 or more, the air amount (additional air input amount) of the AA section 14 is, for example, an air ratio of 0.8. Since the amount is reduced as compared with the case, the final NOx generation amount decreases in the AA portion 14 in which the additional air input amount is reduced.
In addition, this invention is not limited to embodiment mentioned above, For example, powder solid fuel is not limited to pulverized coal, For example, it can change suitably in the range which does not deviate from the summary.

10 旋回燃焼ボイラ
11 火炉
12 バーナ部
14 追加空気投入部(AA部)
20,20A〜20C 固体燃料焚きバーナ
21 微粉炭バーナ(燃料バーナ)
22 コール1次ポート(固体燃料空気1次ポート)
23 コール2次ポート(燃料バーナ用空気2次ポート)
24,24A,24B スプリット部材
25 整流機構
30,30A 2次空気投入ポート
31,31a,31b 内部2次空気ポート
32a,32b 中間2次空気ポート
33,33a,33b 外部2次空気ポート
34L,34R 側部2次空気ポート
40,41 ダンパ
F 火炎
H 高温酸素残存領域
DESCRIPTION OF SYMBOLS 10 Swirling combustion boiler 11 Furnace 12 Burner part 14 Additional air injection part (AA part)
20, 20A-20C Solid fuel burning burner 21 Pulverized coal burner (fuel burner)
22 Cole primary port (solid fuel air primary port)
23 Cole secondary port (Air secondary port for fuel burner)
24, 24A, 24B Split member 25 Rectification mechanism 30, 30A Secondary air input port 31, 31a, 31b Internal secondary air port 32a, 32b Intermediate secondary air port 33, 33a, 33b External secondary air port 34L, 34R side Secondary air port 40, 41 Damper F Flame H High temperature oxygen remaining area

Claims (13)

固体燃料及び空気を固体燃料焚きボイラの炉内へ投入する燃料バーナであって、
内部保炎を有し前記固体燃料及び1次空気を炉内へ投入する固体燃料空気1次ポートと、該固体燃料空気1次ポートの周囲を取り囲むように設けられて2次空気を炉内へ投入する保炎しない燃料バーナ用空気2次ポートとを備え、
前記内部保炎が、前記固体燃料空気1次ポートの流路前方部に配設され、空気投入をしない1または複数のスプリット部材によりなされることを特徴とする燃料バーナ。
A fuel burner for charging solid fuel and air into a furnace of a solid fuel-fired boiler,
A solid fuel air primary port that has an internal flame holding and inputs the solid fuel and primary air into the furnace, and is provided so as to surround the solid fuel air primary port, and the secondary air is introduced into the furnace. With a secondary air port for the fuel burner that does not hold the flame,
The fuel burner, wherein the internal flame holding is performed by one or a plurality of split members which are disposed in front of the flow path of the solid fuel air primary port and do not input air.
固体燃料及び空気を固体燃料焚きボイラの炉内へ投入する燃料バーナであって、
内部保炎を有し前記固体燃料及び1次空気を炉内へ投入する固体燃料空気1次ポートと、該固体燃料空気1次ポートの周囲を取り囲むように設けられて2次空気を炉内へ投入する保炎しない燃料バーナ用空気2次ポートとを備え、
前記内部保炎が、前記固体燃料空気1次ポートの流路前方部に配設された複数方向の流路分割をして空気投入をしないスプリット部材によりなされることを特徴とする燃料バーナ。
A fuel burner for charging solid fuel and air into a furnace of a solid fuel-fired boiler,
A solid fuel air primary port that has an internal flame holding and inputs the solid fuel and primary air into the furnace, and is provided so as to surround the solid fuel air primary port, and the secondary air is introduced into the furnace. With a secondary air port for the fuel burner that does not hold the flame,
The fuel burner according to claim 1, wherein the internal flame holding is performed by a split member that is divided into a plurality of flow paths arranged in front of the flow path of the solid fuel air primary port and does not input air.
前記スプリット部材により形成される着火面長さ(Lf)が前記固体燃料空気1次ポートの出口開口周長(L)より大きく(Lf>L)なるように設定されていることを特徴とする請求項1又は2に記載の燃料バーナ。   The ignition surface length (Lf) formed by the split member is set to be larger than an outlet opening circumferential length (L) of the solid fuel air primary port (Lf> L). Item 3. The fuel burner according to Item 1 or 2. 前記スプリット部材は、前記固体燃料空気1次ポートの出口開口中央が密となるように配置されていることを特徴とする請求項1から3のいずれか1項に記載の燃料バーナ。   4. The fuel burner according to claim 1, wherein the split member is disposed so that a center of an outlet opening of the solid fuel air primary port is dense. 5. 前記固体燃料及び前記1次空気の流れに圧力損失を付与する整流機構を前記スプリット部材の上流側に設けたことを特徴とする請求項1から4のいずれか1項に記載の燃料バーナ。   The fuel burner according to any one of claims 1 to 4, wherein a rectifying mechanism that applies pressure loss to the flow of the solid fuel and the primary air is provided on the upstream side of the split member. 請求項1から5のいずれか1項に記載の燃料バーナと、
前記燃料バーナの上下及び/または左右に各々配置されて、前記2次空気をさらに投入する2次空気投入ポートと、
を備えていることを特徴とする固体燃料焚きバーナ。
A fuel burner according to any one of claims 1 to 5,
A secondary air input port which is disposed above and / or on the left and right of the fuel burner and further inputs the secondary air;
A solid fuel-burning burner comprising:
前記2次空気投入ポートは、各々が流量調整手段を有する独立した複数の流路に分割されていることを特徴とする請求項6に記載の固体燃料焚きバーナ。   The solid fuel burning burner according to claim 6, wherein the secondary air input port is divided into a plurality of independent flow paths each having a flow rate adjusting means. 前記2次空気投入ポートが、角度調整機構を備えていることを特徴とする請求項6又は7に記載の固体燃料焚きバーナ。   The solid fuel burning burner according to claim 6 or 7, wherein the secondary air input port includes an angle adjusting mechanism. 前記2次空気投入ポートから投入される空気量の配分が、未燃分及び窒素酸化物(NOx)排出量に基づいてフィードバック制御されることを特徴とする請求項6から8のいずれか1項に記載の固体燃料焚きバーナ。   The distribution of the air amount input from the secondary air input port is feedback-controlled based on the unburned component and the nitrogen oxide (NOx) discharge amount. A solid fuel-burning burner as described in 1. 前記2次空気投入ポートから投入される空気量が、前記燃料バーナから追加空気投入部までの領域を還元雰囲気とする空気の多段投入との間で分配されることを特徴とする請求項6から9のいずれか1項に記載の固体燃料焚きバーナ。   The amount of air input from the secondary air input port is distributed between multistage input of air having a reducing atmosphere in a region from the fuel burner to the additional air input portion. The solid fuel-fired burner according to any one of 9. 前記燃料バーナの前記燃料バーナ用空気2次ポートへ空気を供給する系統と、前記2次空気投入ポートへ空気を供給する系統とが分離されていることを特徴とする請求項6から10のいずれか1項に記載の固体燃料焚きバーナ。   11. The system for supplying air to the fuel burner air secondary port of the fuel burner and the system for supplying air to the secondary air input port are separated from each other. A solid fuel-burning burner according to claim 1. 前記2次空気投入ポートの複数の流路は、前記燃料バーナを円形として外周方向へ同心円状の多段に設けられていることを特徴とする請求項7に記載の固体燃料焚きバーナ。   The solid fuel burning burner according to claim 7, wherein the plurality of flow paths of the secondary air input port are provided in multiple stages concentrically in the outer circumferential direction with the fuel burner being circular. 前記固体燃料、前記1次空気、及び前記2次空気を炉内へ投入する請求項6から12のいずれか1項に記載の固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されていることを特徴とする固体燃料焚きボイラ。   The solid fuel burning burner according to any one of claims 6 to 12, wherein the solid fuel, the primary air, and the secondary air are introduced into a furnace. A solid fuel-fired boiler characterized by being made.
JP2014184838A 2014-09-11 2014-09-11 Fuel burner, solid fuel fired burner, and solid fuel fired boiler Active JP5799443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184838A JP5799443B2 (en) 2014-09-11 2014-09-11 Fuel burner, solid fuel fired burner, and solid fuel fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184838A JP5799443B2 (en) 2014-09-11 2014-09-11 Fuel burner, solid fuel fired burner, and solid fuel fired boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013151633A Division JP5629901B2 (en) 2013-07-22 2013-07-22 Solid fuel fired burner and solid fuel fired boiler

Publications (2)

Publication Number Publication Date
JP2015014451A true JP2015014451A (en) 2015-01-22
JP5799443B2 JP5799443B2 (en) 2015-10-28

Family

ID=52436278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184838A Active JP5799443B2 (en) 2014-09-11 2014-09-11 Fuel burner, solid fuel fired burner, and solid fuel fired boiler

Country Status (1)

Country Link
JP (1) JP5799443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132277A (en) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 Combustion burner and boiler including the same
JP2018132278A (en) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 Combustion burner and boiler including the same
WO2023053799A1 (en) * 2021-09-30 2023-04-06 三菱重工パワーインダストリー株式会社 Gas burner and combustion equipment

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644504A (en) * 1979-09-20 1981-04-23 Kawasaki Heavy Ind Ltd Method of combusting pulverized coal in pluverized coal combusting furnace
US4422391A (en) * 1981-03-12 1983-12-27 Kawasaki Jukogyo Kabushiki Kaisha Method of combustion of pulverized coal by pulverized coal burner
US4455949A (en) * 1980-02-13 1984-06-26 Brennstoffinstitut Freiberg Burner for gasification of powdery fuels
JPS604704A (en) * 1983-06-23 1985-01-11 Babcock Hitachi Kk Combustion device
JPS6224209U (en) * 1985-07-30 1987-02-14
JPH07260106A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Pulverized coal firing burner and pulverized coal
JPH08135919A (en) * 1994-11-11 1996-05-31 Babcock Hitachi Kk Combustion device
US5568777A (en) * 1994-12-20 1996-10-29 Duquesne Light Company Split flame burner for reducing NOx formation
JPH1038217A (en) * 1996-07-26 1998-02-13 Babcock Hitachi Kk Fine powdered coal combustion burner
JPH10220707A (en) * 1997-02-10 1998-08-21 Babcock Hitachi Kk Burner for powdery solid fuel and combustion apparatus therewith
US5829367A (en) * 1994-06-17 1998-11-03 Mitsubishi Jukogyo Kabushiki Kaisha Pulverized fuel combustion burner having a flame maintaining plate at a tip end portion of a pulverized fuel conduit
JPH10332110A (en) * 1997-05-30 1998-12-15 Mitsubishi Heavy Ind Ltd Pulverized coal burner
JP2005024136A (en) * 2003-06-30 2005-01-27 Babcock Hitachi Kk Combustion apparatus
JP2009204256A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Pulverized coal burner
JP2010270992A (en) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd Coal burning boiler

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644504A (en) * 1979-09-20 1981-04-23 Kawasaki Heavy Ind Ltd Method of combusting pulverized coal in pluverized coal combusting furnace
US4455949A (en) * 1980-02-13 1984-06-26 Brennstoffinstitut Freiberg Burner for gasification of powdery fuels
US4422391A (en) * 1981-03-12 1983-12-27 Kawasaki Jukogyo Kabushiki Kaisha Method of combustion of pulverized coal by pulverized coal burner
JPS604704A (en) * 1983-06-23 1985-01-11 Babcock Hitachi Kk Combustion device
JPS6224209U (en) * 1985-07-30 1987-02-14
JPH07260106A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Pulverized coal firing burner and pulverized coal
US5829367A (en) * 1994-06-17 1998-11-03 Mitsubishi Jukogyo Kabushiki Kaisha Pulverized fuel combustion burner having a flame maintaining plate at a tip end portion of a pulverized fuel conduit
JPH08135919A (en) * 1994-11-11 1996-05-31 Babcock Hitachi Kk Combustion device
US5568777A (en) * 1994-12-20 1996-10-29 Duquesne Light Company Split flame burner for reducing NOx formation
JPH1038217A (en) * 1996-07-26 1998-02-13 Babcock Hitachi Kk Fine powdered coal combustion burner
JPH10220707A (en) * 1997-02-10 1998-08-21 Babcock Hitachi Kk Burner for powdery solid fuel and combustion apparatus therewith
JPH10332110A (en) * 1997-05-30 1998-12-15 Mitsubishi Heavy Ind Ltd Pulverized coal burner
JP2005024136A (en) * 2003-06-30 2005-01-27 Babcock Hitachi Kk Combustion apparatus
JP2009204256A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Pulverized coal burner
JP2010270992A (en) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd Coal burning boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132277A (en) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 Combustion burner and boiler including the same
JP2018132278A (en) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 Combustion burner and boiler including the same
WO2023053799A1 (en) * 2021-09-30 2023-04-06 三菱重工パワーインダストリー株式会社 Gas burner and combustion equipment

Also Published As

Publication number Publication date
JP5799443B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2011074281A1 (en) Solid fuel burner and solid fuel boiler
EP2696139B1 (en) Solid-fuel-fired burner and solid-fuel-fired boiler
AU2016286769B2 (en) Solid fuel burner
JP5535521B2 (en) Coal fired boiler
JP2010270992A (en) Coal burning boiler
JP5386230B2 (en) Fuel burner and swirl combustion boiler
JP5799443B2 (en) Fuel burner, solid fuel fired burner, and solid fuel fired boiler
JP5629901B2 (en) Solid fuel fired burner and solid fuel fired boiler
JP5344897B2 (en) Swirl combustion boiler
JP5797238B2 (en) Fuel burner and swirl combustion boiler
JP2010270990A (en) Fuel burner and turning combustion boiler
JP5490291B2 (en) Swirl combustion boiler
JP5778499B2 (en) Solid fuel fired burner and solid fuel fired boiler
JP6049814B2 (en) Solid fuel fired burner and solid fuel fired boiler
JP6049815B2 (en) Solid fuel fired burner and solid fuel fired boiler
JP5778500B2 (en) Solid fuel fired burner and solid fuel fired boiler
JP2010139182A (en) Turning combustion boiler
JP5344898B2 (en) Swirl combustion boiler

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150804

R150 Certificate of patent or registration of utility model

Ref document number: 5799443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350