JPH1038217A - Fine powdered coal combustion burner - Google Patents

Fine powdered coal combustion burner

Info

Publication number
JPH1038217A
JPH1038217A JP19777896A JP19777896A JPH1038217A JP H1038217 A JPH1038217 A JP H1038217A JP 19777896 A JP19777896 A JP 19777896A JP 19777896 A JP19777896 A JP 19777896A JP H1038217 A JPH1038217 A JP H1038217A
Authority
JP
Japan
Prior art keywords
pulverized coal
flow path
gas
solid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19777896A
Other languages
Japanese (ja)
Other versions
JP3830582B2 (en
Inventor
Shinichiro Nomura
伸一郎 野村
Kunio Okiura
邦夫 沖浦
Noriyuki Oyatsu
紀之 大谷津
Noboru Takarayama
登 宝山
Miki Mori
三紀 森
Shunichi Tsumura
俊一 津村
Yoshinobu Kobayashi
啓信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19777896A priority Critical patent/JP3830582B2/en
Publication of JPH1038217A publication Critical patent/JPH1038217A/en
Application granted granted Critical
Publication of JP3830582B2 publication Critical patent/JP3830582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fine powdered coal combustion burner which is capable of demonstrating high ignitability even when there are used incombustible coals such as coarse powdered coal having 200 mesh throughput of about 60 to 70% and high fuel ratio coal, and which produces less NOx and less production of incombustible components. SOLUTION: There are disposed concentrically a primary flow passage 11, a secondary flow passage 12, and a tertially flow passage 13 on an outer periphery of a heavy oil nozzle 14. An outlet of the first flow passage is set on the upstream side with respect to the direction A a solid/gas two phase flow than an outlet of the secondary flow passage, on an internal periphery of the tip end of which a reverse fire preventing venturi 15 is provided. The primary flow passage is movable to an upstream side B or a backward flow side C along the central axis X-X of the burner. On a heavy oil nozzle there are provided a fine powdered coal condenser 19 and ant internal periphery flame holder 21. On the other hand, an outer periphery flame holder 20 is mounted on a portion of the outlet of the secondary flow passage in opposition to the internal periphery flame holder. Further, a turning unit 17 of tertiary air is provided on line tertiary flow passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭焚ボイラ等に用
いられる微粉炭燃焼バーナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverized coal combustion burner used for a pulverized coal fired boiler or the like.

【0002】[0002]

【従来の技術】オイルショック以降、わが国において
は、油燃料に比べて価格が安定している石炭を主燃料と
する微粉炭焚ボイラが事業用火力発電ボイラとして数多
く建設されている。微粉炭焚ボイラには、原料炭を粉砕
するミルと、粉砕された石炭粉中から所定粒度以下の微
粉炭を取り出す分級機と、微粉炭の搬送機と、搬送され
た微粉炭を燃焼するバーナとを必要とするが、従来より
分級機が内蔵されたミルを用いて原料炭を粉砕し、分級
された微粉炭を搬送用空気(1次空気)にてバーナに直
接供給する直接燃焼方式が実用化されている。また、微
粉炭燃焼バーナとしては、従来より、NOxの低減を目
的としたもの及び広域負荷(最低負荷の切下げ)を目的
としたものが多く開発され、実用化されている。
2. Description of the Related Art Since the oil crisis, in Japan, many pulverized coal-fired boilers using coal as a main fuel, whose price is more stable than oil fuel, have been constructed as business-use thermal power generation boilers. The pulverized coal-fired boiler includes a mill for pulverizing the raw coal, a classifier for extracting pulverized coal having a predetermined particle size or less from the pulverized coal powder, a pulverized coal transporter, and a burner for burning the transported pulverized coal. Conventionally, a direct combustion system has been used in which the raw coal is pulverized using a mill with a built-in classifier, and the classified pulverized coal is supplied directly to the burner with carrier air (primary air). Has been put to practical use. In addition, many pulverized coal combustion burners have been developed and put into practical use for the purpose of reducing NOx and for wide-area load (reduction of minimum load).

【0003】微粉炭燃焼バーナの低NOx化技術として
は、例えば特許第1750459号のように、燃焼用空
気を1次、2次、3次に分割し、1次空気のみで着火燃
焼している微粉炭流の周囲に2次空気及び3次空気を旋
回させて吹き込み、燃焼微粉炭流と2次空気及び3次空
気との混合を遅らせて火炎中心部にNOx還元領域を形
成しやすくする燃焼空気3分割方式がある。
[0003] As a technique for reducing NOx in a pulverized coal combustion burner, for example, as disclosed in Japanese Patent No. 1750459, combustion air is divided into primary, secondary and tertiary and ignited and burned only with primary air. Secondary air and tertiary air are swirled and blown around the pulverized coal stream to delay the mixing of the combustion pulverized coal stream with the secondary air and tertiary air to facilitate formation of a NOx reduction region in the center of the flame. There is a three-part air system.

【0004】一方、広域負荷対応技術としては、例え
ば特許第1907269号や登録実用新案第19567
27号のように、サイクロンやベント管を利用した固気
分離器を微粉炭燃焼バーナ外に設け、固体濃度が高い微
粉炭流を燃焼する技術、例えば特開平1−21004
4号公報に記載されているように、微粉炭と搬送用空気
の慣性力の差を利用した固気分離器を微粉炭燃焼バーナ
内に設け、固体濃度が高い微粉炭流を燃焼する技術、
例えば特許第1750459号のように、微粉炭燃焼バ
ーナの出口に保炎リングと呼ばれる突起を設け、その後
流に渦流再循環領域を形成させて微粉炭の着火保炎を促
進する技術などがある。
[0004] On the other hand, as a technology corresponding to a wide area load, for example, Japanese Patent No. 1907269 and a registered utility model No. 19567
No. 27, a technique for installing a solid-gas separator using a cyclone or a vent pipe outside a pulverized coal combustion burner to burn a pulverized coal stream having a high solids concentration, for example,
No. 4, as disclosed in Japanese Patent Publication No. 4 (1994), a technique for providing a solid-gas separator utilizing a difference in inertia between pulverized coal and conveying air in a pulverized coal combustion burner to burn a pulverized coal stream having a high solids concentration,
For example, as disclosed in Japanese Patent No. 1750459, there is a technique of providing a protrusion called a flame holding ring at the outlet of a pulverized coal combustion burner and forming a swirl recirculation region in the subsequent stream to promote ignition and flame holding of the pulverized coal.

【0005】図13に、従来より知られているこの種の
微粉炭燃焼バーナの一例を示す。この図において、1は
微粉炭と搬送用空気の固気二相流が流れる1次流路、2
は当該1次流路1の外周に設けられた燃焼用空気搬送用
の2次流路、3は当該2次流路2の外周に設けられた燃
焼用空気搬送用の3次流路、4はバーナ中心に配置され
た重油ノズル、5はボイラ炉壁、6はボイラ炉壁5の外
面に設けられた風箱を示している。
FIG. 13 shows an example of this type of pulverized coal combustion burner conventionally known. In this figure, reference numeral 1 denotes a primary passage through which a solid-gas two-phase flow of pulverized coal and carrier air flows, 2
Is a secondary flow path for conveying air for combustion provided on the outer circumference of the primary flow path 1; 3 is a tertiary flow path for conveying air for combustion provided on the outer circumference of the secondary flow path 2; Denotes a heavy oil nozzle arranged at the center of the burner, 5 denotes a boiler furnace wall, and 6 denotes a wind box provided on the outer surface of the boiler furnace wall 5.

【0006】1次流路1の内面には逆火止め用のベンチ
ュリ7が設けられ、その先端部にはブラフボディ型の保
炎器8が取り付けられる。2次流路2は風箱6と連通し
ており、その入口が前記ベンチュリ7の設定部よりも固
気二相流の流れ方向に関して後流側に配置され、その出
口は前記保炎器8の設定部と対応する位置に配置され
る。この2次流路2内には空気旋回器9が設けられ、旋
回流となった2次空気を燃焼炎の周囲に供給するように
なっている。3次流路3は風箱6と連通しており、その
出口が前記保炎器8の設定部と対応する位置に配置され
る。この3次流路3内には、3次空気調整器10が設け
られ、2次空気の外周に供給される3次空気の供給量が
調整される。
[0006] A venturi 7 for backfire prevention is provided on the inner surface of the primary flow path 1, and a bluff body type flame stabilizing device 8 is attached to the tip of the venturi 7. The secondary flow path 2 communicates with the wind box 6, the inlet of which is disposed on the downstream side in the flow direction of the solid-gas two-phase flow from the setting part of the venturi 7, and the outlet of which is connected to the flame stabilizer 8. Is arranged at a position corresponding to the setting unit. An air swirler 9 is provided in the secondary flow path 2 to supply the swirled secondary air around the combustion flame. The tertiary flow path 3 communicates with the wind box 6, and the outlet thereof is disposed at a position corresponding to the setting section of the flame stabilizer 8. A tertiary air regulator 10 is provided in the tertiary flow path 3 to adjust the supply amount of tertiary air supplied to the outer periphery of the secondary air.

【0007】図示しないミルから搬送された微粉炭と1
次空気との固気二相流は、1次流路1に導かれ、その出
口より噴射されて燃焼するが、1次流路1の出口にはブ
ラフボディ型の保炎器8が設けられ、固気二相流及び2
次空気の流れが一部遮られるので、保炎器8の後流部分
に30μm以下の小さな粒子を巻き込んで燃焼し高温の
ガス体を発生する再循環領域と呼ばれる高温の領域が形
成され、保炎器8の近傍を通過する未着火の微粉炭の着
火保炎が促進される。2次流路2から供給される2次空
気及び3次流路2から供給される3次空気は、1次空気
のみで着火燃焼している微粉炭流の周囲に旋回状態で吹
き込まれる。これによって、燃焼微粉炭流と2次空気及
び3次空気との混合が遅れるので、火炎中心部にNOx
還元雰囲気が形成され、燃焼ガス中のNOxが低減され
る。
[0007] Pulverized coal conveyed from a mill (not shown) and 1
The solid-gas two-phase flow with the primary air is guided to the primary flow path 1 and is injected from the outlet thereof and burns. At the outlet of the primary flow path 1, a bluff body type flame stabilizer 8 is provided. , Gas-solid two-phase flow and 2
Since the flow of the secondary air is partially obstructed, a high-temperature region called a recirculation region is formed, in which small particles of 30 μm or less are entrained in the downstream portion of the flame stabilizer 8 and burned to generate a high-temperature gas body. Ignition and flame holding of unignited pulverized coal passing near the flame 8 are promoted. The secondary air supplied from the secondary flow path 2 and the tertiary air supplied from the tertiary flow path 2 are swirled around the pulverized coal stream which is ignited and burnt with only the primary air. This delays the mixing of the combustion pulverized coal stream with the secondary air and the tertiary air, so that NOx
A reducing atmosphere is formed, and NOx in the combustion gas is reduced.

【0008】このバーナによれば、燃料比(固定炭素重
量/揮発分重量比)が1〜2前後で200メッシュの通
過率が80%の微粉炭に対してボイラ出口でのNOx濃
度を150ppm〜200ppmとし、未燃分を5%以
下とすることができる。
According to this burner, the NOx concentration at the outlet of the boiler is set to 150 ppm or less for pulverized coal having a fuel ratio (fixed carbon weight / volatile content weight ratio) of about 1 to 2 and a passing rate of 200 mesh of 80%. It is 200 ppm, and the unburned matter can be 5% or less.

【0009】[0009]

【発明が解決しようとする課題】ところで、近年におい
ては、微粉炭焚きボイラの関して、低NOx化、広域負
荷運転、バーナ及びミルの大容量化を促進するほかに、
ミル粉砕動力の低減を図るために200メッシュ通過率
が60〜70%前後の粗粉炭の燃焼技術を確立するこ
と、及び原料炭の安定供給を確保すると共に発電コスト
の低減を図るために燃料比が2〜7の難燃性炭の燃焼技
術を確立することが重要な技術的課題になっている。
Incidentally, in recent years, in relation to pulverized coal-fired boilers, in addition to promoting reduction of NOx, wide-range load operation, and increase in capacity of burners and mills,
Establish a combustion technology for coarse coal with a mesh passing rate of around 60-70% to reduce mill grinding power, and secure a stable supply of raw coal and reduce the fuel ratio to reduce power generation costs. However, it is an important technical problem to establish the combustion technology of flame-retardant coal of 2 to 7.

【0010】粗粉炭や高燃料比炭などの難燃性炭の着火
を促進する方法としては、1次空気温度を通常の80℃
よりも高温にすることも考えられるが、ミル内及びミル
からバーナまでの搬送途中で逆火や爆発の危険性が高く
なるので到底実用性がない。また、300℃〜350℃
に昇温された2次空気又は3次空気の一部を1次流路内
に混入させることも考えられるが、この場合にもバーナ
内での発火が問題になるし、C/A比(石炭重量/同伴
空気重量比)の低下に伴って着火性が低下するので、こ
のままでは難燃性炭の着火性の改善に大きな効果を期待
できない。さらに、現状の微粉炭バーナは、燃焼ガスの
低NOx化を図るためにバーナ近傍に還元領域を形成す
る構造になっているので炉出口での未燃分が高くなりや
すく、難燃性炭を燃焼すると、炉出口での未燃分がさら
に高くなるおそれがある。
As a method of accelerating the ignition of flame-retardant coal such as coarse coal or high-fuel-ratio coal, the primary air temperature is set to a normal 80 ° C.
Although it is conceivable to raise the temperature to a higher temperature, the risk of flashback or explosion in the mill and during the transportation from the mill to the burner increases, so that this is not practical at all. Also, 300 ° C to 350 ° C
It is conceivable to mix a part of the secondary air or the tertiary air whose temperature has been increased into the primary flow path. However, in this case as well, ignition in the burner becomes a problem, and the C / A ratio ( Since the ignitability decreases with a decrease in the weight ratio of coal / entrained air), a significant effect cannot be expected to improve the ignitability of the flame-retardant coal as it is. Furthermore, the current pulverized coal burner has a structure in which a reduction region is formed in the vicinity of the burner in order to reduce the NOx of the combustion gas. When burning, the unburned matter at the furnace outlet may be further increased.

【0011】本発明は、かかる事情に鑑みてなされたも
のであり、その目的は、粗粉炭や高燃料比炭などの難燃
性炭を燃料として用いた場合にも着火性が高く、かつN
x発生量及び未燃分発生量が少ない微粉炭燃焼バーナ
を提供することにある。
The present invention has been made in view of such circumstances, and has as its object to provide high ignitability even when flame-retardant coal such as coarse coal or high-fuel-ratio coal is used as a fuel, and N
An object of the present invention is to provide a pulverized coal combustion burner with a small amount of O x generation and a small amount of unburned components.

【0012】[0012]

【課題を解決するための手段】本発明は、前記の目的を
達成するため、微粉炭と搬送用空気との固気二相流が流
れる1次流路と、当該1次流路の外周に設けられた燃焼
用空気供給用の2次流路及び3次流路とを備えた微粉炭
燃焼バーナにおいて、バーナ内部に前記固気二相流と当
該固気二相流よりも高温でかつ400℃以下の高温空気
との混合部を設け、前記1次流路の内周の前記混合部よ
りも前記固気二相流の流れ方向に関して上流側に逆火防
止部を設けると共に、バーナ出口にブラフボディ型保炎
器を設けるという構成にした。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a primary flow path through which a solid-gas two-phase flow of pulverized coal and conveying air flows, and an outer periphery of the primary flow path. In a pulverized coal combustion burner provided with a secondary flow path and a tertiary flow path for supplying combustion air, the solid-gas two-phase flow and the temperature higher than the solid-gas two-phase flow and 400 ° C or lower, and a flashback prevention unit is provided on the inner periphery of the primary flow path on the upstream side with respect to the flow direction of the solid-gas two-phase flow from the mixing unit, and at the burner outlet. A bluff body type flame stabilizer was provided.

【0013】より具体的には、前記1次流路の出口を前
記2次流路の出口よりも前記固気二相流の流れ方向に関
して上流側に設定し、前記2次流路内で前記固気二相流
と前記高温空気である2次空気とを混合するという構成
にすることもできるし、又は前記1次流路の出口を前記
2次流路の出口とほぼ同一位置に設定すると共に、前記
1次流路内に前記固気二相流よりも高温でかつ400℃
以下の高温空気を流す高温空気流路を設け、当該高温空
気流路の先端を前記逆火防止部の最狭部よりも前記固気
二相流の流れ方向に関して後流側に配置し、前記1次流
路内で前記固気二相流と前記高温空気とを混合するとい
う構成にすることもできる。
More specifically, the outlet of the primary flow path is set upstream of the outlet of the secondary flow path in the flow direction of the solid-gas two-phase flow, and the outlet of the primary flow path is set in the secondary flow path. The solid-gas two-phase flow may be mixed with the secondary air that is the high-temperature air, or the outlet of the primary passage may be set at substantially the same position as the outlet of the secondary passage. And at a temperature higher than that of the solid-gas two-phase flow and 400 ° C. in the primary flow path.
A high-temperature air flow path for flowing the following high-temperature air is provided, and the tip of the high-temperature air flow path is disposed on the downstream side with respect to the flow direction of the solid-gas two-phase flow from the narrowest part of the flashback prevention unit, The solid-gas two-phase flow and the high-temperature air may be mixed in the primary flow path.

【0014】バーナ内部で固気二相流と高温空気とを混
合すると、固気二相流中の石炭粉が加熱され、石炭粉か
ら可燃性の揮発ガス成分が放出される。また、バーナ出
口にブラフボディ型保炎器を設けると、前記したように
その後流部分に再循環領域が形成され、軽い粒子やガス
が巻き込まれる。燃料として200メッシュ通過率が6
0〜70%前後の粗粉炭を用いた場合、30μm以下の
微粉炭が少ないために保炎器後流の再循環領域に巻き込
まれる微粉炭量は減少するが、微粉炭に代わって石炭粉
を加熱することによって放出された可燃性の揮発ガス成
分が再循環領域に巻き込まれるので、やはり再循環領域
に高温のガス体が形成され、保炎器の近傍を通過する未
着火の粗粉炭への着火保炎が促進される。高燃料比炭を
燃料として用いた場合にも、石炭粉の加熱を適切に行な
えば前記と同様に保炎器の後流に高温の再循環領域を形
成することができ、その着火性を高めることができる。
When the gas-solid two-phase flow and the high-temperature air are mixed inside the burner, the coal powder in the gas-solid two-phase flow is heated, and a flammable volatile gas component is released from the coal powder. If a bluff body type flame stabilizer is provided at the burner outlet, a recirculation region is formed in the downstream portion as described above, and light particles and gas are entrained. As a fuel, 200 mesh passage rate is 6
When about 0 to 70% coarse coal is used, the amount of pulverized coal that is entrained in the recirculation area downstream of the flame stabilizer decreases because the amount of pulverized coal less than 30 μm is small, but coal powder is used instead of pulverized coal. Since the combustible volatile gas components released by heating are entrained in the recirculation area, a high-temperature gas body is also formed in the recirculation area, and the unburned coarse pulverized coal passing near the flame stabilizer is removed. Ignition flame holding is promoted. Even when high-fuel-ratio coal is used as a fuel, a high-temperature recirculation region can be formed downstream of the flame stabilizer as described above if heating of the coal powder is performed properly, and the ignitability is increased. be able to.

【0015】なお、固気二相流を高温の2次空気等と接
触させるとバーナ内で発火しやすくなるが、1次流路の
内周の混合部よりも上流側にベンチュリや絞り等の小径
部を設けることによって逆火を防止することができる。
さらに、従来のバーナと同様に、1次空気のみで着火燃
焼している微粉炭流の周囲に2次空気及び3次空気を吹
き込むので、火炎中心部にNOx還元領域が形成され、
燃焼ガスの低NOx化と未燃分の減少とを図ることがで
きる。
When the solid-gas two-phase flow is brought into contact with high-temperature secondary air or the like, it is easy to ignite in the burner. However, a venturi or a throttle is located upstream of the mixing section on the inner periphery of the primary flow path. By providing the small diameter portion, flashback can be prevented.
Further, similar to the conventional burner, since the secondary air and the tertiary air are blown around the pulverized coal stream which is ignited and burnt only with the primary air, a NOx reduction region is formed in the flame center,
It is possible to reduce the NOx of the combustion gas and decrease the unburned portion.

【0016】前記構成の微粉炭燃焼バーナにおいては、
固気二相流と2次空気等との接触混合時間を調整可能と
し、炭種やその粒度に応じた最適の着火性を確保するた
め、1次流路又は高温空気流路をバーナ中心軸に沿って
前記固気二相流の流れ方向に関して上流側又は後流側に
移動できるように構成することもできる。即ち、請求項
2に記載の微粉炭バーナにおいて、1次流路の出口を固
気二相流及び燃焼用空気の流れ方向に関して上流側に移
動すると、固気二相流と2次空気との接触混合時間が長
くなるため、可燃性揮発ガスの放出が促進され、着火性
が改善される。反対に、1次流路の出口を固気二相流及
び燃焼用空気の流れ方向に関して後流側に移動すると、
固気二相流と2次空気との接触混合時間が短くなるた
め、可燃性揮発ガスの放出が抑制され、バーナ内での発
火が防止される。よって、炭種やその粒度に応じた着火
性の調整が可能となる。請求項3に記載の微粉炭バーナ
において、高温空気流路を移動した場合にも、これと同
様の効果が得られる。
[0016] In the pulverized coal combustion burner having the above configuration,
The primary flow path or high-temperature air flow path is connected to the burner center axis to adjust the contact and mixing time between the solid-gas two-phase flow and the secondary air, etc., and to ensure the optimal ignitability according to the type of coal and its particle size. Along the flow direction of the solid-gas two-phase flow. That is, in the pulverized coal burner according to claim 2, when the outlet of the primary flow path is moved to the upstream side with respect to the flow direction of the solid-gas two-phase flow and the air for combustion, the solid-gas two-phase flow and the secondary air The longer contact mixing time promotes the release of flammable volatile gases and improves ignitability. Conversely, when the outlet of the primary flow path is moved downstream with respect to the flow direction of the solid-gas two-phase flow and the combustion air,
Since the contact and mixing time between the solid-gas two-phase flow and the secondary air is shortened, the release of combustible volatile gas is suppressed, and ignition in the burner is prevented. Therefore, it is possible to adjust the ignitability according to the type of coal and its particle size. In the pulverized coal burner according to the third aspect, the same effect can be obtained when the hot air flow path is moved.

【0017】また、前記構成の微粉炭燃焼バーナにおい
ては、前記混合部の後流部分に微粉炭濃縮器を設けるこ
ともできる。このようにすると、高温空気の導入に伴う
固気二相流中のC/A比の低下を微粉炭濃縮器による濃
縮によって補うことができるので、十分な着火性の改善
を図ることができる。即ち、例えば1次空気比(1次空
気量の理論燃焼空気量に対する比)が0.2、2次空気
比(2次空気量の理論燃焼空気量に対する比)が0.
1、C/A比が0.4で運転されている微粉炭燃焼バー
ナにおいて、1次流路にて供給される固気二相流を2次
流路中に導入すると、C/A比が2/3に希釈される。
しかし、2次流路内に微粉炭濃縮器を設けるとC/A比
が1.5倍に濃縮されるので、結局、保炎器近傍での局
所C/A比を固気二相流と2次空気とを混合させない場
合とほぼ同程度に保つことができ、微粉炭が高温の2次
空気によって加熱される分だけ着火性が良好になる。
Further, in the pulverized coal combustion burner having the above configuration, a pulverized coal concentrator may be provided in a downstream portion of the mixing section. With this configuration, the decrease in the C / A ratio in the solid-gas two-phase flow due to the introduction of the high-temperature air can be compensated for by the concentration by the pulverized coal concentrator, so that the ignitability can be sufficiently improved. That is, for example, the primary air ratio (the ratio of the primary air amount to the theoretical combustion air amount) is 0.2, and the secondary air ratio (the ratio of the secondary air amount to the theoretical combustion air amount) is 0.2.
1. In a pulverized coal combustion burner operated at a C / A ratio of 0.4, when the solid-gas two-phase flow supplied in the primary passage is introduced into the secondary passage, the C / A ratio becomes Dilute 2/3.
However, if a pulverized coal concentrator is provided in the secondary flow path, the C / A ratio will be concentrated 1.5 times, so that the local C / A ratio near the flame stabilizer will eventually be reduced to the solid-gas two-phase flow. It can be maintained at substantially the same level as in the case where it is not mixed with the secondary air, and the ignitability is improved as much as the pulverized coal is heated by the high-temperature secondary air.

【0018】また、前記構成の微粉炭燃焼バーナにおい
ては、バーナ出口に設けられるブラフボディ型保炎器
を、固気二相流の外周部分の流れを遮る外周保炎器と内
周部分の流れを遮る内周保炎器とから構成することもで
きる。かかる構成によると、保炎器設定部の後流部分に
より有効に再循環領域を形成することができるので、難
燃性炭の着火性をさらに良好なものにすることができ
る。この場合、外周保炎器と内周保炎器とは連結部材を
介して連結することができ、連結部材としては、熱応力
や振動応力を吸収して各保炎器の破壊を防止するため、
V字金具又はU字金具などを用いることが好ましい。ま
た、固気二相流と高温空気との混合部の後流側には、高
温空気と混合された固気二相流を整流するための整流用
円筒を設けることが好ましい。混合部の後流側に整流用
円筒が設けられる場合、内周保炎器は当該整流用円筒の
バーナ出口側に取り付けることができる。
In the pulverized coal combustion burner having the above-described structure, the bluff body type flame stabilizer provided at the burner outlet is provided with an outer flame stabilizer which interrupts the flow of the outer peripheral portion of the solid-gas two-phase flow and a flow of the inner peripheral portion. And an inner flame stabilizer that blocks the heat. According to such a configuration, the recirculation region can be effectively formed by the downstream portion of the flame stabilizer setting section, so that the ignitability of the flame-retardant coal can be further improved. In this case, the outer flame stabilizer and the inner flame stabilizer can be connected via a connecting member, and the connecting member absorbs thermal stress and vibration stress to prevent the destruction of each flame stabilizer.
It is preferable to use a V-shaped fitting or a U-shaped fitting. Further, it is preferable to provide a rectifying cylinder for rectifying the solid-gas two-phase flow mixed with the high-temperature air on the downstream side of the mixing portion of the solid-gas two-phase flow and the high-temperature air. When a rectifying cylinder is provided on the downstream side of the mixing section, the inner peripheral flame stabilizer can be attached to the burner outlet side of the rectifying cylinder.

【0019】さらに、前記構成の微粉炭燃焼バーナにお
いては、微粉炭製造装置と前記1次流路とをつなぐ管路
に微粉炭濃縮器を設けて微粉炭と搬送用空気の固気二相
流を固体燃料分が多い濃縮流と固体燃料分が少ない希薄
流とに分離すると共に、前記1次流路内に希薄流搬送流
路を設け、前記微粉炭濃縮器にて分離された濃縮流を前
記1次流路に導き、前記微粉炭濃縮器にて分離された希
薄流を前記希薄流搬送流路に導いて、バーナ出口から火
炉内に噴出させることもできる。このようにすると、1
次流路を流れる固気二相流のC/A比を高めることがで
きるので、燃料の着火性をより一層改善することができ
る。
Further, in the pulverized coal combustion burner having the above-described configuration, a pulverized coal concentrator is provided in a pipe connecting the pulverized coal production apparatus and the primary flow path, and a solid-gas two-phase flow of pulverized coal and carrier air is provided. Is separated into a concentrated stream having a large amount of solid fuel and a lean stream having a small amount of solid fuel, and a lean stream conveying passage is provided in the primary passage, and the concentrated stream separated by the pulverized coal concentrator is separated from the concentrated stream. The dilute stream separated by the pulverized coal concentrator may be guided to the primary flow path, guided to the dilute flow transfer flow path, and ejected from the burner outlet into the furnace. In this case, 1
Since the C / A ratio of the solid-gas two-phase flow flowing through the next flow path can be increased, the ignitability of the fuel can be further improved.

【0020】[0020]

【発明の実施の形態】本発明に係る微粉炭燃焼バーナの
実施形態例を説明するに先立ち、まず当該バーナが使用
される微粉炭焚きボイラの燃焼系統を図14に基づいて
説明する。バンカ101に貯蔵された石炭は、ボイラ火
炉102の負荷に応じて石炭フィーダ103からミル1
04に送られ、ミル104で粉砕されて微粉炭となる。
生成された微粉炭は、ミル104に付設された図示しな
い分級機によって分級され、所定粒度以下の微粉炭のみ
が搬送用空気にて搬送され、ボイラ火炉102の炉壁に
取り付けられた微粉炭バーナ105の1次流路に供給さ
れる。微粉炭搬送用空気は、PAF(Primary Air Fan
)106で加圧され、熱交換器107で所定温度(約
80℃)まで昇温された後に、ミル104に送られる。
一方、燃焼用空気は、FDF(Force Draft Fan )10
8から熱交換器109に送り込まれ、約350℃に加熱
された後、ボイラ火炉102の炉壁に設けられた風箱1
10に入り、微粉炭バーナ105の2次流路及び3次流
路に供給される。ボイラ火炉102で発生した燃焼ガス
は、煙道111を通って最終的には大気中に放出される
が、その一部はGRF(Gas Recirculation Fan )11
2によって抜き出され、ボイラ火炉102に付設された
GR投入ダクト113に戻される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to describing an embodiment of a pulverized coal combustion burner according to the present invention, first, a combustion system of a pulverized coal fired boiler using the burner will be described with reference to FIG. The coal stored in the bunker 101 is supplied from the coal feeder 103 to the mill 1 according to the load of the boiler furnace 102.
04 and pulverized by a mill 104 to form pulverized coal.
The generated pulverized coal is classified by a classifier (not shown) attached to the mill 104, and only the pulverized coal having a predetermined particle size or less is conveyed by air for conveyance, and the pulverized coal burner attached to the furnace wall of the boiler furnace 102. 105 is supplied to the primary flow path. The air for pulverized coal transportation is PAF (Primary Air Fan)
) And pressurized to a predetermined temperature (about 80 ° C.) by the heat exchanger 107 and then sent to the mill 104.
On the other hand, the combustion air is FDF (Force Draft Fan) 10
8 to a heat exchanger 109 and heated to about 350 ° C., and then a wind box 1 provided on the furnace wall of the boiler furnace 102.
10 and is supplied to the secondary flow path and the tertiary flow path of the pulverized coal burner 105. The combustion gas generated in the boiler furnace 102 is finally released into the atmosphere through a flue 111, and a part of the combustion gas is discharged into a GRF (Gas Recirculation Fan) 11.
2 and is returned to the GR input duct 113 attached to the boiler furnace 102.

【0021】以下、本発明に係る微粉炭バーナの第1の
実施形態例を、図1〜図10に基づいて説明する。これ
らの図において、11は微粉炭と搬送用空気との固気二
相流が流れる1次流路、12は燃焼用空気を供給するた
めの2次流路、13は同じく燃焼用空気を供給するため
の3次流路、14は重油ノズル、15は逆火防止用のベ
ンチュリ、16は2次空気の旋回器、17は3次空気の
旋回器、18は3次空気の調整器、19は微粉炭濃縮
器、20はバーナ出口に備えられたブラフボディ型の外
周保炎器(保炎リング)、21はブラフボディ型の内周
保炎器、22は外周保炎器20と内周保炎器21とを連
結する連結部材、23は内周保炎器21が取り付けられ
る整流用円筒、24は内周保炎器21又は整流用円筒2
3を支持する支持部材、25は高温空気流路を示してい
る。
Hereinafter, a first embodiment of a pulverized coal burner according to the present invention will be described with reference to FIGS. In these figures, 11 is a primary flow path through which a solid-gas two-phase flow of pulverized coal and carrier air flows, 12 is a secondary flow path for supplying combustion air, and 13 is a supply of combustion air. A fuel oil nozzle, 15 a venturi for preventing flashback, 16 a secondary air swirler, 17 a tertiary air swirler, 18 a tertiary air regulator, 19 Is a pulverized coal concentrator, 20 is a bluff body type outer flame stabilizer (flame holding ring) provided at the burner outlet, 21 is a bluff body type inner flame stabilizer, 22 is an outer flame stabilizer 20 and an inner flame stabilizer 21 23 is a rectifying cylinder to which the inner peripheral flame stabilizer 21 is attached, and 24 is an inner peripheral flame stabilizer 21 or the rectifying cylinder 2.
Reference numeral 25 denotes a supporting member for supporting the high-temperature air flow path 3.

【0022】図1の微粉炭燃焼バーナは、重油ノズル1
4の外周に、1次流路11と2次流路12と3次流路1
3とを同心に配置してなる。1次流路11の出口は、2
次流路12の出口よりも固気二相流の流れ方向Aに関し
て上流側に設定され、その先端部内周には、逆火防止用
のベンチュリ15が設けられている。この1次流路11
は、バーナ中心軸X−Xに沿って固気二相流の流れ方向
Aの上流側B又は後流側Cに移動できるようになってい
る。補助燃料供給管14の外周のベンチュリ移動範囲よ
りも後流側には、微粉炭濃縮器19が取り付けられる。
また、当該補助燃料供給管14の先端部外周には、支持
部材24を介して内周保炎器21が設けられる。一方、
2次流路12の出口の内周保炎器21と対向する部分に
は、外周保炎器20が取り付けられる。さらに、3次流
路13には3次空気の旋回器17が備えられる。
The pulverized coal combustion burner shown in FIG.
4, a primary flow path 11, a secondary flow path 12, and a tertiary flow path 1
3 is arranged concentrically. The outlet of the primary flow path 11 is 2
A venturi 15 for preventing flashback is provided on the inner periphery of the tip of the next flow path 12 at an upstream side with respect to the flow direction A of the solid-gas two-phase flow from the outlet of the next flow path 12. This primary flow path 11
Can move to the upstream side B or the downstream side C in the flow direction A of the solid-gas two-phase flow along the burner center axis XX. A pulverized coal concentrator 19 is mounted on the outer periphery of the auxiliary fuel supply pipe 14 downstream of the Venturi movement range.
An inner flame stabilizer 21 is provided on the outer periphery of the distal end portion of the auxiliary fuel supply pipe 14 via a support member 24. on the other hand,
An outer flame stabilizer 20 is attached to a portion of the outlet of the secondary flow path 12 which faces the inner flame stabilizer 21. Further, a tertiary air swirler 17 is provided in the tertiary flow path 13.

【0023】1次流路11に供給された微粉炭と搬送用
空気の固気二相流は、ベンチュリ15を通過した後、2
次流路12内に入り、2次空気と混合される。混合され
た固気二相流は、微粉炭濃縮器19によって濃縮され、
外周保炎器20及び内周保炎器21を通って2次流路1
2の出口よりボイラ火炉内に噴射され、燃焼される。ま
た、旋回器17によって旋回された3次空気が、3次流
路13の出口から燃焼している微粉炭流の周囲に吹き込
まれる。
After passing through the venturi 15, the solid-gas two-phase flow of the pulverized coal and the conveying air supplied to the primary flow path 11
It enters the next flow path 12 and is mixed with the secondary air. The mixed solid-gas two-phase stream is concentrated by the pulverized coal concentrator 19,
Secondary flow path 1 through outer flame stabilizer 20 and inner flame stabilizer 21
The fuel is injected into the boiler furnace from the outlet of No. 2 and burned. The tertiary air swirled by the swirler 17 is blown from the outlet of the tertiary flow path 13 around the burning pulverized coal stream.

【0024】前記したように、2次空気はボイラ火炉に
付設された熱交換器によって300℃〜350℃に加熱
されているので、高温の2次空気と接触した微粉炭は昇
温し、可燃性の揮発ガス成分を放出する。この揮発ガス
成分は、外周保炎器20及び内周保炎器21の後流部分
に形成される再循環領域に巻き込まれ、高温のガス体を
形成する。したがって、本例の微粉炭燃焼バーナによれ
ば、燃料として200メッシュ通過率が60〜70%前
後の粗粉炭や高燃料比炭などの難燃性炭を用いた場合に
も燃料の着火性を良好に保つことができ、高い広域負荷
特性を実現することができる。
As described above, since the secondary air is heated to 300 ° C. to 350 ° C. by the heat exchanger attached to the boiler furnace, the pulverized coal contacted with the high-temperature secondary air rises in temperature and becomes flammable. Release volatile volatile gas components. This volatile gas component is caught in the recirculation area formed in the downstream part of the outer flame stabilizer 20 and the inner flame stabilizer 21 to form a high-temperature gas body. Therefore, according to the pulverized coal combustion burner of this example, even when flame retardant coal such as coarse coal or high-fuel-ratio coal having a 200 mesh passage rate of around 60 to 70% is used as the fuel, the ignitability of the fuel is improved. It is possible to keep good, and to realize high wide-area load characteristics.

【0025】また、本例の微粉炭燃焼バーナは、1次流
路11をバーナ中心軸X−Xに沿って固気二相流の流れ
方向Aの上流側B又は後流側Cに移動できるように構成
したので、1次流路11の設定位置を調整することによ
って燃料の着火性を適宜調節することができ、広範な炭
種や粒度に対応することができる。例えば、難燃性炭を
燃料として用いた場合には、微粉炭燃焼バーナを上流側
Bに移動することによって固気二相流と2次空気との接
触混合時間を長くでき、揮発ガス成分の発生を促進でき
るので、着火性の向上が図られる。また、一旦着火燃焼
が開始した後は高温の2次空気と混合されているので、
3次旋回流が混ざり込むまでの微粉炭の燃焼量が多くな
り、火炉出口における未燃分を減少することができる。
反対に、良燃性炭を燃料として用いた場合には、微粉炭
燃焼バーナを後流側Cに移動することによって固気二相
流と2次空気との接触混合時間を短くでき、揮発ガス成
分の発生を抑制できるので、バーナ内での発火を防止で
きる。
In the pulverized coal combustion burner of this embodiment, the primary flow path 11 can be moved along the burner center axis XX to the upstream side B or the downstream side C in the flow direction A of the solid-gas two-phase flow. With such a configuration, the ignitability of the fuel can be appropriately adjusted by adjusting the set position of the primary flow path 11, and it is possible to cope with a wide range of coal types and particle sizes. For example, when flame-retardant coal is used as the fuel, the contact mixing time between the solid-gas two-phase flow and the secondary air can be extended by moving the pulverized coal combustion burner to the upstream side B, and the volatile gas component Since generation can be promoted, ignitability is improved. In addition, once ignition combustion starts, it is mixed with high-temperature secondary air,
The amount of pulverized coal burned before the tertiary swirling flow is mixed increases, and the unburned portion at the furnace outlet can be reduced.
On the other hand, when the flammable coal is used as fuel, the contact mixing time between the solid-gas two-phase flow and the secondary air can be reduced by moving the pulverized coal combustion burner to the downstream side C, and the volatile gas Since the generation of components can be suppressed, ignition in the burner can be prevented.

【0026】図2に、バーナ出口から火炉出口に至るま
での各部における本発明に係る微粉炭燃焼バーナの未燃
焼率を、バーナ内で固気二相流と2次空気とを接触混合
させない従来の微粉炭燃焼バーナとの比較において示
す。この図から明らかなように、本発明に係る微粉炭燃
焼バーナは、バーナ近傍燃焼域における燃焼率が従来の
バーナよりも高く、しかもバーナ近傍燃焼域が従来のバ
ーナよりも拡大するため、最終的にバーナ出口における
未燃焼率が従来バーナよりも低くなる。
FIG. 2 shows the unburned rate of the pulverized coal combustion burner according to the present invention in each part from the burner outlet to the furnace outlet, in which the solid-gas two-phase flow and the secondary air are not contact-mixed in the burner. In comparison with pulverized coal combustion burners. As is clear from this figure, the pulverized coal combustion burner according to the present invention has a higher combustion rate in the combustion area near the burner than the conventional burner, and the combustion area near the burner is larger than the conventional burner. In addition, the unburned rate at the burner outlet becomes lower than that of the conventional burner.

【0027】図3に、燃料である微粉炭の粒度(200
メッシュ通過率)とバーナ出口における未燃焼率との関
係を示す。この図から明らかなように、従来の微粉炭燃
焼バーナは、200メッシュ通過率が約80%の微粉炭
を用いなくてはバーナ出口における未燃焼率を5%にす
ることができないが、本発明に係る微粉炭燃焼バーナに
よれば、200メッシュ通過率が約60%の微粉炭を用
いることによってバーナ出口における未燃焼率を5%に
することができる。
FIG. 3 shows the particle size (200
The relationship between the mesh passage rate) and the unburned rate at the burner outlet is shown. As is clear from this figure, the conventional pulverized coal combustion burner cannot reduce the unburned rate at the burner outlet to 5% without using pulverized coal having a 200 mesh passage rate of about 80%. According to the pulverized coal combustion burner according to the above, the unburned rate at the burner outlet can be reduced to 5% by using the pulverized coal having a 200 mesh passage rate of about 60%.

【0028】なお、固気二相流を2次空気と混合させる
と、固気二相流のC/A比が低下するが、本例の微粉炭
燃焼バーナは、重油ノズル14の外周のベンチュリ15
の移動範囲よりも後流側に微粉炭濃縮器19を設けたの
で、2次空気の導入に伴う固気二相流中のC/A比の低
下を微粉炭濃縮器19による濃縮によって補うことがで
き、しかも微粉炭を高温の2次空気によって予熱するこ
とができるので、燃料として前記のような難燃性炭を用
いた場合にも、十分な着火性の改善を実現できる。ま
た、固気二相流を高温の2次空気と接触させるとバーナ
内で発火しやすくなるが、本例の微粉炭燃焼バーナは、
1次流路1の出口内周にベンチュリ15を設けたので、
逆火を防止することができる。
When the gas-solid two-phase flow is mixed with the secondary air, the C / A ratio of the gas-solid two-phase flow is reduced. However, the pulverized coal combustion burner of this embodiment has a venturi around the heavy oil nozzle 14. Fifteen
Since the pulverized coal concentrator 19 is provided on the downstream side of the moving range, the decrease in the C / A ratio in the solid-gas two-phase flow accompanying the introduction of the secondary air is compensated by the pulverized coal concentrator 19. In addition, pulverized coal can be preheated by high-temperature secondary air, so that sufficient ignitability can be realized even when the above-described flame-retardant coal is used as a fuel. In addition, when the solid-gas two-phase flow is brought into contact with the high-temperature secondary air, it becomes easy to ignite in the burner.
Since the venturi 15 is provided on the inner circumference of the outlet of the primary flow path 1,
Flashback can be prevented.

【0029】なお、本実施形態例に係る微粉炭燃焼バー
ナは、バーナ内で固気二相流と高温の2次空気とを接触
混合させることを特徴とするものであって、その他の部
分については必要に応じて適宜他の構成にすることもで
きる。以下に、本実施形態例に係る微粉炭燃焼バーナの
変形例を列挙する。
The pulverized coal combustion burner according to this embodiment is characterized in that a solid-gas two-phase flow and high-temperature secondary air are contact-mixed in the burner. Can have another configuration as needed. Hereinafter, modified examples of the pulverized coal combustion burner according to the present embodiment will be listed.

【0030】図1の微粉炭燃焼バーナにおいては、バ
ーナ出口に外周保炎器20と内周保炎器21とを備えた
が、図4に示すように内周保炎器21を省略し、外周保
炎器20のみを備えることもできる。
In the pulverized coal combustion burner shown in FIG. 1, an outer flame stabilizer 20 and an inner flame stabilizer 21 are provided at the burner outlet, but the inner flame stabilizer 21 is omitted as shown in FIG. Only 20 may be provided.

【0031】図1の微粉炭燃焼バーナにおいては、1
次流路1の後流側に微粉炭濃縮器19を備えたが、図5
に示すように微粉炭濃縮器19を省略することもでき
る。
In the pulverized coal combustion burner of FIG.
A pulverized coal concentrator 19 is provided on the downstream side of the next flow path 1,
The pulverized coal concentrator 19 can be omitted as shown in FIG.

【0032】図1の微粉炭燃焼バーナにおいては、バ
ーナ出口に外周保炎器20及び内周保炎器21を備える
と共に、1次流路11の後流側に微粉炭濃縮器19を備
えたが、図6に示すように内周保炎器21及び微粉炭濃
縮器19の両方を省略することもできる。
In the pulverized coal combustion burner of FIG. 1, an outer flame stabilizer 20 and an inner flame stabilizer 21 are provided at the burner outlet, and a pulverized coal concentrator 19 is provided on the downstream side of the primary flow path 11. As shown in FIG. 6, both the inner flame stabilizer 21 and the pulverized coal concentrator 19 may be omitted.

【0033】図1の微粉炭燃焼バーナにおいては、逆
火防止手段としてベンチュリ15を1次流路11の出口
内周に備えたが、図7に示すように1次流路11を構成
する管路の出口11aを絞り、他の部分よりも小径にす
ることによっても同様の逆火防止効果を得ることができ
る。
In the pulverized coal combustion burner shown in FIG. 1, a venturi 15 is provided on the inner periphery of the outlet of the primary flow path 11 as a means for preventing flashback, but a pipe constituting the primary flow path 11 as shown in FIG. The same flashback prevention effect can be obtained by narrowing the exit 11a of the road and making it smaller in diameter than the other parts.

【0034】図1の微粉炭燃焼バーナにおいては、内
周保炎器21を支持部材24を介して直接重油ノズル1
4の先端部外周に取り付け、しかも外周保炎器20と内
周保炎器21とを無連結で配置したが、図8に示すよう
に重油ノズル4の先端部に支持部材24を介して固気二
相流を整流するための整流用円筒23を取り付け、当該
整流用円筒23のバーナ出口側に内周保炎器21を取り
付けると共に、外周保炎器20と内周保炎器21とを連
結部材22によって連結することもできる。連結部材2
2としては、熱応力や振動応力を吸収して保炎器20,
21の破壊を防止するため、V字形に曲折されたV字金
具やU字形に曲折されたU字金具などを用いることが好
ましい。かかる構成は、図9に示すように微粉炭濃縮器
19を省略した場合にも応用できるし、また、図10に
示すように1次流路11の出口11aに逆火防止用の絞
りを形成した場合にも応用できる。
In the pulverized coal combustion burner shown in FIG. 1, the inner flame holder 21 is directly connected to the heavy oil nozzle 1 via the support member 24.
4, the outer flame stabilizer 20 and the inner flame stabilizer 21 are arranged without connection. However, as shown in FIG. A rectifying cylinder 23 for rectifying the phase flow is attached, an inner flame stabilizer 21 is attached to a burner outlet side of the rectifying cylinder 23, and the outer flame stabilizer 20 and the inner flame stabilizer 21 are connected by a connecting member 22. You can also. Connecting member 2
2, the flame stabilizer 20 absorbs thermal stress and vibration stress,
It is preferable to use a V-shaped fitting bent in a V-shape, a U-shaped fitting bent in a U-shape, or the like in order to prevent the breakage of 21. Such a configuration can be applied to a case where the pulverized coal concentrator 19 is omitted as shown in FIG. 9, and a throttle for preventing flashback is formed at the outlet 11a of the primary flow path 11 as shown in FIG. It can also be applied to the case.

【0035】以下、本発明に係る微粉炭バーナの第2実
施形態例を、図11に基づいて説明する。
Hereinafter, a second embodiment of the pulverized coal burner according to the present invention will be described with reference to FIG.

【0036】本例の微粉炭燃焼バーナは、図11
(a),(b)に示すように、1次流路11の出口を2
次流路12の出口とほぼ同一位置に設定すると共に、1
次流路11内に固気二相流よりも高温でかつ400℃以
下の高温空気を流す高温空気流路25を内挿したことを
特徴とする。当該高温空気流路25の先端は1次流路1
1に設けられたベンチュリ15の最狭部よりも固気二相
流の流れ方向Aに関して後流側に配置され、1次流路1
1内で固気二相流と高温空気とを混合する。また、高温
空気流路25は、バーナ中心軸X−Xに沿って、固気二
相流の流れ方向Aに関して上流側B又は後流側Cに移動
できるように構成される。その他の部分については図1
に示した第1実施形態例に係る微粉炭燃焼バーナと同じ
であるので、対応する部分に同一の符号を表示して説明
を省略する。
The pulverized coal combustion burner of this embodiment is shown in FIG.
As shown in (a) and (b), the outlet of the primary flow path 11 is
At the same position as the outlet of the next flow path 12,
A high-temperature air flow path 25 through which high-temperature air having a temperature higher than that of the solid-gas two-phase flow and 400 ° C. or less is inserted in the next flow path 11. The tip of the high-temperature air channel 25 is the primary channel 1
1 is located on the downstream side of the narrowest portion of the venturi 15 in the flow direction A of the solid-gas two-phase flow,
In 1, a gas-solid two-phase flow and hot air are mixed. Further, the high-temperature air flow path 25 is configured to be able to move to the upstream side B or the downstream side C with respect to the flow direction A of the solid-gas two-phase flow along the burner center axis XX. Fig. 1 for other parts
Since the burner is the same as the pulverized coal combustion burner according to the first embodiment shown in FIG.

【0037】本例の微粉炭燃焼バーナは、バーナ内で固
気二相流と2次空気と同温度の高温空気とを混合すると
共に、バーナ出口にブラフボディ型の保炎器20,21
を備え、高温空気流路25をバーナ中心軸X−Xに沿っ
て移動できるようにし、さらには1次流路11の内部の
高温空気吹き出し部よりも上流側には逆火防止用のベン
チュリ15を備えたので、第1実施形態例に係る微粉炭
燃焼バーナと同様の効果を発揮することができる。
The pulverized coal combustion burner of the present embodiment mixes a solid-gas two-phase flow with secondary air and high-temperature air having the same temperature in the burner, and has a bluff body type flame stabilizer 20, 21 at the burner outlet.
So that the high-temperature air flow path 25 can be moved along the burner center axis XX. Further, a venturi 15 for preventing flashback is located upstream of the high-temperature air blowing portion inside the primary flow path 11. Therefore, the same effect as the pulverized coal combustion burner according to the first embodiment can be exerted.

【0038】なお、本実施形態例に係る微粉炭燃焼バー
ナは、バーナ内で固気二相流と2次空気と同温度の高温
空気とを接触混合させることを特徴とするものであっ
て、その他の部分については、図4〜図10に示した第
1実施形態例に係る微粉炭燃焼バーナの他の構成例と同
様に、適宜他の構成にすることができる。
The pulverized coal combustion burner according to this embodiment is characterized in that a solid-gas two-phase flow, secondary air and high-temperature air at the same temperature are contact-mixed in the burner. The other parts can be appropriately changed in configuration similarly to other configuration examples of the pulverized coal combustion burner according to the first embodiment shown in FIGS. 4 to 10.

【0039】次に、本発明に係る微粉炭バーナの第3実
施形態例を、図12に基づいて説明する。
Next, a third embodiment of the pulverized coal burner according to the present invention will be described with reference to FIG.

【0040】本例の微粉炭燃焼バーナは、図12に示す
ように、図示しない微粉炭製造装置と1次流路11とを
つなぐ管路31に微粉炭と搬送用空気の固気二相流を固
体燃料分が多い濃縮流と固体燃料分が少ない希薄流とに
分離する微粉炭濃縮器32を設けると共に、バーナ中心
に当該微粉炭濃縮器32によって分離された希薄流を導
く希薄流搬送流路33を設けたことを特徴とする。微粉
炭濃縮器32にて分離された濃縮流は1次流路11に導
かれ、バーナ内で2次空気と接触混合される。一方、前
記微粉炭濃縮器32にて分離された希薄流は、希薄流搬
送流路33に導かれ、バーナ中心から火炉内に噴出され
る。その他の部分については図1に示した第1実施形態
例に係る微粉炭燃焼バーナと同じであるので、対応する
部分に同一の符号を表示して説明を省略する。
As shown in FIG. 12, the pulverized coal combustion burner according to the present embodiment has a solid-gas two-phase flow of pulverized coal and conveying air in a pipe 31 connecting a pulverized coal production apparatus (not shown) and the primary flow path 11. Is provided with a pulverized coal concentrator 32 for separating the concentrated stream having a large amount of solid fuel and a lean stream having a small amount of solid fuel. A feature is that a road 33 is provided. The concentrated stream separated by the pulverized coal concentrator 32 is led to the primary flow path 11, and is contact-mixed with secondary air in the burner. On the other hand, the dilute stream separated by the pulverized coal concentrator 32 is guided to the dilute flow transfer channel 33 and is jetted into the furnace from the center of the burner. Other parts are the same as those of the pulverized coal combustion burner according to the first embodiment shown in FIG. 1, and corresponding parts are denoted by the same reference numerals and description thereof is omitted.

【0041】本例の微粉炭燃焼バーナは、第1実施形態
例に係る微粉炭燃焼バーナと同様の効果を発揮できるほ
か、微粉炭製造装置と1次流路11とをつなぐ管路31
に微粉炭濃縮器32を設け、当該微粉炭濃縮器32にて
分離された濃縮流を1次流路11に導くようにしたの
で、2次空気と混合することによる固気二相流中のC/
A比の低下を微粉炭濃縮器22による濃縮によって補う
ことができ、より一層良好な着火性を実現することがで
きる。
The pulverized coal combustion burner of the present embodiment can exhibit the same effects as the pulverized coal combustion burner according to the first embodiment, and also has a pipe 31 connecting the pulverized coal production apparatus and the primary flow path 11.
Is provided with a pulverized coal concentrator 32, and the concentrated stream separated by the pulverized coal concentrator 32 is guided to the primary flow path 11, so that the pulverized coal is mixed with the secondary air in the solid-gas two-phase flow. C /
The decrease in the A ratio can be compensated for by the concentration by the pulverized coal concentrator 22, and more excellent ignitability can be realized.

【0042】なお、本実施形態例に係る微粉炭燃焼バー
ナは、図示しない微粉炭製造装置と1次流路11とをつ
なぐ管路31に微粉炭濃縮器32を設け、当該微粉炭濃
縮器32にて分離された濃縮流を1次流路11に導くこ
とを特徴とするものであって、その他の部分について
は、図4〜図10に示した第1実施形態例に係る微粉炭
燃焼バーナの他の構成例と同様に、適宜他の構成にする
ことができる。また、図12においては、固気二相流と
2次空気とを接触混合させる場合のみについて図示した
が、上記第2実施形態例のように、高温空気を固気二相
流中に噴出させるタイプの微粉炭燃焼バーナにも応用で
きることは勿論である。
The pulverized coal combustion burner according to this embodiment is provided with a pulverized coal concentrator 32 in a pipe 31 connecting the pulverized coal production device (not shown) and the primary flow path 11. The concentrated stream separated in the above is led to the primary flow path 11, and the other parts are the pulverized coal combustion burners according to the first embodiment shown in FIGS. Similar to the other configuration examples, other configurations can be appropriately adopted. FIG. 12 shows only the case where the solid-gas two-phase flow and the secondary air are contact-mixed, but high-temperature air is jetted into the solid-gas two-phase flow as in the second embodiment. Of course, it can also be applied to pulverized coal combustion burners of the type.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
バーナ内部で1次流路より供給される固気二相流と高温
空気とを混合させて固気二相流中の石炭粉から可燃性の
揮発ガス成分を放出させ、当該可燃性の揮発ガスをバー
ナ出口に設けられたブラフボディ型保炎器の後流部分に
形成される再循環領域に巻き込んで燃焼するようにした
ので、保炎器の近傍を通過する未着火の粗粉炭への着火
保炎が促進され、燃料として200メッシュ通過率が6
0〜70%前後の粗粉炭や高燃料比炭等の難燃性炭を燃
料として用いた場合にもその着火性が高められる。ま
た、固気二相流を高温の2次空気と接触させるとバーナ
内で発火しやすくなるが、1次流路の出口内周にベンチ
ュリや絞り等の小径部を設けたので、逆火を防止するこ
とができる。
As described above, according to the present invention,
Mixing the solid-gas two-phase flow supplied from the primary flow path with the high-temperature air inside the burner to release flammable volatile gas components from the coal powder in the solid-gas two-phase flow, Ignited into the non-ignited coarse coal passing through the vicinity of the flame stabilizer because it was drawn into the recirculation area formed in the downstream part of the bluff body flame stabilizer provided at the burner outlet. Flame holding is promoted, and 200 mesh penetration rate as fuel is 6
Even when flame-retardant coal such as roughly 0-70% coarse coal or high-fuel-ratio coal is used as a fuel, its ignitability is enhanced. In addition, when the gas-solid two-phase flow is brought into contact with high-temperature secondary air, it is easy to ignite in the burner. However, since a small-diameter portion such as a venturi or a throttle is provided on the inner circumference of the outlet of the primary flow path, flashback occurs. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態例に係る微粉炭燃焼バーナの構成
図である。
FIG. 1 is a configuration diagram of a pulverized coal combustion burner according to a first embodiment.

【図2】本発明の効果を示すグラフ図である。FIG. 2 is a graph showing the effect of the present invention.

【図3】本発明の効果を示すグラフ図である。FIG. 3 is a graph showing the effect of the present invention.

【図4】内周保炎器が省略された第1実施形態例に係る
微粉炭燃焼バーナの構成図である。
FIG. 4 is a configuration diagram of a pulverized coal combustion burner according to the first embodiment in which an inner peripheral flame stabilizer is omitted.

【図5】微粉炭濃縮器が省略された第1実施形態例に係
る微粉炭燃焼バーナの構成図である。
FIG. 5 is a configuration diagram of a pulverized coal combustion burner according to the first embodiment in which the pulverized coal concentrator is omitted.

【図6】内周保炎器及び微粉炭濃縮器が省略された第1
実施形態例に係る微粉炭燃焼バーナの構成図である。
FIG. 6 is a first view in which the inner flame stabilizer and the pulverized coal concentrator are omitted.
It is a lineblock diagram of a pulverized coal combustion burner concerning an example of an embodiment.

【図7】1次流路に逆火防止用の絞りが設けられた第1
実施形態例に係る微粉炭燃焼バーナの構成図である。
FIG. 7 shows a first example in which a throttle for preventing flashback is provided in the primary flow path.
It is a lineblock diagram of a pulverized coal combustion burner concerning an example of an embodiment.

【図8】1次流路に整流用円筒が設けられ、かつ外周保
炎器と内周保炎器とが連結部材にて連結された第1実施
形態例に係る微粉炭燃焼バーナの構成図である。
FIG. 8 is a configuration diagram of a pulverized coal combustion burner according to a first embodiment in which a rectifying cylinder is provided in a primary flow path, and an outer flame stabilizer and an inner flame stabilizer are connected by a connecting member. .

【図9】整流用円筒を有する第1実施形態例に係る微粉
炭燃焼バーナの他の例を示す構成図である。
FIG. 9 is a configuration diagram showing another example of the pulverized coal combustion burner according to the first embodiment having a rectifying cylinder.

【図10】整流用円筒を有する第1実施形態例に係る微
粉炭燃焼バーナのさらに他の例を示す構成図である。
FIG. 10 is a configuration diagram showing still another example of the pulverized coal combustion burner according to the first embodiment having a rectifying cylinder.

【図11】第2実施形態例に係る微粉炭燃焼バーナの構
成図である。
FIG. 11 is a configuration diagram of a pulverized coal combustion burner according to a second embodiment.

【図12】第3実施形態例に係る微粉炭燃焼バーナの構
成図である。
FIG. 12 is a configuration diagram of a pulverized coal combustion burner according to a third embodiment.

【図13】従来例に係る微粉炭燃焼バーナの構成図であ
る。
FIG. 13 is a configuration diagram of a pulverized coal combustion burner according to a conventional example.

【図14】微粉炭焚きボイラの燃焼系統図である。FIG. 14 is a combustion system diagram of a pulverized coal-fired boiler.

【符号の説明】[Explanation of symbols]

11 1次流路 11a 絞り 12 2次流路 13 3次流路 14 重油ノズル 15 ベンチュリ 16 2次空気の旋回器 17 3次空気の旋回器 18 3次空気の調整器 19 微粉炭濃縮器 20 外周保炎器 21 内周保炎器 22 連結部材 23 整流用円筒 44 支持部材 25 高温空気流路 31 管路 32 微粉炭濃縮器 33 希薄流搬送流路 DESCRIPTION OF SYMBOLS 11 Primary flow path 11a Restrictor 12 Secondary flow path 13 Tertiary flow path 14 Heavy oil nozzle 15 Venturi 16 Secondary air swirler 17 Tertiary air swirler 18 Tertiary air regulator 19 Pulverized coal concentrator 20 Outer periphery Flame Holder 21 Inner Perimeter Flame Holder 22 Connecting Member 23 Rectifying Cylinder 44 Support Member 25 Hot Air Flow Path 31 Pipe Line 32 Pulverized Coal Concentrator 33 Lean Flow Transport Flow Path

フロントページの続き (72)発明者 宝山 登 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 森 三紀 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 小林 啓信 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立研究所内Continued on the front page (72) Inventor Noboru Takayama 3-36 Takaracho, Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Laboratory Co., Ltd. (72) Inventor Miki 3-36 Takaramachi Town, Kure City Hiroshima Prefecture Bubcock Hitachi Kure Laboratory Co., Ltd. (72) Inventor Shunichi Tsumura 6-9 Takara-cho, Kure-shi, Hiroshima Babcock-Hitachi Inside the Kure Plant (72) Inventor Hironobu Kobayashi 3-1-1, Sachimachi, Hitachi-shi, Hitachi, Ibaraki Hitachi, Ltd. Inside

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭と搬送用空気との固気二相流が流
れる1次流路と、当該1次流路の外周に設けられた燃焼
用空気供給用の2次流路及び3次流路とを備えた微粉炭
燃焼バーナにおいて、バーナ内部に前記固気二相流と当
該固気二相流よりも高温でかつ400℃以下の高温空気
との混合部を設け、前記1次流路の内周の前記混合部よ
りも前記固気二相流の流れ方向に関して上流側に逆火防
止部を設けると共に、バーナ出口にブラフボディ型保炎
器を設けたことを特徴とする微粉炭燃焼バーナ。
1. A primary flow path through which a solid-gas two-phase flow of pulverized coal and transport air flows, and a secondary flow path and a tertiary flow path provided on an outer periphery of the primary flow path for supplying combustion air. A pulverized coal combustion burner provided with a flow path, wherein a mixing section of the solid-gas two-phase flow and a high-temperature air having a temperature higher than the solid-gas two-phase flow and 400 ° C. or less is provided inside the burner; Pulverized coal characterized in that a flashback prevention unit is provided upstream of the mixing unit on the inner periphery of the passage with respect to the flow direction of the solid-gas two-phase flow, and a bluff body type flame stabilizer is provided at the burner outlet. Burning burner.
【請求項2】 請求項1に記載の微粉炭燃焼バーナにお
いて、前記1次流路の出口を前記2次流路の出口よりも
前記固気二相流の流れ方向に関して上流側に設定し、前
記2次流路内で前記固気二相流と前記高温空気である2
次空気とを混合することを特徴とする微粉炭燃焼バー
ナ。
2. The pulverized coal combustion burner according to claim 1, wherein an outlet of the primary passage is set upstream of an outlet of the secondary passage with respect to a flow direction of the solid-gas two-phase flow. The solid-gas two-phase flow and the high-temperature air in the secondary flow path;
A pulverized coal combustion burner characterized by mixing with secondary air.
【請求項3】 請求項1に記載の微粉炭燃焼バーナにお
いて、前記1次流路の出口を前記2次流路の出口とほぼ
同一位置に設定すると共に、前記1次流路内に前記固気
二相流よりも高温でかつ400℃以下の高温空気を流す
高温空気流路を設け、当該高温空気流路の先端を前記逆
火防止部の最狭部よりも前記固気二相流の流れ方向に関
して後流側に配置し、前記1次流路内で前記固気二相流
と前記高温空気とを混合することを特徴とする微粉炭燃
焼バーナ。
3. The pulverized coal combustion burner according to claim 1, wherein an outlet of the primary flow path is set at substantially the same position as an outlet of the secondary flow path, and the solid flow path is provided in the primary flow path. A high-temperature air flow path through which high-temperature air having a temperature higher than the gas two-phase flow and 400 ° C. or less is provided, and the tip of the high-temperature air flow path is formed by the solid-gas two-phase flow more than the narrowest part of the flashback prevention unit A pulverized coal combustion burner, which is disposed on the downstream side in the flow direction and mixes the solid-gas two-phase flow and the high-temperature air in the primary flow path.
【請求項4】 請求項2に記載の微粉炭燃焼バーナにお
いて、前記1次流路をバーナ中心軸に沿って前記固気二
相流の流れ方向に関して上流側又は後流側に移動できる
ようにしたことを特徴とする微粉炭燃焼バーナ。
4. The pulverized coal combustion burner according to claim 2, wherein the primary flow path can be moved upstream or downstream with respect to a flow direction of the solid-gas two-phase flow along a burner center axis. A pulverized coal combustion burner characterized by the following.
【請求項5】 請求項3に記載の微粉炭燃焼バーナにお
いて、前記高温空気流路をバーナ中心軸に沿って前記固
気二相流の流れ方向に関して上流側又は後流側に移動で
きるようにしたことを特徴とする微粉炭燃焼バーナ。
5. The pulverized coal combustion burner according to claim 3, wherein the hot air flow path can be moved upstream or downstream with respect to the flow direction of the solid-gas two-phase flow along a burner center axis. A pulverized coal combustion burner characterized by the following.
【請求項6】 請求項1に記載の微粉炭燃焼バーナにお
いて、前記混合部の後流部分に微粉炭濃縮器を設けたこ
とを特徴とする微粉炭燃焼バーナ。
6. The pulverized coal combustion burner according to claim 1, further comprising a pulverized coal concentrator provided downstream of the mixing section.
【請求項7】 請求項1に記載の微粉炭燃焼バーナにお
いて、前記ブラフボディ型保炎器を、固気二相流の外周
部分の流れを遮る外周保炎器と内周部分の流れを遮る内
周保炎器とから構成したことを特徴とする微粉炭燃焼バ
ーナ。
7. The pulverized coal combustion burner according to claim 1, wherein the bluff body type flame stabilizer interrupts a flow of an outer peripheral flame stabilizer and an inner peripheral portion of a solid-gas two-phase flow. A pulverized coal burning burner comprising an inner flame stabilizer.
【請求項8】 請求項7に記載の微粉炭燃焼バーナにお
いて、前記外周保炎器と前記内周保炎器とを、連結部材
を介して連結したことを特徴とする微粉炭燃焼バーナ。
8. The pulverized coal combustion burner according to claim 7, wherein the outer flame stabilizer and the inner flame stabilizer are connected via a connecting member.
【請求項9】 請求項1に記載の微粉炭燃焼バーナにお
いて、前記混合部の後流側に高温空気と混合された固気
二相流を整流するための整流用円筒を設け、当該整流用
円筒のバーナ出口側に内周保炎器を取り付けたことを特
徴とする微粉炭燃焼バーナ。
9. The pulverized coal combustion burner according to claim 1, wherein a rectifying cylinder for rectifying a solid-gas two-phase flow mixed with high-temperature air is provided downstream of the mixing section. A pulverized coal combustion burner characterized in that an inner flame stabilizer is attached to a cylindrical burner outlet side.
【請求項10】 請求項1に記載の微粉炭燃焼バーナに
おいて、微粉炭製造装置と前記1次流路とをつなぐ管路
に微粉炭濃縮器を設けて微粉炭と搬送用空気の固気二相
流を固体燃料分が多い濃縮流と固体燃料分が少ない希薄
流とに分離すると共に、前記1次流路内に希薄流搬送流
路を設け、前記微粉炭濃縮器にて分離された濃縮流を前
記1次流路に導き、前記微粉炭濃縮器にて分離された希
薄流を前記希薄流搬送流路に導いて、バーナ出口から火
炉内に噴出させることを特徴とする微粉炭燃焼バーナ。
10. The pulverized coal combustion burner according to claim 1, wherein a pulverized coal concentrator is provided in a pipe connecting the pulverized coal production apparatus and the primary flow path, and a pulverized coal and a conveying air are provided. The phase flow is separated into a concentrated flow having a large amount of solid fuel and a lean flow having a small amount of solid fuel, and a lean flow conveying flow path is provided in the primary flow path, and the concentrated flow separated by the pulverized coal concentrator is provided. A pulverized coal combustion burner, wherein a stream is guided to the primary flow path, and a dilute flow separated by the pulverized coal concentrator is guided to the dilute flow transfer flow path, and is injected into a furnace from a burner outlet. .
JP19777896A 1996-07-26 1996-07-26 Pulverized coal combustion burner Expired - Fee Related JP3830582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19777896A JP3830582B2 (en) 1996-07-26 1996-07-26 Pulverized coal combustion burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19777896A JP3830582B2 (en) 1996-07-26 1996-07-26 Pulverized coal combustion burner

Publications (2)

Publication Number Publication Date
JPH1038217A true JPH1038217A (en) 1998-02-13
JP3830582B2 JP3830582B2 (en) 2006-10-04

Family

ID=16380200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19777896A Expired - Fee Related JP3830582B2 (en) 1996-07-26 1996-07-26 Pulverized coal combustion burner

Country Status (1)

Country Link
JP (1) JP3830582B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523013A (en) * 2008-05-28 2011-08-04 シーメンス エナジー インコーポレイテッド Fuel injector for low nitrogen oxide furnace
JP2015014451A (en) * 2014-09-11 2015-01-22 三菱日立パワーシステムズ株式会社 Fuel burner, solid fuel firing burner, and solid fuel firing boiler
KR101486690B1 (en) * 2011-04-01 2015-01-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Combustion burner, solid-fuel-fired burner, solid-fuel-fired boiler, boiler, and method for operating boiler
JP2015052450A (en) * 2014-12-18 2015-03-19 三菱重工業株式会社 Combustion burner
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
CN112963828A (en) * 2021-03-31 2021-06-15 煤科院节能技术有限公司 Pulverized coal oxygen-deficient gasification burner
CN114484436A (en) * 2022-01-27 2022-05-13 北京交通大学 Subsonic speed multicycle super mixing ultra-clean gas boiler in coordination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865463B (en) * 2010-06-21 2011-12-28 华南理工大学 Petroleum coke power combustor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523013A (en) * 2008-05-28 2011-08-04 シーメンス エナジー インコーポレイテッド Fuel injector for low nitrogen oxide furnace
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
KR101486690B1 (en) * 2011-04-01 2015-01-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Combustion burner, solid-fuel-fired burner, solid-fuel-fired boiler, boiler, and method for operating boiler
US9671108B2 (en) 2011-04-01 2017-06-06 Mitsubishi Heavy Industries, Ltd. Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
JP2015014451A (en) * 2014-09-11 2015-01-22 三菱日立パワーシステムズ株式会社 Fuel burner, solid fuel firing burner, and solid fuel firing boiler
JP2015052450A (en) * 2014-12-18 2015-03-19 三菱重工業株式会社 Combustion burner
CN112963828A (en) * 2021-03-31 2021-06-15 煤科院节能技术有限公司 Pulverized coal oxygen-deficient gasification burner
CN114484436A (en) * 2022-01-27 2022-05-13 北京交通大学 Subsonic speed multicycle super mixing ultra-clean gas boiler in coordination
CN114484436B (en) * 2022-01-27 2023-09-08 北京交通大学 Subsonic multi-cycle synergistic super-mixing ultra-clean gas boiler

Also Published As

Publication number Publication date
JP3830582B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP4969015B2 (en) Solid fuel burner and combustion method using solid fuel burner
US5685242A (en) Pulverized coal combustion burner
AU2011310173B2 (en) Combustion system and method for operating same
JPH05507140A (en) Collective concentric angular combustion system
US6244200B1 (en) Low NOx pulverized solid fuel combustion process and apparatus
JPH1038217A (en) Fine powdered coal combustion burner
JP2007101083A (en) Coal and wood combination combustion method, combination burner, and combination combustion facility
JPH11281010A (en) Solid fuel combustion burner and solid fuel combustor
JPH10220707A (en) Burner for powdery solid fuel and combustion apparatus therewith
JP3891958B2 (en) Combustion apparatus and method
JPH08135919A (en) Combustion device
JP2002115810A (en) LOW NOx SOLID FUEL COMBUSTION APPARATUS
JP2638040B2 (en) Pulverized coal combustion equipment
JPH10318504A (en) High capacity pulverized solid fuel burner
JP2954628B2 (en) Pulverized coal burner
JP3765429B2 (en) Pulverized coal burner
JP2954656B2 (en) Pulverized coal burner
JPH11148610A (en) Solid fuel combustion burner and solid fuel combustion apparatus
JP6804318B2 (en) Combustion burner and boiler equipped with it
JP2002048306A (en) Combustion burner and combustion device having the burner
JP2776575B2 (en) Pulverized coal combustion equipment
JP6925811B2 (en) Combustion burner, boiler equipped with it, and combustion method
JP5881584B2 (en) boiler
JPH0449449Y2 (en)
JP3518626B2 (en) Pulverized coal combustion equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060320

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Effective date: 20060602

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090721

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees