JPS60126508A - Finely powdered coal burning device - Google Patents

Finely powdered coal burning device

Info

Publication number
JPS60126508A
JPS60126508A JP23477483A JP23477483A JPS60126508A JP S60126508 A JPS60126508 A JP S60126508A JP 23477483 A JP23477483 A JP 23477483A JP 23477483 A JP23477483 A JP 23477483A JP S60126508 A JPS60126508 A JP S60126508A
Authority
JP
Japan
Prior art keywords
pulverized coal
burner
air
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23477483A
Other languages
Japanese (ja)
Other versions
JPH0627561B2 (en
Inventor
Shigeki Morita
茂樹 森田
Tadahisa Masai
政井 忠久
Toshio Uemura
俊雄 植村
Shigeto Nakashita
中下 成人
Fumio Koda
幸田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58234774A priority Critical patent/JPH0627561B2/en
Publication of JPS60126508A publication Critical patent/JPS60126508A/en
Publication of JPH0627561B2 publication Critical patent/JPH0627561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Abstract

PURPOSE:To avoid the increasing of unburnt content in a ash and reduce the NOx by a method wherein a finely powdered coal flow is formed arround an air flow, a flame holding member having a specific shape is provided at the top position where the both fluids are supplied. CONSTITUTION:An oxygen-containing gas supply pipe 30 and a cylindrical sleeve 20 are provided, and a finely powdered coal flow 21 is flowed along the outer side of the pipe 30. The pipe 30 and the sleeve 20 are arranged on the axis 104 of a burner throat 10. A flame holding member 50 formed to be smaller difference in diameter than that of the air supply pipe 30 is provided at the furnace side opening end of the air supply pipe 30. By the bluff-body effect due to the flame holding member 50, a finely powdered coal turbid flow (circulating flow) is generated where the finely powdered coal is ignited and the flame holding function is performed. Meanwhile, a generated gas content such as a carbon hydride gas and the like are partially ignited, thermally decomposed and oxidized by the air flow I , and changed to a mixed gas IIIhaving a high reactivity, then a high temperature reducing atmosphere is formed. The atmosphere is diffused with surrounding an exhaust gas 41, then gradually mixed with an oxidate such as a high temperature small quantity remaining oxygen and OH radical and the like, thus, a zone IV is formed. Further, the zone IV is contacted with a main burner burning gas, and mixed, then a NO contained in the burning gas is reduced to N2.

Description

【発明の詳細な説明】 本発明は、負粉炭の燃焼装置に係り、特に排ガス中の窒
素酸化物および灰中未燃分を低減するに好適なボイラ等
の燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device for negative pulverized coal, and particularly to a combustion device such as a boiler suitable for reducing nitrogen oxides in exhaust gas and unburned matter in ash.

昨今のエネルギ需給情勢の変動により、多量のエネルギ
源を必要とする火力発電設備等においては、多稽燃料に
対し互換性のある燃焼技術の開発が急務となっている。
Due to recent changes in the energy supply and demand situation, there is an urgent need to develop combustion technology that is compatible with common fuels in thermal power generation facilities that require large amounts of energy sources.

特に石炭の微粉砕物を燃焼させる所謂、微粉炭直接燃焼
設備においては、海外の多種多様なる銘柄炭に対応でき
る高効率無公害化燃焼技術が要求される。
In particular, in so-called pulverized coal direct combustion equipment that burns pulverized coal, high-efficiency, pollution-free combustion technology that can handle a wide variety of foreign brands of coal is required.

石炭中には、ガス、油に比較して多量の有機窒素化合物
が含有されており、このため、燃焼時にこの有機窒素化
合物の酸化によるNOア(所謂、FuelNox)の生
成が問題となる。
Coal contains a large amount of organic nitrogen compounds compared to gas and oil, and therefore, generation of NOx (so-called Fuel Nox) due to oxidation of the organic nitrogen compounds during combustion becomes a problem.

当初は、このNO工生成は非常に避は難いものであると
考えられていたが、近年の猪研究成果によればFuel
 NO,生成の抑制が可能であることが示唆されている
。すなわち、燃料中の窒素化合物(Fuel Nと記す
)は、次の酸化・還元過程を経てNO!上記の反応経路
は、酸素濃度、・息と勇の濃度比等に依存する。
Initially, it was thought that this NO fuel production was extremely inevitable, but recent boar research results show that fuel
It has been suggested that it is possible to suppress the production of NO. In other words, nitrogen compounds in fuel (denoted as Fuel N) undergo the following oxidation and reduction process to become NO! The above reaction route depends on the oxygen concentration, the concentration ratio of breath and energy, etc.

一方、微粉炭から所謂、揮発分として発生する炭化水素
ガスは、燃焼初期において反応性が強く、且つ短寿命の
炭化水素ラジカル(・HC)を経由する。この・Heは
上記と同様に、02まだはNOとも反志し、次の様な反
応経路をたどる。
On the other hand, hydrocarbon gas generated as so-called volatile matter from pulverized coal passes through highly reactive and short-lived hydrocarbon radicals (.HC) in the early stage of combustion. As described above, this .He also reacts with 02 and NO, and follows the following reaction path.

いずれも、NOの分解・還元過程には・XNが関与して
おシ、効率的なNOのN宜への還元は、ある程度の酸素
存在下で且つ極めて燃料過剰な低空気比((1)状態で
進行することが確められている。
In both cases, XN is involved in the NO decomposition/reduction process, and the efficient reduction of NO to NO is possible in the presence of a certain amount of oxygen and at a low air ratio ((1) It is confirmed that the condition will progress.

本発明者らは、上記の反応を利用すべく、主燃焼域後流
に極低空気比バーナを有し、且つその後流において完全
燃焼を行なう所謂、炉内脱硝燃焼法を開発した。近年、
この方法は種々の燃焼形式に応用されている。
In order to take advantage of the above reaction, the present inventors have developed a so-called in-furnace denitrification combustion method that has an extremely low air ratio burner downstream of the main combustion zone and performs complete combustion downstream of the main combustion zone. recent years,
This method has been applied to various types of combustion.

しかしながら、この方法は、ガス、油燃料については好
適に実施するととができるが、石炭については装置上、
種々の問題があることが分った。
However, although this method can be suitably implemented for gas and oil fuels, it is difficult to use coal due to equipment limitations.
It turned out that there were various problems.

これは、石炭粒子の燃焼は、本質的にガス、油燃焼と異
なっているという点に起因する。すなわち、石炭粒子は
、揮発分を放出した後、残った固体(チャーと呼ぶ)の
燃焼に移る。これが、全体としての燃焼時間を決定する
ことになる訳であるが、同一の石炭であっても、燃焼初
期の昇温の違いによって燃焼速度の異なるチャーが形成
されることが知られており、もし急速昇温過程を経ずに
チャーが形成された場合には、燃焼速度の遅いチャーを
含む未燃分が増大し、このため多大な燃焼時間を要する
ことになる。
This is due to the fact that combustion of coal particles is essentially different from combustion of gas or oil. That is, after the coal particles release their volatile content, they proceed to burn the remaining solids (called char). This determines the overall combustion time, but it is known that even with the same coal, chars with different combustion speeds are formed depending on the temperature rise at the initial stage of combustion. If char is formed without going through a rapid temperature increase process, the amount of unburned matter including char with a slow combustion rate will increase, and therefore a long combustion time will be required.

本発明の目的は、上記した従来技術の欠点をなくシ、灰
中未燃分の増大を回避し、且つNO工を低減できる微粉
炭燃焼装置を提供することにある。
An object of the present invention is to provide a pulverized coal combustion apparatus that can eliminate the drawbacks of the prior art described above, avoid an increase in unburned content in ash, and reduce NO emissions.

本発明の第1は、バーナ装置に係るもので、火炉側壁の
バーナスロート部に設けられた熱空気の噴出口と、該熱
空気噴出口に隣接して設けられた微粉炭気流の噴出口と
、該熱空気噴出口または/および微粉炭気流噴出口に設
けられたブラフボディ部材(例えばセラミック製)と、
該微粉炭気流噴出口の外側または外周に隣接して設けら
れた不活性気体ま−たは/および空気の噴出口とを備え
、前記ブラフボディ部材の後流に微粉炭流の再循環渦流
を形成して着火するとともに、その後流に高温の強還元
性雰囲気を形成するようにしたことを特徴とする。
The first aspect of the present invention relates to a burner device, which includes a hot air outlet provided in a burner throat portion of a side wall of the furnace, and a pulverized coal airflow outlet provided adjacent to the hot air outlet. , a bluff body member (e.g. made of ceramic) provided at the hot air outlet and/or the pulverized coal air stream outlet;
an inert gas or/and air jet port provided outside or adjacent to the outer periphery of the pulverized coal air flow jet port, and a recirculation vortex of the pulverized coal flow is provided downstream of the bluff body member. It is characterized in that it is formed and ignited, and a high temperature strongly reducing atmosphere is formed in its wake.

本発明の第2は、上記バーナ装置を脱硝バーナとして主
燃焼バーナの後流に設けたもので、火炉内のガス流れ方
向に沿って順次、主燃焼バーナ、低空気比バーナおよび
アフタエアポートを備え、該バーナに対応してそれぞれ
主燃焼域、脱硝燃焼域および完全燃焼域を形成する微粉
炭の燃焼装置において、核低空気比バーナ(脱硝バーナ
)として、上記特定のバーナ装置を用いたものである。
The second aspect of the present invention is that the burner device is installed downstream of the main combustion burner as a denitrification burner, and is equipped with a main combustion burner, a low air ratio burner, and an after air port in order along the gas flow direction in the furnace. , in a pulverized coal combustion device that forms a main combustion zone, a denitrification combustion zone, and a complete combustion zone, respectively, corresponding to the burner, the above-mentioned specific burner device is used as a nuclear low air ratio burner (denitration burner). be.

すなわち、主バーナに対応させて脱硝バーナを配置させ
る場合に、該脱硝バーナの中心軸近傍にエアを供給して
チャーの急速昇温を図り、かつ微粉炭流の外周側に排ガ
スを供給して脱硝バーナの部分燃焼ガスと主バーナ燃焼
ガスとの接触する領域の燃料過剰な低酸素状態を維持す
るようにしたものである。
That is, when a denitrification burner is arranged in correspondence with the main burner, air is supplied near the central axis of the denitrification burner to rapidly raise the temperature of the char, and exhaust gas is supplied to the outer peripheral side of the pulverized coal flow. This is designed to maintain a fuel-excess and low-oxygen condition in the area where the partially combusted gas of the denitrification burner and the main burner combusted gas come into contact.

本発明の典型的態様としては、微粉炭を燃焼するボイラ
等の火炉において、微粉炭を複数個のバーナに分配して
燃焼させる際に、 1)火炉内ガス流れに沿って、その最も後流側に配置さ
れたバーナの平均空気比を0.6以下と2)該バーナの
構造については、(■)その中心軸近傍より熱空気(2
00℃以上)を噴出せしめ、(II)該熱空気噴出口に
隣接して、環状もしくは層状に微粉炭気流を噴出せしめ
、(lIN)該微粉炭管または/および該熱空気供給管
の先端部にキャップ(マウスピース)またはそれに代わ
るブラフボディ効果部材を設置し、(4)該微粉炭管に
隣接してその周囲に環状または層状に燃焼排ガス等の高
温・不活性気体を噴出せしめる構造を設け、 3)該バーナの更に後流側に火炉全体として完全燃焼に
十分なる空気または空気および排ガスの混合気を投入す
ることによる3段燃焼方法が提示される。
In a typical embodiment of the present invention, in a furnace such as a boiler that burns pulverized coal, when pulverized coal is distributed to a plurality of burners and combusted, 1) along the gas flow in the furnace, the most downstream 2) Regarding the structure of the burner, the average air ratio of the burner placed on the side is 0.6 or less. (■) The hot air (2)
00°C or higher), (II) a pulverized coal airflow is ejected in an annular or layered manner adjacent to the hot air outlet, (lIN) the tip of the pulverized coal pipe or/and the hot air supply pipe; A cap (mouthpiece) or a bluff body effect member in place of it is installed in the pulverized coal pipe, and (4) a structure is provided adjacent to the pulverized coal pipe to blow out high-temperature, inert gas such as combustion exhaust gas around it in an annular or layered manner. , 3) A three-stage combustion method is proposed in which air or a mixture of air and exhaust gas sufficient for complete combustion in the entire furnace is introduced further downstream of the burner.

本発明において、ブラフボディ部材を設けない場合は、
微粉炭流の渦流が形成されないために、着火または保炎
性が不良となり、従ってチャー(石炭粒子)の急速昇温
過程が存在しないだめに、難燃性のチャーが形成され、
これによってアフタエア圧よる完全燃焼が困難となり、
灰中未燃分の増大を生じる。
In the present invention, when no bluff body member is provided,
Due to the lack of swirling of the pulverized coal flow, the ignition or flame holding properties are poor, and therefore, in the absence of a rapid heating process of the char (coal particles), a flame-retardant char is formed.
This makes it difficult to achieve complete combustion due to after-air pressure.
This results in an increase in unburned content in the ash.

なお、火炎内部に空気不足、その外周(外輪または外層
)に高空気比層を形成するノ(−すを脱硝バーナとして
使用した場合は、上流(炉上方)の主バーナからの燃焼
ガスと脱硝炎のミキシング部において、肝腎の還元性中
間生成物が脱硝炎の中心部に集ま9、その回りを高空気
比層が取り囲むために、主バーナ燃焼ガス中のNoをN
!に還元するに際して有効に作用し得ない。
Note that if a flame is used as a denitrification burner due to lack of air inside the flame and a high air ratio layer is formed around its outer periphery (outer ring or outer layer), the combustion gas from the main burner upstream (above the furnace) and the denitrification In the flame mixing section, the reducing intermediate products of the liver and kidneys gather at the center of the denitrification flame9, and are surrounded by a high air ratio layer.
! It cannot work effectively in reducing the

本発明は、事業用大容量火力発電用ボイラ火炉のように
1幅広い燃焼負荷帯に暖ってその高効率低NO,運用が
要求される燃焼装置に特に好適に用いられる。
The present invention is particularly suitable for use in combustion devices that require high efficiency, low NO, and operation over a wide range of combustion load bands, such as boiler furnaces for commercial large-capacity thermal power generation.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明に用いる脱硝用バーナの一実施例を示
す断面図である。このバーナ装置は、火炉60の側壁の
バーナスロー)10の中心軸104に設けられた酸素含
有気体(以下、空気で代表する)の供給管30と、その
外側に設けられた、微粉炭流21が通る筒状スリーブ2
0と、該スリーブ20とバーナスロート100間に設け
られた排ガス通路40およびこれと連通ずるウィンドボ
ックス40Aとからなり、空気供給管30の火炉側開口
端(空気流21と微粉炭流31の噴出接触部)には、該
2気供給管30よりも径小の段差を形成するような保炎
部材50が設けられている。
FIG. 1 is a sectional view showing one embodiment of a denitrification burner used in the present invention. This burner device consists of a supply pipe 30 for oxygen-containing gas (hereinafter referred to as air) provided on the central axis 104 of a burner throw 10 on the side wall of a furnace 60, and a pulverized coal flow 21 provided on the outside thereof. Cylindrical sleeve 2 through which
0, an exhaust gas passage 40 provided between the sleeve 20 and the burner throat 100, and a wind box 40A communicating with the exhaust gas passage 40. A flame stabilizing member 50 that forms a step having a diameter smaller than that of the two-gas supply pipe 30 is provided at the contact portion).

微粉炭流21は、微粉炭と搬送用の空気まだは/および
排ガスとからなる。
The pulverized coal flow 21 consists of pulverized coal, conveying air and/or exhaust gas.

近傍で、外側の筒状スリーブ20を通して供給される微
粉炭流21と接触し、保炎部材50によるブラフボディ
効果により、微粉炭の濁流(循環流)を生じ、この部分
で着火すると同時に、保炎機能を発揮する。微粉炭流2
1は、全体として、いわゆる予混合気であり、従って任
意の組成に対する火炎保持のための諸操作条件(例えば
噴出流速etc)は極めて限られているが、空気流31
と微粉炭流21の噴出接触部に保炎部材50を設置する
ことにより、前述の操作条件によらずに良好な早期着火
を得ることができる。
Nearby, it comes into contact with the pulverized coal flow 21 supplied through the outer cylindrical sleeve 20, and due to the bluff body effect of the flame stabilizing member 50, a turbid flow (circulating flow) of pulverized coal is generated, which is ignited in this area and at the same time Demonstrates flame function. Pulverized coal flow 2
1 is a so-called premixture as a whole, and therefore various operating conditions for maintaining a flame for a given composition (e.g., jet flow velocity, etc.) are extremely limited, but the air flow 31
By installing the flame stabilizing member 50 at the jetting contact portion of the pulverized coal flow 21 and the pulverized coal flow 21, good early ignition can be obtained regardless of the above-mentioned operating conditions.

一方、微粉炭から生成した炭化水素ガス等の揮発成分は
、空気流Iによシその一部分は着火、熱分解、部分酸化
を受け(部分酸化ゾーンをI■で示す)、反応性に富ん
だ混合気■となり、高温の還元雰囲気を形成し、これが
排ガス41に囲まれて拡散し、その中の少量の酸素、自
らが有する高温少量の残存酸素およびOHラジカル等の
酸化物質と徐々に混合しつつ(ゾーンIV ) 、さら
に主バーナ燃焼ガスと接触、混合し、該燃焼ガス中のN
OがN2に還元される。
On the other hand, volatile components such as hydrocarbon gas generated from pulverized coal are partially ignited, thermally decomposed, and partially oxidized by air flow I (the partial oxidation zone is indicated by I■), making them highly reactive. The mixture becomes a mixture ■, forming a high-temperature reducing atmosphere, which is surrounded by exhaust gas 41, diffuses, and gradually mixes with a small amount of oxygen therein, a small amount of high-temperature residual oxygen, and oxidizing substances such as OH radicals. (Zone IV), further contacts and mixes with the main burner combustion gas, and removes N in the combustion gas.
O is reduced to N2.

上記実施例において、保炎部材50の形状は、ブラフボ
ディ効果を有する(非線形物体の下流側に再循環渦を生
じる)ものであれば、図示したように空気供給管の先端
に段差部を介して筒状部を設けだもの以外に、皿状、キ
ャップ(マウスピース)状等の種々の形状としてもよい
。また排ガス44)+は、低酸素濃度(02が10 v
ol−以下、好ましくは6 vol以下)の気体であれ
ば他のガスでもよい。またバーナ構造としては、第1図
のような環状構造以外に、層状構造としてもよい。また
主バーナ燃焼ガスとの混合調整を容易にするために、排
ガス4@幅に旋回をかけるように、通路40にベーンな
どの旋回付与手段を設けることができる。なお、バーナ
スロー)10と微粉炭管20の間の通路40には排ガス
4←礒の代りに空気を供給し、通常燃焼を行うこともで
きる。
In the above embodiment, if the shape of the flame stabilizing member 50 has a bluff body effect (generating a recirculating vortex on the downstream side of a nonlinear object), the shape of the flame stabilizing member 50 may be such that a stepped portion is provided at the tip of the air supply pipe as shown in the figure. In addition to the cylindrical portion provided therein, various shapes such as a plate shape, a cap (mouthpiece) shape, etc. may be used. In addition, the exhaust gas 44)+ has a low oxygen concentration (02 is 10 v
Other gases may be used as long as they have a volume of 6 vol or less, preferably 6 vol or less. In addition to the annular structure shown in FIG. 1, the burner structure may be a layered structure. Further, in order to facilitate the adjustment of the mixture with the main burner combustion gas, a swirling means such as a vane may be provided in the passage 40 so as to swirl the exhaust gas 4@width. Note that normal combustion can also be performed by supplying air instead of the exhaust gas 4 to the passage 40 between the burner throw 10 and the pulverized coal pipe 20.

上記のバーナ装置によれば、空気供給−#I30の先端
に保炎部材50を設けたことにより、極低空気比でも微
粉炭流の着火を迅速かつ安定に行い、搬送流体41(例
えば排ガス)の条件等の影響を受けることなく、安定し
た着火、保炎が可能となる。また空気流310回シに微
粉炭流21を形成し、前記保炎部材の近傍でこれを早期
着火させることにより、高温の強還元性ラジカルを形成
することができ、さらKこの強還元性ラジカルを排ガス
により有効に散布させ、主燃焼排ガスのようなNOx含
有ガスと接触、反応させることにより、高い脱硝率を得
ることができる。さらに本発明のバーナは、微粉炭を早
期着火させることにより、極低空気比でも燃焼性の良好
なチャーが得られるため、NOx低減に際して灰中未燃
分の急増を防止することができる。このため、例えばボ
イラ火炉の高さを低くすることができ、装置のスペース
、設備費を軽減することができる。
According to the above burner device, by providing the flame stabilizing member 50 at the tip of the air supply #I30, the pulverized coal flow can be quickly and stably ignited even at an extremely low air ratio, and the carrier fluid 41 (e.g. exhaust gas) can be ignited quickly and stably. Stable ignition and flame holding are possible without being affected by conditions, etc. In addition, by forming a pulverized coal flow 21 in the air flow 310 times and igniting it early in the vicinity of the flame stabilizing member, high-temperature strong reducing radicals can be formed. A high denitrification rate can be obtained by effectively dispersing NOx in the exhaust gas and causing it to come into contact with and react with the NOx-containing gas such as the main combustion exhaust gas. Further, the burner of the present invention can obtain char with good combustibility even at an extremely low air ratio by early igniting pulverized coal, and therefore can prevent a rapid increase in unburned content in the ash when reducing NOx. Therefore, for example, the height of the boiler furnace can be lowered, and the space and equipment cost of the device can be reduced.

本発明のバーナは、主バーナの後流に設けられる脱硝用
バーナとして特に適しているが、勿論、通常燃焼用のバ
ーナとしてこのバーナを多段に配置し、後流にアフタエ
アポートを設けた燃焼装置として使用することも可能で
ある。
The burner of the present invention is particularly suitable as a denitrification burner installed downstream of the main burner, but it can also be used as a normal combustion burner in a combustion system in which this burner is arranged in multiple stages and an after air port is provided in the downstream. It is also possible to use it as

次に第2図は、本発明のバーナを脱硝用バーナとして主
バーナの後流に配置した燃焼装置dの一実施例を示す説
明図である。図において、火炉600対向する側壁には
、主燃焼バーナ(主バーナと称する)群71、脱硝バー
ナ群72およびアフタエアポート73が、ガス流の方向
に順次設けられている。
Next, FIG. 2 is an explanatory diagram showing an embodiment of a combustion apparatus d in which the burner of the present invention is used as a denitrification burner and is arranged downstream of the main burner. In the figure, a main combustion burner (referred to as main burner) group 71, a denitrification burner group 72, and an after air port 73 are sequentially provided on the opposing side walls of the furnace 600 in the direction of gas flow.

主バーナ71の空気比は、石炭の性質等によυ異なり、
1以上でも、1以下でもよいが、脱硝バーナ72の空気
比は、強還元雰囲気を形成する上から、主バーナの空気
比よりも小さく、かつ好ましくは06以下、特に好まし
くは0.3〜0.5である。アクタエアボート73の供
給空気量は、主バーナおよび脱硝バーナの未燃分を完全
燃焼させるのに充分な量であればよい(全体として空気
比1以上)。
The air ratio of the main burner 71 varies depending on the properties of the coal, etc.
The air ratio of the denitrification burner 72 may be 1 or more or 1 or less, but in order to form a strong reducing atmosphere, the air ratio of the denitrification burner 72 is smaller than that of the main burner, and is preferably 0.6 or less, particularly preferably 0.3 to 0. It is .5. The amount of air supplied to the acta air boat 73 may be sufficient as long as it is sufficient to completely burn the unburned content in the main burner and the denitrification burner (the air ratio as a whole is 1 or more).

また脱硝バーナ72の2次空気31と3次空気41の比
は2以上とすることが好ましい。また2次空気と3次空
気はそれぞれ旋回させて供給することが好ましく、この
場合、これらの旋回方向を逆にして供給する方がより好
ましい。
Further, it is preferable that the ratio of the secondary air 31 to the tertiary air 41 of the denitrification burner 72 is 2 or more. Further, it is preferable that the secondary air and the tertiary air be supplied while being swirled, and in this case, it is more preferable to supply them with their swirling directions reversed.

第3図は、第2図の燃焼装置に用いる主バーナ71の好
適例を示したもので、その詳細は特願昭58−1721
47号に記載されている。すなわチ、コノバーナは、バ
ーナスロート10の中心軸104に設けられた微粉炭管
141と、その外側に順次、環状通路150および12
0を形成するように設けられた筒状スリーブ142およ
び143と、前記環状通路120に設けられた二次空気
ダンパ221およびベーン171と、筒状スリーブ14
3とバーナスロート100間の通路130に設けられた
三次空気ダンパ231および三次エアレジスタ162と
からなり、微粉に管x4xの火炉側開口はその口径を開
口端に向って拡大するよう構成した外向き7レームキヤ
ツプ100となっている。またスリーブ142.143
もフレームキャップ100と同様に開口端に向って口径
を拡大させる漏斗状部101.102を形成している。
FIG. 3 shows a preferred example of the main burner 71 used in the combustion apparatus shown in FIG.
It is described in No. 47. In other words, the cono burner includes a pulverized coal pipe 141 provided on the central axis 104 of the burner throat 10, and annular passages 150 and 12 sequentially arranged outside the pulverized coal pipe 141.
0, the secondary air damper 221 and vane 171 provided in the annular passage 120, and the cylindrical sleeve 14.
3 and a tertiary air damper 231 and a tertiary air register 162 provided in the passage 130 between the burner throat 100, and the furnace side opening of the fine powder tube x4x is configured to expand its diameter toward the opening end. It has 7 frame caps and 100 frames. Also sleeve 142.143
Similarly to the frame cap 100, the frame cap 100 also has funnel-shaped portions 101 and 102 whose diameter increases toward the open end.

以上の構成のバーナにおいて、−次空気と微粉炭とから
成る微粉炭流21は、前述の第1図の場合とは逆に中央
部の微粉炭管141を経て炉内に噴射し燃焼するが、こ
の場合、微粉炭管141に対してはインペラは設置して
おらず、かつ微粉炭流はフレームキャップ100におい
て形成される小さな渦流103によって外側に拡散する
のを抑制され、ここで着火すると同時にバーナ軸心10
4を中心としてバーナ近傍に高温還元炎105を形成す
る。この高温還元炎の・NH2、・CN等のラジカルお
よびCO等の還元性中間生成物によってNOxがN2に
気相還元される。すなわち、フレームキャップによって
微粉炭の拡散を防止することにより、高温還元域を従来
型バーナに比較してバーナ先端に近づけることができ、
従来型のスリーブを用いて二次空気、三次空気を噴射し
てもこれら空気の混合点より上流側に高温還元域が形成
されるので、良好な気相還元を行なうことが可能となる
In the burner with the above configuration, the pulverized coal flow 21 consisting of secondary air and pulverized coal is injected into the furnace through the pulverized coal pipe 141 in the center and burned, contrary to the case shown in FIG. In this case, no impeller is installed in the pulverized coal pipe 141, and the pulverized coal flow is suppressed from spreading outward by the small vortex 103 formed in the frame cap 100, and at the same time it is ignited here. Burner axis 10
A high-temperature reduction flame 105 is formed near the burner with the flame 104 centered thereon. NOx is reduced to N2 in the gas phase by radicals such as .NH2 and .CN and reducing intermediate products such as CO in this high-temperature reducing flame. In other words, by preventing the diffusion of pulverized coal with the flame cap, the high-temperature reduction zone can be brought closer to the burner tip compared to conventional burners.
Even if secondary air and tertiary air are injected using a conventional sleeve, a high-temperature reduction region is formed upstream of the mixing point of these airs, making it possible to perform good gas phase reduction.

高温還元域の下流においては、二次空気をダンパ221
で調整し、ベーン171で旋回させ、また三次空気をダ
ンパ231およびエアレジスタ162で調整し、それぞ
れ前記高温還元炎105の周りに供−給することにより
、二次空気及び三次空気を高温還元炎105と分離して
供給することができる。この場合、三次空気130の圧
力は、例えばエアレジスタ162の上流側で120 m
植q以上で運転すると良好な結果が得られることが分り
、まだこの際三次空気と二次空気の風量は約4=1とす
ると効果的であることが確認された。
Downstream of the high-temperature reduction zone, secondary air is pumped through a damper 221.
The secondary air and the tertiary air are adjusted by the high-temperature reducing flame 105 and rotated by the vane 171, and the tertiary air is adjusted by the damper 231 and the air register 162 and supplied around the high-temperature reducing flame 105, respectively. It can be supplied separately from 105. In this case, the pressure of the tertiary air 130 is, for example, 120 m on the upstream side of the air register 162.
It has been found that good results can be obtained by operating the system at a temperature of 1.5 kg or more, and it has been confirmed that it is effective to set the air volume of tertiary air and secondary air to approximately 4=1.

以上のように、三次空気130は強力な旋回力と適切な
風量が維持され、バーナスロートにおいて二次空気12
01三次空気130共に広い角度で炉内に噴射されるの
で、前述の如く高温還元炎がバーナ先端近傍で形成され
ても、高温還元炎と二次または三次空気の混合はバーナ
先端付近では僅かであり、このため良好な気相還元を行
なうことができる。一方、この高温還元炎の下流側にお
いては二次空気、三次空気の噴射エネルギーも低下しバ
ーナ軸心104側に流れ込み、未燃分の燃焼が行なわれ
る。
As described above, the tertiary air 130 maintains a strong swirling force and appropriate air volume, and the secondary air 130 at the burner throat
Since both the 01 tertiary air 130 and the tertiary air 130 are injected into the furnace at a wide angle, even if a high-temperature reducing flame is formed near the burner tip as described above, the mixing of the high-temperature reducing flame and secondary or tertiary air is slight near the burner tip. Therefore, good gas phase reduction can be performed. On the other hand, on the downstream side of this high-temperature reducing flame, the injection energy of secondary air and tertiary air also decreases and flows toward the burner axis 104, where unburned air is combusted.

まだ、少量の二次空気120を、三次空気130とは異
なる旋回強度または旋回方向で噴出させることにより、
図中Aで示される如き固定された循環渦を形成させるこ
とが出来ることも実験により確認された。この循環渦A
の存在により、最外周空気(この実施例では三次空気B
)は、この循環渦のまわりで一旦微粉炭流21とは極め
て効果的に分離され、しかもこの渦の存在のために、そ
の後流では微粉炭流により形成した高温還元炎105の
後流との混合を改善することができる。なお燃焼炉出口
ガスを再循環させた排ガス通路150は、微粉炭流と二
次空気の空間的分離のために有効であるが必ずし本多量
の排ガスを必要とするものではない。
Still, by blowing out a small amount of secondary air 120 with a swirling strength or swirling direction different from that of tertiary air 130,
It has also been confirmed through experiments that a fixed circulating vortex as shown by A in the figure can be formed. This circulating vortex A
Due to the presence of the outermost air (in this example, tertiary air B
) is once separated from the pulverized coal flow 21 very effectively around this circulating vortex, and due to the existence of this vortex, the downstream part is separated from the high temperature reducing flame 105 formed by the pulverized coal flow. Mixing can be improved. Note that the exhaust gas passage 150 that recirculates the combustion furnace outlet gas is effective for spatially separating the pulverized coal flow and the secondary air, but does not necessarily require this large amount of exhaust gas.

第2図における主バーナ71は上述のような特徴を有す
るが、この主バーナと同一のバーナを脱硝用バーナ72
として用いると、主バーナでは第3図に示すように、バ
ーナの中心軸に微粉炭流が供給され、その回りを空気オ
だは排ガスで覆うように燃焼火炎が形成されるので、高
温の強還元性ラジカルが生成しても、空気層が介在する
ためにすぐに酸化されてしまい、主バーナのNO,含有
燃焼ガスがこのラジカルと直接接触せず、脱硝用バーナ
としては不光分なものとなる。
The main burner 71 in FIG.
When used as a main burner, as shown in Figure 3, the pulverized coal flow is supplied to the central axis of the burner, and a combustion flame is formed surrounding it with air or exhaust gas. Even if reducing radicals are generated, they are quickly oxidized due to the presence of an air layer, and the combustion gas containing NO in the main burner does not come into direct contact with these radicals, making it a non-light-emitting burner for use as a denitrification burner. Become.

すると(第2図)、この脱硝バーナではバーナ中心軸に
空気が供給され、その回シに微粉炭が供給され、早期に
着火して強還元ラジカルを生成するので、前述の場合と
は逆に中心軸の空気流の回りを覆うように強還元性ラジ
カルが生成し、このラジカルを含む排ガスが直接、主バ
ーナからの燃焼ガスと接触するので、充分な脱硝を行う
ことができる。
Then (Figure 2), in this denitrification burner, air is supplied to the burner center shaft, and pulverized coal is supplied to the burner, which ignites early and generates strong reducing radicals, which is the opposite of the case described above. Strongly reducing radicals are generated so as to surround the air flow around the central axis, and the exhaust gas containing these radicals comes into direct contact with the combustion gas from the main burner, so that sufficient denitration can be achieved.

以上、本発明によれば、極低空気比でも微粉炭流の着火
を迅速かつ安全に行い、火炎検知器の誤動作等による爆
発の危険をなくすとともに、空気流の回シに微粉炭流を
形成し、保炎部材の近傍でこれを早期着火させることに
より、高温の強還元性ラジカルを形成することができ、
さらにこの強還元性ラジカルを排ガスによシ有効に散布
させ、主燃焼排ガスのようなNO,含有ガスと接触、反
応させることにより、高い脱硝率を得ることができる。
As described above, according to the present invention, the pulverized coal flow can be quickly and safely ignited even at extremely low air ratios, the danger of explosion due to flame detector malfunction etc. can be eliminated, and the pulverized coal flow can be formed in the air flow conduit. However, by igniting it early near the flame-holding member, high-temperature strongly reducing radicals can be formed.
Furthermore, a high denitrification rate can be obtained by effectively dispersing these strong reducing radicals into the exhaust gas, and causing them to come into contact with and react with NO and other gases contained in the main combustion exhaust gas.

さらに微粉炭の早期着火により、極低空気比でも燃焼性
の良好なチャーが得られるため、NO工低域に際して灰
中未燃分の急増を防止することができる。またこのバー
ナを三段燃焼装置の脱硝用バーナとして使用することに
より、主バーナの脱硝機能を補完し、さらに高い脱硝率
を得ることができる。
Furthermore, early ignition of pulverized coal allows char with good combustibility to be obtained even at extremely low air ratios, making it possible to prevent a rapid increase in unburned content in the ash in the low range of NO operation. Furthermore, by using this burner as a denitrification burner in a three-stage combustion device, it is possible to supplement the denitrification function of the main burner and obtain an even higher denitrification rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いるバーナ装置の一実施例を示す
断面図、第2図は、本発明の微粉炭燃焼装置の一実施例
を示す説明図、第3図は、第2図の装置に用いる主バー
ナの構成例を示す断面図である。 10・・・バーナスロート、20・・・微粉炭管、21
・・・微粉炭流、30・・・空気供給管、31・・・空
気流、40・・・排ガス流録、40A−・・排ガス、4
1・・・排ガス流、50・・・ブラフボディ部材(保炎
部材)、60・・・ボイラ火炉、71・・・主バーナ群
、72・・・脱硝バーナ群、73・・・アフタエアポー
ト。 第3図 ンz1 ン51
FIG. 1 is a sectional view showing an embodiment of the burner device used in the present invention, FIG. 2 is an explanatory diagram showing an embodiment of the pulverized coal combustion device of the present invention, and FIG. It is a sectional view showing an example of composition of a main burner used in an apparatus. 10... burner throat, 20... pulverized coal pipe, 21
...Pulverized coal flow, 30...Air supply pipe, 31...Air flow, 40...Exhaust gas flow record, 40A-...Exhaust gas, 4
DESCRIPTION OF SYMBOLS 1... Exhaust gas flow, 50... Bluff body member (flame holding member), 60... Boiler furnace, 71... Main burner group, 72... Denitrification burner group, 73... After air port. Figure 3 Nz1 N51

Claims (2)

【特許請求の範囲】[Claims] (1)火炉側壁のバーナスロート部に設けられた熱空気
の噴出口と、該熱空気噴出口に隣接して設けられた微粉
炭気流の噴出口と、該熱空気噴出口または/および微粉
炭気流噴出口に設けられたブラフボディ部材と、該微粉
炭気流噴出口の外側または外周に隣接して設けられた不
活性気体または/および空気の噴出口とを備え、前記ブ
ラフボディ部材の後流に微粉炭流の再循環渦流を形成し
て着火するとともに、その後流に高温の強還元性雰囲気
を形成するようにしたことを特徴とする微粉炭の燃焼装
置。
(1) A hot air nozzle provided in the burner throat portion of the furnace side wall, a pulverized coal airflow nozzle provided adjacent to the hot air nozzle, and the hot air nozzle or/and the pulverized coal. A bluff body member provided at the airflow jetting port, and an inert gas or/and air jetting port provided outside or adjacent to the outer periphery of the pulverized coal airflow jetting port, A pulverized coal combustion device characterized in that a pulverized coal flow is ignited by forming a recirculating vortex at the pulverized coal flow, and a high temperature strongly reducing atmosphere is formed in its wake.
(2)火炉内のガス流れ方向に沿って順次、主燃焼バー
ナ、低空気比バーナおよびアフタエアポートを備え、該
バーナに対応してそれぞれ主燃焼域、脱硝燃焼域および
完全燃焼域を形成する微粉炭の燃焼装置において、前記
低空気比バーナは、熱空気の噴出口と、該熱空気噴出口
に隣接して設けられた微粉炭気流の噴出口と、該熱空気
噴出口または/および微粉炭気流噴出口に設けら、れた
ブラフボディ部材と、該微粉炭気流噴出口の外側または
外周に隣接して設けられた不活性気体または/および空
気の噴出口とを備え、前記ブラフボディ部材の後流に微
粉炭流の再循環渦流を形成して着火するとともに、その
後流に高温の強還元性雰囲気を形成する本のであること
を特徴とする微粉炭の燃焼装置。
(2) The furnace is equipped with a main combustion burner, a low air ratio burner, and an after air port in sequence along the gas flow direction, and forms a main combustion zone, a denitrification combustion zone, and a complete combustion zone, respectively, corresponding to the burners. In the charcoal combustion apparatus, the low air ratio burner includes a hot air jet port, a pulverized coal airflow jet port provided adjacent to the hot air jet port, and a pulverized coal air flow jet port provided adjacent to the hot air jet port and/or the pulverized coal jet port. a bluff body member provided at the airflow outlet; and an inert gas or/and air outlet provided outside or adjacent to the outer periphery of the pulverized coal airflow outlet; A pulverized coal combustion device characterized in that it forms a recirculating vortex of a pulverized coal flow in its wake, ignites it, and forms a high-temperature, strongly reducing atmosphere in its wake.
JP58234774A 1983-12-13 1983-12-13 Pulverized coal combustion equipment Expired - Lifetime JPH0627561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234774A JPH0627561B2 (en) 1983-12-13 1983-12-13 Pulverized coal combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234774A JPH0627561B2 (en) 1983-12-13 1983-12-13 Pulverized coal combustion equipment

Publications (2)

Publication Number Publication Date
JPS60126508A true JPS60126508A (en) 1985-07-06
JPH0627561B2 JPH0627561B2 (en) 1994-04-13

Family

ID=16976153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234774A Expired - Lifetime JPH0627561B2 (en) 1983-12-13 1983-12-13 Pulverized coal combustion equipment

Country Status (1)

Country Link
JP (1) JPH0627561B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390766A1 (en) * 1989-03-28 1990-10-03 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif A method of injecting an auxiliary fuel into a blast furnace
CN101871643A (en) * 2010-07-15 2010-10-27 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN101871644A (en) * 2010-07-17 2010-10-27 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN101871642A (en) * 2010-07-12 2010-10-27 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN101881442A (en) * 2010-07-19 2010-11-10 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
JP2012122653A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Combustion burner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881443A (en) * 2010-07-21 2010-11-10 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN106352325B (en) * 2016-10-28 2018-09-21 华中科技大学 A kind of multiplex control system of grate furnace nitrogen oxide emission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165909U (en) * 1981-04-10 1982-10-19
JPS5843313A (en) * 1981-09-10 1983-03-14 Mitsubishi Heavy Ind Ltd Burner for pulverized coal
JPS58175339U (en) * 1982-05-14 1983-11-24 住友金属工業株式会社 Burner device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165909U (en) * 1981-04-10 1982-10-19
JPS5843313A (en) * 1981-09-10 1983-03-14 Mitsubishi Heavy Ind Ltd Burner for pulverized coal
JPS58175339U (en) * 1982-05-14 1983-11-24 住友金属工業株式会社 Burner device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390766A1 (en) * 1989-03-28 1990-10-03 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif A method of injecting an auxiliary fuel into a blast furnace
CN101871642A (en) * 2010-07-12 2010-10-27 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN101871643A (en) * 2010-07-15 2010-10-27 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN101871644A (en) * 2010-07-17 2010-10-27 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
CN101881442A (en) * 2010-07-19 2010-11-10 山西蓝天环保设备有限公司 Fuel-free gas igniting and combustion stabilizing method for industrial coal powder boiler
JP2012122653A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Combustion burner

Also Published As

Publication number Publication date
JPH0627561B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPH0754162B2 (en) Burner for low NOx combustion
TW457353B (en) A combustion burner of fine coal powder, and a combustion apparatus of fine coal powder
CA2509631C (en) Process and apparatus for oxygen enrichment in fuel conveying gases
JP2791029B2 (en) Pulverized coal burner
GB2043871A (en) Burner
JPS60126508A (en) Finely powdered coal burning device
JP2870675B2 (en) How to operate the pyrolytic combustion zone
JP3680659B2 (en) Combustion apparatus and combustion method
JPH06272818A (en) Cyclone combustion method and device
KR20210034334A (en) A Low-NOx combustor capable of internal recirculation of flue gas by using venturi effect through improvement of burner structure
JPH0555763B2 (en)
JPH0323804B2 (en)
JPH09126412A (en) Low nox boiler
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPS6078207A (en) Low nox type burner
JP2565620B2 (en) Combustion method of pulverized coal
JPS58102006A (en) Low nox pulverized coal burner
JPS59115904A (en) Combustion of pulverized coal
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion
JPS58145810A (en) Combustion of coal
JPS6089607A (en) Nox reduction type combustion device
JPH0368286B2 (en)
JPS60218505A (en) Burner
JPH0794881B2 (en) Low NO ▲ Lower x ▼ Combustion burner
SU1695050A1 (en) Method of fuel gaseous waste combustion