JP2565620B2 - Combustion method of pulverized coal - Google Patents

Combustion method of pulverized coal

Info

Publication number
JP2565620B2
JP2565620B2 JP4154785A JP15478592A JP2565620B2 JP 2565620 B2 JP2565620 B2 JP 2565620B2 JP 4154785 A JP4154785 A JP 4154785A JP 15478592 A JP15478592 A JP 15478592A JP 2565620 B2 JP2565620 B2 JP 2565620B2
Authority
JP
Japan
Prior art keywords
air
pulverized coal
combustion
nozzle
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4154785A
Other languages
Japanese (ja)
Other versions
JPH05240410A (en
Inventor
茂 小豆畑
清 楢戸
紀夫 嵐
徹 稲田
憲一 相馬
馨象 大塚
孝夫 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP4154785A priority Critical patent/JP2565620B2/en
Publication of JPH05240410A publication Critical patent/JPH05240410A/en
Application granted granted Critical
Publication of JP2565620B2 publication Critical patent/JP2565620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭の燃焼方法に
り、特に窒素酸化物(以下NOxという)を低減するに
好適な燃焼方法に関する。
The present invention relates, Ri engaging <br/> combustion how the pulverized coal, relates to the preferred combustion methods from reducing in particular nitrogen oxides (hereinafter referred to as NOx).

【0002】[0002]

【従来の技術】化石燃料の燃焼時に生成するNOxは、
フューエルNOxとサーマルNOxとに分類される。フュ
ーエルNOxは燃料中に含まれる窒素分(以下N分と称
す)が酸化されて発生し、サーマルNOxは空気中の窒
素が酸化されて発生する。石炭はN分含有量が多く、燃
焼時に発生するNOxの80%近くがフューエルNOxで
ある。これに対して従来開発の進められてきた燃焼技術
は、2段燃焼法、排ガス再循環法に代表されるように、
燃焼温度を低下することにより、空気中の窒素の酸化を
抑制するサーマルNOx対策に効果のあるものが主流で
ある。
2. Description of the Related Art NOx produced during combustion of fossil fuel is
It is classified into fuel NOx and thermal NOx. Fuel NOx is generated by oxidizing a nitrogen component (hereinafter referred to as N component) contained in fuel, and thermal NOx is generated by oxidizing nitrogen in the air. Coal has a high N content, and nearly 80% of NOx generated during combustion is fuel NOx. On the other hand, the combustion technology that has been developed in the past is typified by the two-stage combustion method and the exhaust gas recirculation method.
The mainstream is effective in reducing thermal NOx by suppressing the oxidation of nitrogen in the air by lowering the combustion temperature.

【0003】微粉炭燃焼時に発生するフューエルNOx
の発生経路は、燃焼機構にともなって次のように説明さ
れる。微粉炭燃焼は着火,熱分解,気体燃焼,固体燃焼
の過程から成る。燃焼の初期領域は着火及び熱分解の進
む領域であり、ここで石炭中に存在するN分は気体とし
て揮発するものと、固体中に残留するものとに分かれ
る。熱分解に続く燃焼領域は石炭中の揮発分が燃焼する
気体燃焼と揮発分を放出した固体が燃焼する固体燃焼が
進行し、気体として放出されたN分及び固体中のN分も
それぞれの燃焼領域で一部NOxに、一部窒素へと変換
する。
Fuel NOx generated during combustion of pulverized coal
The generation route of is described as follows according to the combustion mechanism. Pulverized coal combustion consists of the processes of ignition, pyrolysis, gas combustion, and solid combustion. The initial region of combustion is the region where ignition and pyrolysis proceed, and the N content present in the coal is divided into those that volatilize as a gas and those that remain in the solid. In the combustion region following pyrolysis, gas combustion in which volatile matter in coal burns and solid combustion in which solids that released volatile matter burn progresses, and N content released as gas and N content in solids also burn. Partly converted to NOx and part to nitrogen in the region.

【0004】石炭の熱分解時に気体として放出されるN
分の中には、シアン化水素(HCN)及びアンモニア
(NH3)となるものがあり、これらの窒素化合物は高
温高酸素濃度雰囲気ではNOxに酸化されるが、適当な
反応温度を設定すれば、酸素共存下で選択的にNOxを
還元し窒素(N2)とする性質を有する。この性質を利
用すれば、従来開発されてきた2段燃焼を改良し、微粉
炭燃焼の低NOx化を図ることが可能であり、2段燃焼
を原理とするバーナが開発されている。2段燃焼は1段
目の低空気比の還元性領域で、石炭中のN分をできるだ
けN2に還元する方式であり、更にNOxの低減を図るに
は、燃焼火炎内でのNOxの発生領域、NOx還元用還元
剤の生成領域、NOxの還元領域を明確に区別し制御す
る必要がある。
N released as a gas during the thermal decomposition of coal
Some of the components become hydrogen cyanide (HCN) and ammonia (NH 3 ), and these nitrogen compounds are oxidized to NOx in a high temperature and high oxygen concentration atmosphere. It has the property of selectively reducing NOx in the coexistence to form nitrogen (N 2 ). By utilizing this property, it is possible to improve the conventionally developed two-stage combustion and reduce the NOx in the pulverized coal combustion, and a burner based on the two-stage combustion principle has been developed. The two-stage combustion is a reducing region with a low air ratio in the first stage, which is a method of reducing N content in coal to N 2 as much as possible. To further reduce NOx, generation of NOx in the combustion flame It is necessary to clearly distinguish and control the region, the reducing agent generation region for NOx reduction, and the NOx reduction region.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、NO
x発生抑止効果が大であるとともに未燃分の排出が低減
される微粉炭の燃焼方法及び燃焼用バーナを提供するこ
とにある。
The object of the present invention is NO.
The object of the present invention is to provide a method for burning pulverized coal and a burner for combustion, which has a great effect of suppressing generation of x and reduces the emission of unburned components.

【0006】[0006]

【課題を解決するための手段】本発明は、微粉炭と1次
空気からなる燃料混合気を噴出する微粉炭ノズルの外周
に2次空気を噴出する2次空気ノズルを設け、その外周
3次空気を噴出する3次空気ノズルを設け、前記微粉
炭ノズルの先端を外方に拡管し、前記2次空気ノズルと
3次空気ノズルにそれぞれ旋回器を設けて前記2次空気
及び3次空気を旋回させて噴出するようにした微粉炭バ
ーナにより前記微粉炭の燃焼を行い、前記微粉炭と1次
空気からなる燃料混合気と前記2次空気により該微粉炭
バーナ先端近傍に理論空気量以下の空気量で燃焼して
記微粉炭中の窒素分からNOxとアンモニア及びシアン
系化合物を生成させる前段燃焼領域を形成し、その後流
に該前段燃焼領域からの燃焼排出物と前記3次空気とに
よりNOxを還元する燃焼を行う後段燃焼領域を形成す
ことを特徴とする微粉炭の燃焼方法である。
The present invention is directed to the outer periphery of a pulverized coal nozzle for injecting a fuel mixture composed of pulverized coal and primary air.
Is equipped with a secondary air nozzle that ejects secondary air, and its outer circumference
The tertiary air nozzle for jetting tertiary air is provided, the pulverized
Expand the tip of the charcoal nozzle to the outside and connect it to the secondary air nozzle.
A swirler is provided in each of the tertiary air nozzles to provide the secondary air.
And pulverized coal bar in which tertiary air is swirled and ejected
Burns the pulverized coal with
And NOx from the nitrogen content of the prior <br/> Symbol pulverized in coal burning in the fine coal <br/> burner tip air amount below theoretical air amount near the fuel mixture by the secondary air made of air It forms a pre-combustion zone that produces ammonia and cyan compounds, and
To the combustion exhaust from the pre-stage combustion region and the tertiary air
Forming a post-combustion region for combustion that reduces NOx more
It is a combustion method of pulverized coal, characterized in that that.

【0007】さらに本発明は、第1の微粉炭と1次空気
からなる燃料混合気を噴出する第1の微粉炭ノズルの外
周に2次空気を噴出する2次空気ノズルを設け、その外
周に3次空気を噴出する3次空気ノズルを設け、更にそ
の外周に第2の微粉炭と空気と酸素濃度が3〜5体積%
に調整された燃焼排ガスとからなる燃料混合気を噴出す
る第2の微粉炭ノズルを設け、前記第1の微粉炭ノズル
の先端を外方に拡管し、前記2次空気ノズルと3次空気
ノズルにそれぞれ旋回器を設けて前記2次空気及び3次
空気を旋回させて噴出するようにした微粉炭バーナによ
り微粉炭の燃焼を行い、前記第1の微粉炭ノズルから噴
出する燃料混合気と前記2次空気により前記微粉炭バー
ナ先端近傍に理論空気量以下の空気量で燃焼する前段燃
焼領域を形成し、該前段燃焼領域からの燃焼排出物と前
記3次空気とにより該前段燃焼領域の後流に後段燃焼領
域を形成し、前記前段燃焼領域と該後段燃焼領域とによ
って空気比1以上で燃焼する第1次燃焼領域を構成し、
該第1次燃焼領域の外周上に前記第2の微粉炭ノズルか
ら噴出される燃料混合気により空気比1未満の燃焼を行
って還元性の熱分解生成物を発生させる第2次燃焼領域
を形成し、前記1次燃焼領域の火炎と該2次燃焼領域の
火炎とをその後流側で合体させて第3次燃焼領域を形成
させることを特徴とする微粉炭の燃焼方法である。
The present invention further relates to the first pulverized coal and the primary air.
Outside the first pulverized coal nozzle that ejects a fuel mixture consisting of
A secondary air nozzle that ejects secondary air around the circumference is provided
A tertiary air nozzle that ejects tertiary air is installed around the
2nd pulverized coal, air and oxygen concentration around 3-5% by volume
Fuel mixture consisting of combustion exhaust gas adjusted to
A second pulverized coal nozzle is provided, and the first pulverized coal nozzle is provided.
Of the secondary air nozzle and the tertiary air
Each nozzle is equipped with a swirler, and the secondary air and the tertiary air
With a pulverized coal burner that swirls the air and ejects it.
The pulverized coal is burned and sprayed from the first pulverized coal nozzle.
The pulverized coal bar depends on the fuel mixture to be discharged and the secondary air.
Pre-combustion near the tip
And a combustion zone from the pre-combustion zone to form a calcination zone.
The latter stage combustion region is formed in the latter stream of the former stage combustion region by the tertiary air.
To form a zone, which is defined by the front combustion region and the rear combustion region.
Therefore, the primary combustion region that burns at an air ratio of 1 or more is configured,
Is the second pulverized coal nozzle on the outer periphery of the primary combustion region?
Combustion with an air ratio of less than 1 by the fuel mixture ejected from
Secondary combustion zone to generate reducing thermal decomposition products
To form a flame in the primary combustion region and the flame in the secondary combustion region.
Combining with the flame on the downstream side to form the third combustion zone
It is a method of burning pulverized coal, characterized by:

【0008】[0008]

【作用】前述の如く、石炭中のN分は、熱分解過程にお
いて、NOx,窒素(N2),アンモニア(NH3),シア
ン化水素(HCN)等の化合物になる。特にこれらの化
合物の中でNH3が酸素共存下でもNOxを選択的に還元
する性質を有し、NOxの還元効果の高いことは排煙脱
硝技術の分野で既に公知の事実である。従って、酸素を
含む燃焼ガス中のNOxを石炭を利用して効果的に還元
するには、石炭からNH3を多量に発生させ、これをN
Oxと反応させれば良く、石炭燃焼時のNOxの低減は、
NH3の発生法及びNH3とNOxの混合法が主要な技術
課題になる。しかるに、石炭中のN分が熱分解時に転換
する窒素化合物の種類は、石炭の熱分解条件に依存し、
目的のNH3を多量に発生させるには、NH3生成に最適
な熱分解条件を設定する必要がある。発明者らは鋭意検
討の結果、石炭燃焼温度に近い温度領域では石炭熱分解
雰囲気中の酸素濃度が石炭中N分のNH3転換率に及ぼ
す影響が大きく、NH3転換率を最大にする最適な酸素
濃度が存在することを微粉炭の熱分解実験により確認し
た。
As described above, the N content in coal becomes a compound such as NOx, nitrogen (N 2 ), ammonia (NH 3 ), hydrogen cyanide (HCN) in the thermal decomposition process. Among these compounds, NH 3 has a property of selectively reducing NOx even in the coexistence of oxygen, and it is a known fact in the field of flue gas denitration technology that NOx has a high reducing effect. Therefore, in order to effectively reduce NOx in the combustion gas containing oxygen using coal, a large amount of NH 3 is generated from the coal and this is converted into N 2.
It is sufficient to react with Ox, and NOx reduction during coal combustion is
NH 3 generation method and NH 3 and NOx mixing method are major technical problems. However, the type of nitrogen compound in which N content in coal is converted during thermal decomposition depends on the thermal decomposition conditions of coal,
In order to generate a large amount of the desired NH 3 , it is necessary to set the optimum thermal decomposition conditions for NH 3 production. As a result of intensive studies by the inventors, in the temperature region close to the coal combustion temperature, the oxygen concentration in the coal pyrolysis atmosphere has a great influence on the NH 3 conversion rate of N content in the coal, and it is optimal to maximize the NH 3 conversion rate. It was confirmed by the pyrolysis experiment of pulverized coal that the oxygen concentration was high.

【0009】本発明の要点は、石炭からの熱分解生成物
をNOxの還元に利用するため、石炭中のN分のNH3
換率が最大になる酸素濃度雰囲気で燃焼用石炭の一部を
熱分解し、これをNOx含有燃焼ガスと混合させること
にある。
The point of the present invention is to utilize a thermal decomposition product from coal for the reduction of NOx. Therefore, a portion of the coal for combustion is burned in an oxygen concentration atmosphere in which the NH 3 conversion rate of N content in the coal is maximized. Pyrolysis and mixing this with NOx-containing combustion gas.

【0010】本発明の燃焼方法においては、微粉炭と1
次空気と2次空気によって形成される前段燃焼領域と該
前段燃焼領域からの燃焼排出物と3次空気によって形成
される後段燃焼領域とから構成される第1次燃焼領域を
有する火炎が形成される。また、本発明の燃焼方法にお
いては、更に、前記第1次燃焼領域と第2次燃焼領域と
第3次燃焼領域とからなる火炎が形成される。そして、
火炎内でNOx発生領域とNOx還元用微粉炭熱分解生
成物発生領域、NOx還元反応領域が明確にされる。第
1次燃焼領域は、理論空気量以上の空気で第1の微粉炭
を完全に燃焼させる完全燃焼領域であり、ここで燃料の
大部分を燃焼させる。この領域では空気比を1以上で燃
焼させるため、燃焼灰中に残留する未燃燃料は非常に少
なくなると同時に多量のNOxが発生する。2次燃焼領
域は燃焼排ガスと空気との混合ガスで噴出される微粉炭
の燃焼領域であり、ここでは空気比が1未満の燃焼、即
第2の微粉炭の熱分解が進行する。この領域は酸素不
足の還元性領域であるため、微粉炭中のN分がNOxに
酸化される割合は非常に少なく、燃焼過程でのN分の中
間生成物である、アンモニア(NH),シアン化水素
(HCN)等が発生する。第3次燃焼領域は2次燃焼領
域で発生する微粉炭の熱分解生成物と1次燃焼領域で発
生するNOx及び1次燃焼領域での余剰酸素とが反応す
る領域であり、ここでNOxの還元反応と炭化水素,一
酸化炭素,水素,固体中未燃分等の酸化反応が進行す
る。
In the combustion method of the present invention, pulverized coal and 1
A pre-combustion region formed by secondary air and secondary air, and
Formed by combustion exhaust from the first-stage combustion zone and tertiary air
The primary combustion region composed of the latter-stage combustion region
A flame having is formed. In addition, in the combustion method of the present invention
In addition, the primary combustion region and the secondary combustion region
A flame composed of the tertiary combustion region is formed. And
The NOx generation region, the pulverized coal thermal decomposition product generation region for NOx reduction, and the NOx reduction reaction region are clarified in the flame . The primary combustion region is a complete combustion region in which the first pulverized coal is completely burned with air having a theoretical air amount or more, and most of the fuel is burned therein. In this region, since the air ratio is burned at 1 or more, the unburned fuel remaining in the combustion ash becomes very small and at the same time a large amount of NOx is generated. The secondary combustion region is a combustion region of pulverized coal ejected with a mixed gas of combustion exhaust gas and air, in which combustion with an air ratio of less than 1, that is, thermal decomposition of the second pulverized coal proceeds. Since this region is an oxygen-deficient reducing region, the proportion of N content in the pulverized coal that is oxidized to NOx is very small, and ammonia (NH 3 ), which is an intermediate product of N content in the combustion process, Hydrogen cyanide (HCN) etc. are generated. The third combustion region is a region where the thermal decomposition product of pulverized coal generated in the secondary combustion region reacts with NOx generated in the primary combustion region and surplus oxygen in the primary combustion region. Reduction reactions and oxidation reactions of hydrocarbons, carbon monoxide, hydrogen, unburned solids, etc. proceed.

【0011】第1次燃焼領域で完全燃焼させる微粉炭を
第2次燃焼領域で熱分解させる微粉炭よりも多くするこ
とにより、未燃燃料の排出を低減でき、更に第1次燃焼
領域で高温に加熱された余剰酸素で第2次燃焼領域で発
生する熱分解生成物を酸化するため、第3次燃焼領域で
の化学反応を効率良く促進できる。
By making the amount of pulverized coal which is completely burned in the primary combustion zone larger than that of the pulverized coal which is thermally decomposed in the secondary combustion zone, the emission of unburned fuel can be reduced, and the high temperature in the primary combustion zone can be achieved. Since the thermal decomposition product generated in the secondary combustion region is oxidized by the excess oxygen heated to the above, the chemical reaction in the tertiary combustion region can be efficiently promoted.

【0012】本発明の一実施態様においては、この酸素
濃度調整のために微粉炭燃焼排ガスを利用し、燃焼排ガ
スと燃焼用空気との混合比を制御することにより、熱分
解雰囲気中の酸素濃度が調整される。
In one embodiment of the present invention, the pulverized coal combustion exhaust gas is used for adjusting the oxygen concentration, and the mixing ratio of the combustion exhaust gas and the combustion air is controlled so that the oxygen concentration in the thermal decomposition atmosphere is controlled. Is adjusted.

【0013】また本発明の一実施態様においては、熱分
解領域の酸素濃度調整を容易にするため、上記混合気体
は、微粉炭搬送に用いられ、燃焼火炉内の微粉炭の熱分
解領域に噴出させるために用いられる。
Further, in one embodiment of the present invention, in order to facilitate adjustment of oxygen concentration in the pyrolysis zone, the above-mentioned mixed gas is used for transporting pulverized coal and jetted into the pyrolysis zone of pulverized coal in a combustion furnace. It is used to

【0014】更に本発明の効果をより有効に発揮するに
は、第2次燃焼領域で熱分解させる微粉炭の噴出気体、
即ち燃焼排ガスと空気との混合気の酸素濃度を好ましく
は3〜5体積%とする。すなわち、酸素共存下でもNO
xを選択的に還元できるNH3を、微粉炭の熱分解反応で
効率良く発生させるには、熱分解条件を選定する必要が
あり、発明者らは鋭意検討の結果、熱分解雰囲気の酸素
濃度が3〜5%の時に、NH3が最も多く微粉炭から発
生することを発見した。従って、第2次燃焼領域での酸
素濃度を3〜5体積%とする、即ち混合気の酸素濃度を
3〜5体積%に空気と燃焼排ガスの混合比を調整するこ
とにより、第3次燃焼領域で進ませるNOxの還元反応
を効果的に促進できる。
Further, in order to more effectively bring out the effect of the present invention, a pulverized coal jetting gas which is thermally decomposed in the secondary combustion region,
That is, the oxygen concentration of the air-fuel mixture of combustion exhaust gas and air is preferably 3 to 5% by volume. That is, NO even in the presence of oxygen
In order to efficiently generate NH 3 capable of selectively reducing x in the thermal decomposition reaction of pulverized coal, it is necessary to select thermal decomposition conditions. As a result of intensive studies by the inventors, the oxygen concentration in the thermal decomposition atmosphere was determined. It was discovered that NH 3 is most often generated from pulverized coal when 3 to 5%. Therefore, the oxygen concentration in the secondary combustion region is set to 3 to 5% by volume, that is, the oxygen concentration of the air-fuel mixture is adjusted to 3 to 5% by volume, and the mixing ratio of the air and the combustion exhaust gas is adjusted so that the tertiary combustion is performed. It is possible to effectively promote the NOx reduction reaction that proceeds in the region.

【0015】また、酸素共存下でNH3とNOxとを効果
的に反応させるには900℃以上の反応温度が好適であ
り、このため前記微粉炭熱分解生成物とNOx含有燃焼
ガスとは燃焼火炉内で混合し、NOxの還元反応を進ま
せることが好ましい。
Further, a reaction temperature of 900 ° C. or higher is suitable for effectively reacting NH 3 and NOx in the presence of oxygen, and therefore the pulverized coal pyrolysis product and the NOx-containing combustion gas are burned. It is preferable to mix them in a furnace to accelerate the NOx reduction reaction.

【0016】[0016]

【実施例】以下図面を参照して本発明による微粉炭の燃
焼方法と燃焼用のバーナの実施態様を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a pulverized coal combustion method and a burner for combustion according to the present invention will be described below with reference to the drawings.

【0017】図1において、微粉炭燃焼用バーナは、微
粉炭と1次空気から成る燃料混合気を供給する微粉炭ノ
ズル01と、2次空気ノズル02と、3次空気ノズル0
3とから構成される。燃料混合気と2次空気によりバー
ナ先端近傍に理論空気量以下の燃焼空気量で燃焼する
燃焼領域が形成され、その後流に3次空気と前段燃焼
領域からの燃焼排出物による後段燃焼領域が形成され
る。前段燃焼領域では石炭中のN分からNOxの他にア
ンモニア及びシアン系化合物が生成され、後段燃焼領域
でこれらの窒素化合物が反応してNOxが還元される。
In FIG. 1, a pulverized coal combustion burner comprises a pulverized coal nozzle 01, a secondary air nozzle 02 and a tertiary air nozzle 0 for supplying a fuel mixture composed of pulverized coal and primary air.
And 3. Before combustion by the fuel mixture and secondary air near the burner tip with a combustion air amount less than the theoretical air amount
Stage combustion region is formed, subsequent combustion zone by then flow into the combustion effluent from the tertiary air and the front combustion region. In the first-stage combustion region, ammonia and cyan compounds are produced in addition to NOx from the N content in the coal, and in the latter-stage combustion region, these nitrogen compounds react to reduce NOx.

【0018】図2において、微粉炭燃焼バーナは2つの
微粉炭ノズル12,13、2次空気ノズル17、3次空
気ノズル18、イグナイタ16から構成される。微粉炭
ノズル12の先端は外方に拡管されている。微粉炭及び
これを搬送、噴出させるための1次空気から成る燃料混
合気を噴出させる微粉炭ノズル12から、燃料微粉炭の
大半が噴出し、2次空気ノズル17、3次空気ノズル1
8から噴出する2次空気、3次空気とにより、空気比が
1以上の第1次燃焼領域21が、バーナ先端に形成され
る。この第1次燃焼領域21は、微粉炭ノズル12の燃
料混合気と2次空気とにより形成される前段燃焼領域
と、前段燃焼領域からの燃焼排出物と3次空気とにより
形成される後段燃焼領域とから構成される。前段燃焼領
域では、微粉炭ノズル先端の拡管と2次空気の旋回流の
作用により、拡管部の下流に微粉炭と1次空気からなる
燃料混合気と2次空気の循環流により理論空気量以下の
高温の火炎が形成され、これによりNH 3 の発生が促進
される。更に本実施例では、第1次燃焼領域21での火
炎を短炎化するとともに、他の燃焼領域から独立させる
ために、2次空気ノズル17及び3次空気ノズル18を
微粉炭ノズル12の外周に設置し、燃焼空気に旋回流を
与えるための、2次空気旋回羽根14及び3次空気旋回
羽根15がそれぞれのノズル内に設置されている。微粉
炭ノズル13は3次空気ノズル18の外周に設置され、
ノズル13より、酸素濃度が3〜5体積%に調整された
燃焼排ガスと空気との混合気と、微粉炭とから成る燃料
混合気が噴出する。ノズル13から噴出される燃料混合
気により、第1次燃焼領域21の外周上に第2次燃焼領
域22が形成され、この領域で第1次燃焼領域21から
伝わる熱と混合気中に含まれる酸素とにより微粉炭の熱
分解反応が進み、還元性の熱分解生成物が発生する。
In FIG. 2, the pulverized coal combustion burner comprises two pulverized coal nozzles 12, 13, a secondary air nozzle 17, a tertiary air nozzle 18, and an igniter 16. The tip of the pulverized coal nozzle 12 is expanded outward. Most of the fuel pulverized coal is ejected from the pulverized coal nozzle 12 which ejects the fuel mixture composed of the pulverized coal and the primary air for carrying and ejecting the pulverized coal, the secondary air nozzle 17, the tertiary air nozzle 1
A secondary combustion region 21 having an air ratio of 1 or more is formed at the tip of the burner by the secondary air and the tertiary air ejected from 8. The primary combustion region 21 is a primary combustion region formed by the fuel mixture of the pulverized coal nozzle 12 and secondary air, and a secondary combustion region formed by combustion exhaust from the primary combustion region and tertiary air. And a region. Pre-combustion area
In the area, expansion of the pulverized coal nozzle tip and swirling flow of secondary air
Due to the action, it consists of pulverized coal and primary air downstream of the pipe expansion section.
Due to the circulating flow of fuel mixture and secondary air,
A high temperature flame is formed, which promotes the generation of NH 3.
To be done. Further, in the present embodiment, the secondary air nozzle 17 and the tertiary air nozzle 18 are provided on the outer periphery of the pulverized coal nozzle 12 in order to shorten the flame in the primary combustion region 21 and to make it independent of other combustion regions. And a secondary air swirl vane 14 and a tertiary air swirl vane 15 for giving a swirl flow to the combustion air are installed in the respective nozzles. The pulverized coal nozzle 13 is installed on the outer periphery of the tertiary air nozzle 18,
From the nozzle 13, a fuel mixture composed of a combustion exhaust gas and air whose oxygen concentration is adjusted to 3 to 5% by volume and a pulverized coal is ejected. The fuel mixture ejected from the nozzle 13 forms a secondary combustion region 22 on the outer periphery of the primary combustion region 21, and is included in the heat and mixture transmitted from the primary combustion region 21 in this region. The thermal decomposition reaction of pulverized coal proceeds with oxygen, and a reducing thermal decomposition product is generated.

【0019】第2次燃焼領域22で発生する還元性熱分
解生成物の酸化及び第1次燃焼領域21で発生するNO
xの還元反応が起きる第3次燃焼領域23が、第1次及
び第2次燃焼領域の後流に形成される。
Oxidation of the reducing thermal decomposition products generated in the secondary combustion zone 22 and NO generated in the primary combustion zone 21
A third combustion zone 23 in which the reduction reaction of x takes place is formed in the wake of the first and second combustion zones.

【0020】実例1 日本国内炭及び日本国内炭を1000℃の不活性雰囲気
内で加熱して製造したチャー(石炭熱分解時に残留する
可燃性固体)を白金製ホルダーに詰め、1000℃に加
熱した時に発生するNHを定量することにより、石炭
中のN分及びチャー中のN分のNH転換率を測定し
た。第3図は熱分解雰囲気中の酸素濃度を1〜7体積%
の範囲で変化させ、雰囲気酸素濃度のNH転換率への
影響を検討した結果である。横軸に熱分解時の酸素濃
度、縦軸に石炭及びチャー中のN分のNH転換率を示
す。第3図より明らかなように、NH転換率は酸素濃
度の影響を大きく受け、更にNHの転換率を最大にす
る最適な酸素濃度が存在する。石炭中N分のNH転換
率は酸素濃度約3体積%で最大になり、チャー中のN分
は酸素濃度約5体積%でNH転換率が最大になる。
The packed Experimental Example 1 Japanese domestic coal and domestic coal to 1000 ° C. char produced by heating in an inert atmosphere (flammable solids retained during coal pyrolysis) a platinum holder and 1000 ° C. The NH 3 conversion rate of N content in coal and N content in char was measured by quantifying NH 3 generated when heated. Figure 3 shows the oxygen concentration in the thermal decomposition atmosphere at 1 to 7% by volume.
It is the result of studying the effect of the atmospheric oxygen concentration on the NH 3 conversion rate by varying the oxygen concentration within the range. The horizontal axis shows the oxygen concentration during pyrolysis, and the vertical axis shows the NH 3 conversion rate of N content in coal and char. As is clear from FIG. 3, the NH 3 conversion rate is greatly affected by the oxygen concentration, and there is an optimum oxygen concentration that maximizes the NH 3 conversion rate. NH 3 conversion in coal N content is maximized at an oxygen concentration of about 3 vol%, N content in the char is NH 3 conversion is maximized at an oxygen concentration of about 5% by volume.

【0021】実例2 第4図は、実施例1の実験結果を得た実験装置と同一装
置を用い、実施例1と同様に熱分解雰囲気中の酸素濃度
の石炭中N分のNH転換率に及ぼす影響をみたもので
ある。本実施例では、炭種の影響を検討するために、オ
ーストラリア炭,中国炭の熱分解反応実験を試みた。熱
分解温度は実施例1同様1000℃である。第4図より
明らかなように、炭種によって多少の最適酸素濃度範囲
に違いはあるが、実施例1の日本国内炭同様、オースト
ラリア炭,中国炭とも、熱分解雰囲気の酸素濃度が約3
体積%付近で石炭中N分のNH転換率が最大になる。
[0021] Experimental Example 2 Figure 4 is a example of the experimental results using the experimental apparatus and the same apparatus to obtain a 1, the same manner as in Example 1 in the coal in the oxygen concentration in the pyrolysis atmosphere and the N content of NH 3 This is the effect on conversion rate. In this example, in order to examine the effect of coal type, an experiment of thermal decomposition reaction of Australian coal and Chinese coal was tried. The thermal decomposition temperature is 1000 ° C. as in Example 1. As is clear from FIG. 4, although there is a slight difference in the optimum oxygen concentration range depending on the type of coal, the oxygen concentration in the thermal decomposition atmosphere is about 3 for both Australian and Chinese coals, similar to the Japanese domestic coals of Example 1.
The NH 3 conversion rate of N content in coal is maximized near volume%.

【0022】上記実施例で明らかなように、石炭の熱分
解生成物をNOxの還元剤として効果的に利用するに
は、石炭の熱分解雰囲気中の酸素濃度を最適値に制御す
る必要がある。
As is clear from the above examples, in order to effectively utilize the thermal decomposition products of coal as NOx reducing agents, it is necessary to control the oxygen concentration in the thermal decomposition atmosphere of coal to an optimum value. .

【0023】[0023]

【発明の効果】以上説明したとおり、第1の発明によれ
ば、微粉炭と1次空気と2次空気からなる混合気によっ
て理論空気量以下の空気量で燃焼する前段燃焼領域が形
成され、その後流に前段燃焼領域からの燃焼排出物と3
次空気とによる後段燃焼領域が形成される。前段燃焼領
域に2次空気を混入することによって火炎の温度が高ま
り、微粉炭中の可燃成分を放出しやすくして未燃分を低
減することができる。この結果、未燃分の低減効果及び
NOx低減効果が大きい微粉炭燃焼を達成することがで
きる。 第2の発明によれば、前記第1の発明によって形
成される燃焼領域の外周に微粉炭と空気と燃焼排ガスと
の混合気によって酸素濃度が調整された微粉炭熱分解領
域が形成され、これによってアンモニアへの転換率が更
に向上する。この結果、NOx低減効果が更に大きく且
つ未燃分の少ない微粉炭燃焼を達成することができる。
As described above , according to the first invention.
For example, depending on the mixture of pulverized coal, primary air and secondary air
The pre-combustion region that burns with less than the theoretical air amount
Formed in the wake of the combustion exhaust from the pre-combustion zone and 3
A second-stage combustion region is formed by the secondary air. Pre-combustion area
Increasing the flame temperature by mixing secondary air into the area
To easily release combustible components in pulverized coal to reduce unburned content.
Can be reduced. As a result, the unburned component reduction effect and
It is possible to achieve pulverized coal combustion that has a great effect of reducing NOx.
Wear. According to a second invention, the shape according to the first invention is formed.
Pulverized coal, air and flue gas are formed around the combustion area
Pyrolytic coal pyrolysis region whose oxygen concentration was adjusted by the mixture of
Zone is formed, which improves the conversion rate to ammonia.
Improve to. As a result, the NOx reduction effect is even greater and
It is possible to achieve pulverized coal combustion with less unburned content.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るバーナの側断面図である。FIG. 1 is a side sectional view of a burner according to the present invention.

【図2】本発明の別の実施例によるバーナの側断面図で
ある。
FIG. 2 is a side sectional view of a burner according to another embodiment of the present invention.

【図3】NH3転換率と酸素濃度との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the NH 3 conversion rate and the oxygen concentration.

【図4】NH3転換率と酸素濃度との関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the NH 3 conversion rate and the oxygen concentration.

【符号の説明】[Explanation of symbols]

01 微粉炭ノズル 02 2次空気ノズル 03 3次空気ノズル 04 点火用バーナ 05 旋回羽根 06 旋回羽根 07 着火用補助燃料供給孔 08 微粉炭供給孔 09 2次空気供給孔 10 3次空気供給孔 11 微粉炭供給孔 12 微粉炭ノズル 13 微粉炭ノズル 14 2次空気旋回羽根 15 3次空気旋回羽根 16 イグナイタ 17 2次空気ノズル 18 3次空気ノズル 21 第1次燃焼領域 22 第2次燃焼領域 23 第3次燃焼領域 01 Pulverized coal nozzle 02 Secondary air nozzle 03 Tertiary air nozzle 04 Ignition burner 05 Swivel blade 06 Swivel blade 07 Ignition auxiliary fuel supply hole 08 Pulverized coal supply hole 09 Secondary air supply hole 10 Tertiary air supply hole 11 Fine powder Charcoal supply hole 12 Pulverized coal nozzle 13 Pulverized coal nozzle 14 Secondary air swirl blade 15 Tertiary air swirl blade 16 Igniter 17 Secondary air nozzle 18 Tertiary air nozzle 21 Primary combustion area 22 Secondary combustion area 23 Third Next combustion area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嵐 紀夫 茨城県日立市幸町3丁目1番1号 株式 会社 日立製作所 日立研究所内 (72)発明者 稲田 徹 茨城県日立市幸町3丁目1番1号 株式 会社 日立製作所 日立研究所内 (72)発明者 相馬 憲一 茨城県日立市幸町3丁目1番1号 株式 会社 日立製作所 日立研究所内 (72)発明者 大塚 馨象 茨城県日立市幸町3丁目1番1号 株式 会社 日立製作所 日立研究所内 (72)発明者 菱沼 孝夫 茨城県日立市幸町3丁目1番1号 株式 会社 日立製作所 日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Arashi 3-1-1, Saiwaicho, Hitachi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Toru Inada 3-1-1, Saiwaicho, Hitachi, Ibaraki Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Kenichi Soma 3-1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Kazushi Otsuka 3 Saichocho, Hitachi City, Ibaraki Prefecture 1-1-1, Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Takao Hishinuma 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微粉炭と1次空気からなる燃料混合気を
噴出する微粉炭ノズルの外周に2次空気を噴出する2次
空気ノズルを設け、その外周に3次空気を噴出する3次
空気ノズルを設け、前記微粉炭ノズルの先端を外方に拡
管し、前記2次空気ノズルと3次空気ノズルにそれぞれ
旋回器を設けて前記2次空気及び3次空気を旋回させて
噴出するようにした微粉炭バーナにより前記微粉炭の燃
焼を行い、前記微粉炭と1次空気からなる燃料混合気と
前記2次空気により該微粉炭バーナ先端近傍に理論空気
量以下の空気量で燃焼して前記微粉炭中の窒素分からN
Oxとアンモニア及びシアン系化合物を生成させる前段
燃焼領域を形成し、その後流に該前段燃焼領域からの燃
焼排出物と前記3次空気とによりNOxを還元する燃焼
を行う後段燃焼領域を形成することを特徴とする微粉炭
の燃焼方法。
1. A fuel mixture consisting of pulverized coal and primary air
Secondary that ejects secondary air around the pulverized coal nozzle that ejects
The air nozzle is provided, for injecting tertiary air into the outer periphery tertiary
Install an air nozzle and spread the tip of the pulverized coal nozzle outward.
Pipes to the secondary air nozzle and the tertiary air nozzle, respectively.
A swirler is provided to swirl the secondary air and the tertiary air.
The pulverized coal burner is designed to blow out to burn the pulverized coal.
And a fuel mixture consisting of the pulverized coal and primary air.
N nitrogen content in the pulverized coal was burned in air of less theoretical air quantity fine coal burner near the tip by the secondary air
Pre- stage for producing Ox, ammonia and cyan compounds
A combustion region is formed, and the fuel from the preceding combustion region is formed in the subsequent flow.
A combustion method for pulverized coal, which comprises forming a post- stage combustion region in which combustion for reducing NOx is formed by the calcination discharge and the tertiary air .
【請求項2】 第1の微粉炭と1次空気からなる燃料混
合気を噴出する第1の微粉炭ノズルの外周に2次空気を
噴出する2次空気ノズルを設け、その外周に3次空気を
噴出する3次空気ノズルを設け、更にその外周に第2の
微粉炭と空気と酸素濃度が3〜5体積%に調整された燃
焼排ガスとからなる燃料混合気を噴出する第2の微粉炭
ノズルを設け、前記第1の微粉炭ノズルの先端を外方に
拡管し、前記2次空気ノズルと3次空気ノズルにそれぞ
れ旋回器を設けて前記2次空気及び3次空気を旋回させ
て噴出するようにした微粉炭バーナにより微粉炭の燃焼
を行い、前記第1の微粉炭ノズルから噴出する燃料混合
気と前記2次空気により前記微粉炭バーナ先端近傍に理
論空気量以下の空気量で燃焼する前段燃焼領域を形成
し、該前段燃焼領域からの燃焼排出物と前記3次空気と
により該前段燃焼領域の後流に後段燃焼領域を形成し、
前記前段燃焼領域と該後段燃焼領域とによって空気比1
以上で燃焼する第1次燃焼領域を構成し、該第1次燃焼
領域の外周上に前記第2の微粉炭ノズルから噴出される
燃料混合気により空気比1未満の燃焼を行って還元性の
熱分解生成物を発生させる第2次燃焼領域を形成し、前
記1次燃焼領域の火炎と該2次燃焼領域の火炎とをその
後流側で合体させて第3次燃焼領域を形成させることを
特徴とする微粉炭の燃焼方法。
2. A fuel mixture comprising a first pulverized coal and primary air.
Secondary air is placed around the outer periphery of the first pulverized coal nozzle that ejects aeration.
A secondary air nozzle that jets air is provided, and tertiary air is placed around the nozzle.
A third air nozzle that jets air is provided, and a second
Pulverized coal, air, and fuel with oxygen concentration adjusted to 3-5% by volume
A second pulverized coal which ejects a fuel mixture consisting of burnt exhaust gas
A nozzle is provided, and the tip of the first pulverized coal nozzle is directed outward.
Expand the tube and use the secondary air nozzle and the tertiary air nozzle respectively.
A swirler is installed to swirl the secondary and tertiary air.
Combustion of pulverized coal with a pulverized coal burner
And the fuel mixture ejected from the first pulverized coal nozzle
Of air and the secondary air near the tip of the pulverized coal burner.
A pre-combustion zone is formed that burns at an air amount less than the theoretical air amount.
The combustion exhaust from the pre-stage combustion region and the tertiary air
To form a post-combustion region in the downstream of the pre-combustion region,
An air ratio of 1 due to the front-stage combustion region and the rear-stage combustion region.
The primary combustion region in which the above combustion is performed constitutes the primary combustion region.
Sprayed from the second pulverized coal nozzle onto the outer periphery of the region
Combustion with an air ratio of less than 1 by a fuel mixture produces a reducing
Forming a secondary combustion zone that produces pyrolysis products,
The flame in the primary combustion area and the flame in the secondary combustion area are
A method for burning pulverized coal, characterized in that the pulverized coal is coalesced on the wake side to form a third combustion region .
JP4154785A 1992-06-15 1992-06-15 Combustion method of pulverized coal Expired - Lifetime JP2565620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4154785A JP2565620B2 (en) 1992-06-15 1992-06-15 Combustion method of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4154785A JP2565620B2 (en) 1992-06-15 1992-06-15 Combustion method of pulverized coal

Publications (2)

Publication Number Publication Date
JPH05240410A JPH05240410A (en) 1993-09-17
JP2565620B2 true JP2565620B2 (en) 1996-12-18

Family

ID=15591851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4154785A Expired - Lifetime JP2565620B2 (en) 1992-06-15 1992-06-15 Combustion method of pulverized coal

Country Status (1)

Country Link
JP (1) JP2565620B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962162B2 (en) * 2012-04-13 2016-08-03 Jfeスチール株式会社 Hot metal refining method
CN110887037A (en) * 2019-12-19 2020-03-17 沈阳环境科学研究院 Low-nitrogen combustion device for enhancing pulverized coal gasification
CN115164199A (en) * 2022-07-08 2022-10-11 天津大学 Ammonia coal co-combustion low-nitrogen combustor, ammonia coal co-combustion low-nitrogen combustion furnace and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119406A (en) * 1980-02-25 1981-09-19 Kawasaki Heavy Ind Ltd Pulverized coal burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119406A (en) * 1980-02-25 1981-09-19 Kawasaki Heavy Ind Ltd Pulverized coal burner

Also Published As

Publication number Publication date
JPH05240410A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
EP0260382B2 (en) Low NOx burner
JP2942711B2 (en) Deep stage combustion method
US5013236A (en) Ultra-low pollutant emission combustion process and apparatus
US4422391A (en) Method of combustion of pulverized coal by pulverized coal burner
CN200955738Y (en) Burner for sulfur recovery
EP0112535B1 (en) Fuel jet method and apparatus for pulverized coal burner
JP2565620B2 (en) Combustion method of pulverized coal
CA1197665A (en) Process and apparatus for the combustion of ammonia- containing waste gases
KR102043956B1 (en) Combustor capable of reducing nitrogen oxide contained in boiler combustion gas and increasing energy efficiency
JP4015026B2 (en) Advanced NOx reduction method for boilers
US5216968A (en) Method of stabilizing a combustion process
JPH0627561B2 (en) Pulverized coal combustion equipment
RU2038535C1 (en) Pulverized-coal burner with low yield of nitric oxides
JP2870675B2 (en) How to operate the pyrolytic combustion zone
RU2350838C1 (en) High-temperature cyclone reactor
JPH0259361B2 (en)
RU2013691C1 (en) Cyclone precombustion chamber of boiler
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
RU2293254C2 (en) Method of removing toxic agents from combustion products of gas fuel
JPS6260606B2 (en)
SU1695050A1 (en) Method of fuel gaseous waste combustion
JP2635294B2 (en) Low NOx combustion method for pulverized coal
JPH0794881B2 (en) Low NO ▲ Lower x ▼ Combustion burner
RU2262039C2 (en) Method of combustion of hydrocarbon fuel and device for realization of this method (versions)