JPH05240410A - Method of burning pulverized coal and burner for combustion - Google Patents

Method of burning pulverized coal and burner for combustion

Info

Publication number
JPH05240410A
JPH05240410A JP15478592A JP15478592A JPH05240410A JP H05240410 A JPH05240410 A JP H05240410A JP 15478592 A JP15478592 A JP 15478592A JP 15478592 A JP15478592 A JP 15478592A JP H05240410 A JPH05240410 A JP H05240410A
Authority
JP
Japan
Prior art keywords
combustion
air
pulverized coal
burner
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15478592A
Other languages
Japanese (ja)
Other versions
JP2565620B2 (en
Inventor
Shigeru Azuhata
茂 小豆畑
Kiyoshi Narato
清 楢戸
Norio Arashi
紀夫 嵐
Toru Inada
徹 稲田
Kenichi Soma
憲一 相馬
Keizo Otsuka
馨象 大塚
Takao Hishinuma
孝夫 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP4154785A priority Critical patent/JP2565620B2/en
Publication of JPH05240410A publication Critical patent/JPH05240410A/en
Application granted granted Critical
Publication of JP2565620B2 publication Critical patent/JP2565620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance an effect of suppressing the generation of NOx by jetting a fuel-air mixed gas containing pulverized coal from a burner, jetting secondary air and tertiary air concentrically from the outer periphery of the burner and forming a primary combustion region and a secondary combustion region to reduce NOx. CONSTITUTION:The subject burner for combustion of pulverized coal comprises pulverized coal nozzles 12, 13 adapted to feed a fuel-air mixed gas composed of pulverized coal and primary air, and secondary and tertiary air nozzles 17, 18. A primary combustion region 21 where combustion is performed with the fuel-air mixed gas and the secondary air in the amount of air for combustion less than a theoretical amount of air is formed in the vicinity of the forward end of the burner, and a secondary combustion region 22 where further combustion of the combustion products from the primary combustion region 21 by tertiary air is formed in the wake of the primary combustion region 21. After ammonia compounds and cyanic compounds have been produced from the N content in coal in addition to NOx in the primary combustion region 21, these nitrified compounds are allowed to react with the combustion gas in the secondary combustion region on reduce NOx. The pulverized coal nozzles 13 are arranged in the outer periphery of the tertiary air nozzles 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭の燃焼方法及び
燃焼用バーナに係り、特に窒素酸化物(以下NOxとい
う)を低減するに好適な燃焼方法及びバーナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverized coal combustion method and a burner for combustion, and more particularly to a combustion method and burner suitable for reducing nitrogen oxides (hereinafter referred to as NOx).

【0002】[0002]

【従来の技術】化石燃料の燃焼時に生成するNOxは、
フューエルNOxとサーマルNOxとに分類される。フュ
ーエルNOxは燃料中に含まれる窒素分(以下N分と称
す)が酸化されて発生し、サーマルNOxは空気中の窒
素が酸化されて発生する。石炭はN分含有量が多く、燃
焼時に発生するNOxの80%近くがフューエルNOxで
ある。これに対して従来開発の進められてきた燃焼技術
は、2段燃焼法、排ガス再循環法に代表されるように、
燃焼温度を低下することにより、空気中の窒素の酸化を
抑制するサーマルNOx対策に効果のあるものが主流で
ある。
2. Description of the Related Art NOx produced during combustion of fossil fuel is
It is classified into fuel NOx and thermal NOx. Fuel NOx is generated by oxidizing a nitrogen component (hereinafter referred to as N component) contained in fuel, and thermal NOx is generated by oxidizing nitrogen in the air. Coal has a high N content, and nearly 80% of NOx generated during combustion is fuel NOx. On the other hand, the combustion technology that has been developed in the past, as represented by the two-stage combustion method and the exhaust gas recirculation method,
The mainstream is effective in reducing thermal NOx by suppressing the oxidation of nitrogen in the air by lowering the combustion temperature.

【0003】微粉炭燃焼時に発生するフューエルNOx
の発生経路は、燃焼機構にともなって次のように説明さ
れる。微粉炭燃焼は着火,熱分解,気体燃焼,固体燃焼
の過程から成る。燃焼の初期領域は着火及び熱分解の進
む領域であり、ここで石炭中に存在するN分は気体とし
て揮発するものと、固体中に残留するものとに分かれ
る。熱分解に続く燃焼領域は石炭中の揮発分が燃焼する
気体燃焼と揮発分を放出した固体が燃焼する固体燃焼が
進行し、気体として放出されたN分及び固体中のN分も
それぞれの燃焼領域で一部NOxに、一部窒素へと変換
する。
Fuel NOx generated during combustion of pulverized coal
The generation route of is described as follows according to the combustion mechanism. Pulverized coal combustion consists of the processes of ignition, pyrolysis, gas combustion, and solid combustion. The initial region of combustion is the region where ignition and thermal decomposition proceed, and the N content present in coal is divided into those that volatilize as gas and those that remain in solid. In the combustion region following pyrolysis, gas combustion in which volatile matter in coal burns and solid combustion in which solids that released volatile matter burn progresses, and N content released as gas and N content in solids also burn. Partly converted to NOx and part to nitrogen in the region.

【0004】石炭の熱分解時に気体として放出されるN
分の中には、シアン化水素(HCN)及びアンモニア
(NH3)となるものがあり、これらの窒素化合物は高
温高酸素濃度雰囲気ではNOxに酸化されるが、適当な
反応温度を設定すれば、酸素共存下で選択的にNOxを
還元し窒素(N2)とする性質を有する。この性質を利
用すれば、従来開発されてきた2段燃焼を改良し、微粉
炭燃焼の低NOx化を図ることが可能であり、2段燃焼
を原理とするバーナが開発されている。2段燃焼は1段
目の低空気比の還元性領域で、石炭中のN分をできるだ
けN2に還元する方式であり、更にNOxの低減を図るに
は、燃焼火炎内でのNOxの発生領域、NOx還元用還元
剤の生成領域、NOxの還元領域を明確に区別し制御す
る必要がある。
N released as a gas during the thermal decomposition of coal
Some of the components are hydrogen cyanide (HCN) and ammonia (NH 3 ), and these nitrogen compounds are oxidized to NOx in a high temperature and high oxygen concentration atmosphere. It has the property of selectively reducing NOx in the coexistence to form nitrogen (N 2 ). By utilizing this property, it is possible to improve the conventionally developed two-stage combustion and reduce NOx in the pulverized coal combustion, and a burner based on the two-stage combustion principle has been developed. The two-stage combustion is a reducing region with a low air ratio in the first stage, and it is a method of reducing N content in coal to N 2 as much as possible. To further reduce NOx, generation of NOx in the combustion flame It is necessary to clearly distinguish and control the region, the reducing agent generation region for NOx reduction, and the NOx reduction region.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、NO
x発生抑止効果が大であるとともに未燃分の排出が低減
される微粉炭の燃焼方法及び燃焼用バーナを提供するこ
とにある。
The object of the present invention is NO.
(EN) It is intended to provide a pulverized coal combustion method and a burner for combustion, which have a great effect of suppressing generation of x and reduce emission of unburned components.

【0006】[0006]

【課題を解決するための手段】本発明は、微粉炭と1次
空気からなる燃料混合気をバーナより噴出し、燃料混合
気の外周より2次空気を噴出し、2次空気の外周より3
次空気を噴出することによって、バーナ先端近傍に燃料
混合気と2次空気により理論空気量以下の燃焼空気量で
燃焼する1次燃焼領域を形成して微粉炭中の窒素分から
NOxとアンモニア及びシアン系化合物を生成させる燃
焼を行い、1次燃焼領域の後流に3次空気と1次燃焼領
域からの燃焼排出物による2次燃焼領域を形成してNO
xを還元する燃焼を行うようにしたことを特徴とする微
粉炭燃焼方法である。
According to the present invention, a fuel mixture consisting of pulverized coal and primary air is ejected from a burner, secondary air is ejected from the outer periphery of the fuel mixture, and 3 from the outer periphery of the secondary air.
By injecting secondary air, a primary combustion region is formed near the burner tip where the fuel mixture and secondary air burn at a combustion air amount less than the theoretical air amount, and NOx, ammonia and cyanide are generated from the nitrogen content in the pulverized coal. The combustion is performed to generate a system compound, and a secondary combustion region is formed by the tertiary air and the combustion exhaust from the primary combustion region in the wake of the primary combustion region to generate NO.
A pulverized coal combustion method characterized by performing combustion for reducing x.

【0007】さらに、微粉炭と1次空気からなる燃料混
合気を燃焼させる第1のノズルと、第1のノズルの外周
に設けられ2次空気を噴出する第2のノズルと、第2の
ノズルの外周に設けられ3次空気を噴出する第3のノズ
ルとから構成したことを特徴とする微粉炭燃焼用バーナ
を提供するものである。
Further, a first nozzle for burning a fuel mixture composed of pulverized coal and primary air, a second nozzle provided on the outer periphery of the first nozzle for ejecting secondary air, and a second nozzle The present invention provides a burner for pulverized coal combustion, comprising a third nozzle that is provided on the outer circumference of the nozzle and that ejects tertiary air.

【0008】[0008]

【作用】前述の如く、石炭中のN分は、熱分解過程にお
いて、NOx,窒素(N2),アンモニア(NH3),シア
ン化水素(HCN)等の化合物になる。特にこれらの化
合物の中でNH3が酸素共存下でもNOxを選択的に還元
する性質を有し、NOxの還元効果の高いことは排煙脱
硝技術の分野で既に公知の事実である。従って、酸素を
含む燃焼ガス中のNOxを石炭を利用して効果的に還元
するには、石炭からNH3を多量に発生させ、これをN
Oxと反応させれば良く、石炭燃焼時のNOxの低減は、
NH3の発生法及びNH3とNOxの混合法が主要な技術
課題になる。しかるに、石炭中のN分が熱分解時に転換
する窒素化合物の種類は、石炭の熱分解条件に依存し、
目的のNH3を多量に発生させるには、NH3生成に最適
な熱分解条件を設定する必要がある。発明者らは鋭意検
討の結果、石炭燃焼温度に近い温度領域では石炭熱分解
雰囲気中の酸素濃度が石炭中N分のNH3転換率に及ぼ
す影響が大きく、NH3転換率を最大にする最適な酸素
濃度が存在することを微粉炭の熱分解実験により確認し
た。
As described above, the N content in coal becomes compounds such as NOx, nitrogen (N 2 ), ammonia (NH 3 ), hydrogen cyanide (HCN) in the thermal decomposition process. Among these compounds, NH 3 has a property of selectively reducing NOx even in the coexistence of oxygen, and it is a well-known fact in the field of flue gas denitration technology that the effect of reducing NOx is high. Therefore, in order to effectively reduce NOx in the combustion gas containing oxygen by using coal, a large amount of NH 3 is generated from coal and this is converted into N 2.
It is sufficient to react with Ox, and NOx reduction during coal combustion is
NH 3 generation method and NH 3 and NOx mixing method are major technical problems. However, the type of nitrogen compound in which N content in coal is converted during pyrolysis depends on the pyrolysis conditions of coal,
In order to generate a large amount of the target NH 3 , it is necessary to set the optimum thermal decomposition conditions for NH 3 generation. As a result of intensive studies by the inventors, in the temperature range close to the coal combustion temperature, the oxygen concentration in the coal pyrolysis atmosphere has a great influence on the NH 3 conversion rate of N in the coal, and the optimum NH 3 conversion rate is maximized. It was confirmed by the thermal decomposition experiment of pulverized coal that there existed various oxygen concentrations.

【0009】本発明の要点は、石炭からの熱分解生成物
をNOxの還元に利用するため、石炭中のN分のNH3
換率が最大になる酸素濃度雰囲気で燃焼用石炭の一部を
熱分解し、これをNOx含有燃焼ガスと混合させること
にある。
The point of the present invention is to utilize a thermal decomposition product from coal for the reduction of NOx. Therefore, a portion of the coal for combustion is burned in an oxygen concentration atmosphere in which the NH 3 conversion rate of N content in the coal is maximized. Pyrolysis and mixing this with NOx-containing combustion gas.

【0010】また、本発明のバーナにおいては、微粉炭
燃焼火炎が、第1次,第2次,第3時燃焼領域の3通り
の領域に区分され、燃焼火炎内でNOx発生領域とNOx
還元用微粉炭熱分解生成物発生領域、NOx還元反応領
域が明確にされる。第1次燃焼領域は、理論空気量以上
の空気で微粉炭を完全に燃焼させる完全燃焼領域であ
り、ここで燃料の大部分を燃焼させる。この領域では空
気比を1以上で燃焼させるため、燃焼灰中に残留する未
燃燃料は非常に少なくなると同時に多量のNOxが発生
する。2次燃焼領域は燃焼排ガスと空気との混合ガスで
噴出される微粉炭の燃焼領域であり、ここでは空気比が
1未満の燃焼、即ち微粉炭の熱分解が進行する。この領
域は酸素不足の還元性領域であるため、微粉炭中のN分
がNOxに酸化される割合は非常に少なく、燃焼過程で
のN分の中間生成物である、アンモニア(NH3),シ
アン化水素(HCN)等が発生する。第3次燃焼領域は
2次燃焼領域で発生する微粉炭の熱分解生成物と1次燃
焼領域で発生するNOx及び1次燃焼領域での余剰酸素
とが反応する領域であり、ここでNOxの還元反応と炭
化水素,一酸化炭素,水素,固体中未燃分等の酸化反応
が進行する。
Further, in the burner of the present invention, the pulverized coal combustion flame is divided into three areas of the primary, secondary, and third time combustion areas, and the NOx generation area and NOx are formed in the combustion flame.
The pulverized coal thermal decomposition product generation region for reduction and the NOx reduction reaction region are clarified. The primary combustion region is a complete combustion region in which pulverized coal is completely combusted with air having a theoretical air amount or more, and most of the fuel is combusted therein. In this region, since the air ratio is burned at 1 or more, the unburned fuel remaining in the combustion ash becomes very small and at the same time a large amount of NOx is generated. The secondary combustion region is a combustion region of pulverized coal ejected with a mixed gas of combustion exhaust gas and air, in which combustion with an air ratio of less than 1, that is, thermal decomposition of pulverized coal proceeds. Since this region is an oxygen-deficient reducing region, the proportion of N in the pulverized coal that is oxidized to NOx is very small, and ammonia (NH 3 ), which is an intermediate product of N in the combustion process, Hydrogen cyanide (HCN) etc. are generated. The third combustion region is a region where the thermal decomposition product of pulverized coal generated in the secondary combustion region reacts with NOx generated in the primary combustion region and surplus oxygen in the primary combustion region. Reduction reactions and oxidation reactions of hydrocarbons, carbon monoxide, hydrogen, unburned solids, etc. proceed.

【0011】第1次燃焼領域で完全燃焼させる微粉炭を
第2次燃焼領域で熱分解させる微粉炭よりも多くするこ
とにより、未燃燃料の排出を低減でき、更に第1次燃焼
領域で高温に加熱された余剰酸素で第2次燃焼領域で発
生する熱分解生成物を酸化するため、第3次燃焼領域で
の化学反応を効率良く促進できる。
By making the amount of pulverized coal that is completely burned in the primary combustion region larger than that of the pulverized coal that is thermally decomposed in the secondary combustion region, the emission of unburned fuel can be reduced, and further, the high temperature in the primary combustion region can be achieved. Since the thermal decomposition products generated in the secondary combustion region are oxidized by the excess oxygen heated to the above, the chemical reaction in the tertiary combustion region can be efficiently promoted.

【0012】本発明の一実施態様においては、この酸素
濃度調整のために微粉炭燃焼排ガスを利用し、燃焼排ガ
スと燃焼用空気との混合比を制御することにより、熱分
解雰囲気中の酸素濃度が調整される。
In one embodiment of the present invention, the pulverized coal combustion exhaust gas is used for adjusting the oxygen concentration, and the mixing ratio of the combustion exhaust gas and the combustion air is controlled, whereby the oxygen concentration in the thermal decomposition atmosphere is controlled. Is adjusted.

【0013】また本発明の一実施態様においては、熱分
解領域の酸素濃度調整を容易にするため、上記混合気体
は、微粉炭搬送に用いられ、燃焼火炉内の微粉炭の熱分
解領域に噴出させるために用いられる。
Further, in one embodiment of the present invention, in order to facilitate adjustment of the oxygen concentration in the pyrolysis zone, the above mixed gas is used to convey pulverized coal and is jetted to the pyrolysis zone of the pulverized coal in the combustion furnace. It is used to

【0014】更に本発明の効果をより有効に発揮するに
は、第2次燃焼領域で熱分解させる微粉炭の噴出気体、
即ち燃焼排ガスと空気との混合気の酸素濃度を好ましく
は3〜5体積%とする。すなわち、酸素共存下でもNO
xを選択的に還元できるNH3を、微粉炭の熱分解反応で
効率良く発生させるには、熱分解条件を選定する必要が
あり、発明者らは鋭意検討の結果、熱分解雰囲気の酸素
濃度が3〜5%の時に、NH3が最も多く微粉炭から発
生することを発見した。従って、第2次燃焼領域での酸
素濃度を3〜5体積%とする、即ち混合気の酸素濃度を
3〜5体積%に空気と燃焼排ガスの混合比を調整するこ
とにより、第3次燃焼領域で進ませるNOxの還元反応
を効果的に促進できる。
Further, in order to more effectively bring out the effect of the present invention, the pulverized coal gas ejected by pyrolysis in the secondary combustion region,
That is, the oxygen concentration of the mixture of combustion exhaust gas and air is preferably 3 to 5% by volume. That is, NO even in the presence of oxygen
In order to efficiently generate NH 3 capable of selectively reducing x in the thermal decomposition reaction of pulverized coal, it is necessary to select thermal decomposition conditions. As a result of intensive studies, the inventors have found that the oxygen concentration in the thermal decomposition atmosphere is high. It was discovered that NH 3 is most abundant from pulverized coal when 3 to 5%. Therefore, the oxygen concentration in the secondary combustion region is set to 3 to 5% by volume, that is, the oxygen concentration of the air-fuel mixture is adjusted to 3 to 5% by volume, and the mixing ratio of the air and the combustion exhaust gas is adjusted so that the tertiary combustion is performed. It is possible to effectively promote the NOx reduction reaction that proceeds in the region.

【0015】また、酸素共存下でNH3とNOxとを効果
的に反応させるには900℃以上の反応温度が好適であ
り、このため前記微粉炭熱分解生成物とNOx含有燃焼
ガスとは燃焼火炉内で混合し、NOxの還元反応を進ま
せることが好ましい。
Further, a reaction temperature of 900 ° C. or higher is suitable for effectively reacting NH 3 and NOx in the presence of oxygen, and therefore the pulverized coal pyrolysis product and the NOx-containing combustion gas are burned. It is preferable to mix them in a furnace to accelerate the NOx reduction reaction.

【0016】[0016]

【実施例】以下図面を参照して本発明による微粉炭の燃
焼方法と燃焼用のバーナの実施態様を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a pulverized coal combustion method and a burner for combustion according to the present invention will be described below with reference to the drawings.

【0017】図1において、微粉炭燃焼用バーナは、微
粉炭と1次空気から成る燃料混合気を供給する微粉炭ノ
ズル01と、2次空気ノズル02と、3次空気ノズル0
3とから構成される。燃料混合気と2次空気によりバー
ナ先端近傍に理論空気量以下の燃焼空気量で燃焼する1
次燃焼領域が形成され、その後流に3次空気と1次燃焼
領域からの燃焼排出物による2次燃焼領域が形成され
る。1次燃焼領域では石炭中のN分からNOxの他にア
ンモニア及びシアン系化合物が生成され、2次燃焼領域
でこれらの窒素化合物が反応してNOxが還元される。
In FIG. 1, a pulverized coal combustion burner comprises a pulverized coal nozzle 01, a secondary air nozzle 02 and a tertiary air nozzle 0 for supplying a fuel mixture composed of pulverized coal and primary air.
3 and 3. Combustion of fuel mixture and secondary air near the burner tip with a combustion air amount less than the theoretical air amount 1
A secondary combustion zone is formed, and a secondary combustion zone is formed in the subsequent flow by the tertiary air and the combustion exhaust from the primary combustion zone. In the primary combustion region, ammonia and cyan compounds are produced in addition to NOx from the N content in the coal, and in the secondary combustion region, these nitrogen compounds react to reduce NOx.

【0018】図2において、微粉炭燃焼バーナは2つの
微粉炭ノズル12,13、2次空気ノズル17、3次空
気ノズル18、イグナイタ16から構成される。微粉炭
及びこれを搬送、噴出させるための1次空気から成る燃
料混合気を噴出させる微粉炭ノズル12から、燃料微粉
炭の大半が噴出し、2次空気ノズル17、3次空気ノズ
ル18から噴出する2次空気、3次空気とにより、空気
比が1以上の第1次燃焼領域21が、バーナ先端に形成
される。更に本実施例では、第1次燃焼領域21での火
炎を短炎化するとともに、他の燃焼領域から独立させる
ために、2次空気ノズル17及び3次空気ノズル18を
微粉炭ノズル12の外周に設置し、燃焼空気に旋回流を
与えるための、2次空気旋回羽根14及び3次空気旋回
羽根15がそれぞれのノズル内に設置されている。微粉
炭ノズル13は3次空気ノズル18の外周に設置され、
ノズル13より、酸素濃度が3〜5体積%に調整された
燃焼排ガスと空気との混合気と、微粉炭とから成る燃料
混合気が噴出する。ノズル13から噴出される燃料混合
気により、第1次燃焼領域21の外周上に第2次燃焼領
域22が形成され、この領域で第1次燃焼領域21から
伝わる熱と混合気中に含まれる酸素とにより微粉炭の熱
分解反応が進み、還元性の熱分解生成物が発生する。
In FIG. 2, the pulverized coal combustion burner comprises two pulverized coal nozzles 12, 13, a secondary air nozzle 17, a tertiary air nozzle 18, and an igniter 16. Most of the fuel pulverized coal is ejected from the pulverized coal nozzle 12 which ejects the fuel mixture composed of the pulverized coal and the primary air for carrying and ejecting the pulverized coal, which is ejected from the secondary air nozzle 17 and the tertiary air nozzle 18. The primary combustion region 21 having an air ratio of 1 or more is formed at the tip of the burner by the secondary air and the tertiary air. Further, in the present embodiment, the secondary air nozzle 17 and the tertiary air nozzle 18 are provided on the outer periphery of the pulverized coal nozzle 12 in order to shorten the flame in the primary combustion region 21 and to make it independent of other combustion regions. , And a secondary air swirl vane 14 and a tertiary air swirl vane 15 for imparting a swirl flow to the combustion air are installed in the respective nozzles. The pulverized coal nozzle 13 is installed on the outer periphery of the tertiary air nozzle 18,
From the nozzle 13, a fuel mixture composed of a combustion exhaust gas and air whose oxygen concentration is adjusted to 3 to 5% by volume and a pulverized coal is ejected. The fuel mixture injected from the nozzle 13 forms a secondary combustion region 22 on the outer periphery of the primary combustion region 21, and the heat and the mixture transmitted from the primary combustion region 21 are included in this region in the secondary combustion region 22. The thermal decomposition reaction of pulverized coal proceeds with oxygen, and a reducing thermal decomposition product is generated.

【0019】第2次燃焼領域22で発生する還元性熱分
解生成物の酸化及び第1次燃焼領域21で発生するNO
xの還元反応が起きる第3次燃焼領域23が、第1次及
び第2次燃焼領域の後流に形成される。
Oxidation of the reducing thermal decomposition products generated in the secondary combustion zone 22 and NO generated in the primary combustion zone 21
A third combustion zone 23 in which a reduction reaction of x takes place is formed in the wake of the first and second combustion zones.

【0020】実施例1 日本国内炭及び日本国内炭を1000℃の不活性雰囲気
内で加熱して製造したチャー(石炭熱分解時に残留する
可燃性固体)を白金製ホルダーに詰め、1000℃に加
熱した時に発生するNH3を定量することにより、石炭
中のN分及びチャー中のN分のNH3転換率を測定し
た。第3図は熱分解雰囲気中の酸素濃度を1〜7体積%
の範囲で変化させ、雰囲気酸素濃度のNH3転換率への
影響を検討した結果である。横軸に熱分解時の酸素濃
度、縦軸に石炭及びチャー中のN分のNH3転換率を示
す。第3図より明らかなように、NH3転換率は酸素濃
度の影響を大きく受け、更にNH3の転換率を最大にす
る最適な酸素濃度が存在する。石炭中N分のNH3転換
率は酸素濃度約3体積%で最大になり、チャー中のN分
は酸素濃度約5体積%でNH3転換率が最大になる。
Example 1 Japanese domestic charcoal and char produced by heating Japanese domestic charcoal in an inert atmosphere at 1000 ° C. (combustible solid remaining during pyrolysis of coal) were packed in a platinum holder and heated to 1000 ° C. The NH 3 conversion rate of N content in coal and N content in char was measured by quantifying NH 3 generated at the time. Figure 3 shows the oxygen concentration in the pyrolysis atmosphere at 1 to 7% by volume.
It is the result of studying the influence of the atmospheric oxygen concentration on the NH 3 conversion rate by changing the temperature in the range. The horizontal axis shows the oxygen concentration during thermal decomposition, and the vertical axis shows the NH 3 conversion rate of N content in coal and char. As is clear from FIG. 3, the NH 3 conversion rate is greatly affected by the oxygen concentration, and there is an optimum oxygen concentration that maximizes the NH 3 conversion rate. NH 3 conversion in coal N content is maximized at an oxygen concentration of about 3 vol%, N content in the char is NH 3 conversion is maximized at an oxygen concentration of about 5% by volume.

【0021】実施例2 第4図は、実施例1の実験結果を得た実験装置と同一装
置を用い、実施例1と同様に熱分解雰囲気中の酸素濃度
の石炭中N分のNH3転換率に及ぼす影響をみたもので
ある。本実施例では、炭種の影響を検討するために、オ
ーストラリア炭,中国炭の熱分解反応実験を試みた。熱
分解温度は実施例1同様1000℃である。第4図より
明らかなように、炭種によって多少の最適酸素濃度範囲
に違いはあるが、実施例1の日本国内炭同様、オースト
ラリア炭,中国炭とも、熱分解雰囲気の酸素濃度が約3
体積%付近で石炭中N分のNH3転換率が最大になる。
Example 2 FIG. 4 shows the same apparatus as the experimental apparatus for which the experimental results of Example 1 were obtained, and using the same apparatus as in Example 1, NH 3 conversion of N content in coal having oxygen concentration in the thermal decomposition atmosphere was carried out. This is the effect on the rate. In this example, in order to examine the effect of coal type, an experiment of thermal decomposition reaction of Australian coal and Chinese coal was tried. The thermal decomposition temperature is 1000 ° C. as in Example 1. As is clear from FIG. 4, although there is a slight difference in the optimum oxygen concentration range depending on the type of coal, the oxygen concentration in the thermal decomposition atmosphere was about 3 for both Australian and Chinese coals, similar to the Japanese domestic coals of Example 1.
The NH 3 conversion rate of N content in coal is maximized near volume%.

【0022】上記実施例で明らかなように、石炭の熱分
解生成物をNOxの還元剤として効果的に利用するに
は、石炭の熱分解雰囲気中の酸素濃度を最適値に制御す
る必要がある。
As is clear from the above examples, in order to effectively use the thermal decomposition product of coal as a reducing agent for NOx, it is necessary to control the oxygen concentration in the thermal decomposition atmosphere of coal to an optimum value. .

【0023】[0023]

【発明の効果】以上説明したとおり本発明の微粉炭の燃
焼方法及び燃焼用バーナによれば、燃焼排ガスと空気と
の混合とにより、微粉炭熱分解領域の酸素濃度を調整
し、石炭中N分のNOx還元に有効なNH3への転換率を
向上させることができるため、微粉炭の低NOx燃焼が
可能となる。即ち、通常の燃焼ではNOxへ転換する石
炭中のN分を、熱分解領域でNH3へ転換し、これをN
Oxの還元に用いることができるため、微粉炭の燃焼を
低NOx化できる。また、本発明によれば空気比1以上
の完全燃焼領域を形成するため、未燃燃料の排出を低減
することが可能である。さらに、本発明によれば、微粉
炭を2系統に分けて燃焼させることにより、一方のノズ
ルで空気比1未満の着火性の良い条件で火炎を形成する
ため、燃焼負荷が低い場合でも、すなわち、他方のノズ
ルから噴出する微粉炭とこれを搬送する空気との混合物
中の微粉炭濃度が低くても、他方のノズルからの火炎を
形成し易い。
As described above, according to the pulverized coal combustion method and the combustion burner of the present invention, the oxygen concentration in the pulverized coal pyrolysis region is adjusted by mixing the combustion exhaust gas with the air, and the N in coal is adjusted. Since it is possible to improve the conversion rate of NH 3 into NH 3 which is effective for NOx reduction, low NOx combustion of pulverized coal becomes possible. That is, the N content in coal, which is converted to NOx in normal combustion, is converted to NH 3 in the thermal decomposition region, and this is converted to N 3.
Since it can be used for the reduction of Ox, the combustion of pulverized coal can be reduced to NOx. Further, according to the present invention, since the complete combustion region having an air ratio of 1 or more is formed, it is possible to reduce the emission of unburned fuel. Furthermore, according to the present invention, since the pulverized coal is divided into two systems and burned to form a flame under the condition of good ignitability with an air ratio of less than 1, even if the combustion load is low, that is, Even if the pulverized coal concentration in the mixture of the pulverized coal ejected from the other nozzle and the air carrying the same is low, the flame from the other nozzle is easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るバーナの側断面図である。FIG. 1 is a side sectional view of a burner according to the present invention.

【図2】本発明の別の実施例によるバーナの側断面図で
ある。
FIG. 2 is a side sectional view of a burner according to another embodiment of the present invention.

【図3】NH3転換率と酸素濃度との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the NH 3 conversion rate and the oxygen concentration.

【図4】NH3転換率と酸素濃度との関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the NH 3 conversion rate and the oxygen concentration.

【符号の説明】[Explanation of symbols]

01 微粉炭ノズル 02 2次空気ノズル 03 3次空気ノズル 04 点火用バーナ 05 旋回羽根 06 旋回羽根 07 着火用補助燃料供給孔 08 微粉炭供給孔 09 2次空気供給孔 10 3次空気供給孔 11 微粉炭供給孔 12 微粉炭ノズル 13 微粉炭ノズル 14 2次空気旋回羽根 15 3次空気旋回羽根 16 イグナイタ 17 2次空気ノズル 18 3次空気ノズル 21 第1次燃焼領域 22 第2次燃焼領域 23 第3次燃焼領域 01 Pulverized coal nozzle 02 Secondary air nozzle 03 Tertiary air nozzle 04 Ignition burner 05 Swivel blade 06 Swirl blade 07 Auxiliary fuel supply hole for ignition 08 Pulverized coal supply hole 09 Secondary air supply hole 10 Tertiary air supply hole 11 Fine powder Charcoal supply hole 12 Pulverized coal nozzle 13 Pulverized coal nozzle 14 Secondary air swirl vane 15 Tertiary air swirl vane 16 Igniter 17 Secondary air nozzle 18 Tertiary air nozzle 21 Primary combustion region 22 Secondary combustion region 23 Third Next combustion area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嵐 紀夫 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 稲田 徹 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 相馬 憲一 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 大塚 馨象 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 菱沼 孝夫 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Arashi 3-1-1, Saiwaicho, Hitachi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Toru Inada 3-chome, Hitachi, Hitachi, Ibaraki No. 1 in Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Kenichi Soma 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory in Hitachi (72) Inventor Kazushi Otsuka Hitachi City, Ibaraki Prefecture 3-1, 1-1 Sachimachi Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takao Hishinuma 3-1-1 1-1 Sachimachi Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭と1次空気からなる燃料混合気を
バーナより噴出し、該燃料混合気の外周より2次空気を
噴出し、該2次空気の外周より3次空気を噴出すること
によって、前記バーナ先端近傍に前記燃料混合気と前記
2次空気により理論空気量以下の燃焼空気量で燃焼する
1次燃焼領域を形成して微粉炭中の窒素分からNOxと
アンモニア及びシアン系化合物を生成させる燃焼を行
い、該1次燃焼領域の後流に前記3次空気と該1次燃焼
領域からの燃焼排出物による2次燃焼領域を形成してN
Oxを還元する燃焼を行うようにしたことを特徴とする
微粉炭燃焼方法。
1. A fuel mixture composed of pulverized coal and primary air is ejected from a burner, secondary air is ejected from the outer periphery of the fuel mixture, and tertiary air is ejected from the outer periphery of the secondary air. Thereby forming a primary combustion region near the tip of the burner where the fuel mixture and the secondary air are burned at a combustion air amount less than the theoretical air amount to remove NOx, ammonia and cyan compounds from the nitrogen content in the pulverized coal. Combustion is generated to form a secondary combustion region in the wake of the primary combustion region by the tertiary air and the combustion exhaust from the primary combustion region to generate N.
A pulverized coal combustion method characterized by performing combustion for reducing Ox.
【請求項2】 請求項1において、前記2次空気及び/
又は前記3次空気を旋回流として噴出することを特徴と
する微粉炭燃焼方法。
2. The secondary air according to claim 1, and / or
Alternatively, the pulverized coal combustion method is characterized in that the tertiary air is ejected as a swirling flow.
【請求項3】 微粉炭と1次空気からなる燃料混合気を
燃焼させる第1のノズルと、該第1のノズルの外周に設
けられ2次空気を噴出する第2のノズルと、該第2のノ
ズルの外周に設けられ3次空気を噴出する第3のノズル
とから構成したことを特徴とする微粉炭燃焼用バーナ。
3. A first nozzle for burning a fuel mixture composed of pulverized coal and primary air, a second nozzle provided on the outer circumference of the first nozzle for ejecting secondary air, and the second nozzle. A burner for pulverized coal combustion, comprising: a third nozzle provided on the outer periphery of the nozzle for ejecting tertiary air.
JP4154785A 1992-06-15 1992-06-15 Combustion method of pulverized coal Expired - Lifetime JP2565620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4154785A JP2565620B2 (en) 1992-06-15 1992-06-15 Combustion method of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4154785A JP2565620B2 (en) 1992-06-15 1992-06-15 Combustion method of pulverized coal

Publications (2)

Publication Number Publication Date
JPH05240410A true JPH05240410A (en) 1993-09-17
JP2565620B2 JP2565620B2 (en) 1996-12-18

Family

ID=15591851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4154785A Expired - Lifetime JP2565620B2 (en) 1992-06-15 1992-06-15 Combustion method of pulverized coal

Country Status (1)

Country Link
JP (1) JP2565620B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221159A (en) * 2012-04-13 2013-10-28 Jfe Steel Corp Method of refining molten iron
CN110887037A (en) * 2019-12-19 2020-03-17 沈阳环境科学研究院 Low-nitrogen combustion device for enhancing pulverized coal gasification
CN115164199A (en) * 2022-07-08 2022-10-11 天津大学 Ammonia coal co-combustion low-nitrogen combustor, ammonia coal co-combustion low-nitrogen combustion furnace and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119406A (en) * 1980-02-25 1981-09-19 Kawasaki Heavy Ind Ltd Pulverized coal burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119406A (en) * 1980-02-25 1981-09-19 Kawasaki Heavy Ind Ltd Pulverized coal burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221159A (en) * 2012-04-13 2013-10-28 Jfe Steel Corp Method of refining molten iron
CN110887037A (en) * 2019-12-19 2020-03-17 沈阳环境科学研究院 Low-nitrogen combustion device for enhancing pulverized coal gasification
CN110887037B (en) * 2019-12-19 2024-05-24 沈阳环境科学研究院 Low-nitrogen combustion device for enhancing pulverized coal gasification
CN115164199A (en) * 2022-07-08 2022-10-11 天津大学 Ammonia coal co-combustion low-nitrogen combustor, ammonia coal co-combustion low-nitrogen combustion furnace and use method thereof

Also Published As

Publication number Publication date
JP2565620B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
CA1238570A (en) Method of reducing the no.sub.x emissions during combustion of nitrogen-containing fuels
EP0260382B1 (en) Low nox burner
US4422391A (en) Method of combustion of pulverized coal by pulverized coal burner
US4669398A (en) Pulverized fuel firing apparatus
US5178101A (en) Low NOx combustion process and system
JPH08957A (en) Production of nox reductive precursor for generating plasma from mixture of molecule nitrogen and hydrocarbon
JPH0447204B2 (en)
KR102043956B1 (en) Combustor capable of reducing nitrogen oxide contained in boiler combustion gas and increasing energy efficiency
JP4015026B2 (en) Advanced NOx reduction method for boilers
JP2565620B2 (en) Combustion method of pulverized coal
JPH026961B2 (en)
JPS6138961B2 (en)
JPH0627561B2 (en) Pulverized coal combustion equipment
JPH0259361B2 (en)
JPH0814505A (en) Method and apparatus for burning low nox of boiler
CA2055028A1 (en) Method of stabilizing a combustion process
GB2094969A (en) Method of combustion of pulverized coal by pulverized coal burner
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
RU2013691C1 (en) Cyclone precombustion chamber of boiler
JPH0339804A (en) Burner for combustion of pulverized coal
JPS6260606B2 (en)
JPH0794881B2 (en) Low NO ▲ Lower x ▼ Combustion burner
JPH0229369Y2 (en)
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPH0113207Y2 (en)