JPH0229369Y2 - - Google Patents
Info
- Publication number
- JPH0229369Y2 JPH0229369Y2 JP1983015518U JP1551883U JPH0229369Y2 JP H0229369 Y2 JPH0229369 Y2 JP H0229369Y2 JP 1983015518 U JP1983015518 U JP 1983015518U JP 1551883 U JP1551883 U JP 1551883U JP H0229369 Y2 JPH0229369 Y2 JP H0229369Y2
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- nox
- burner
- air
- pulverized coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 47
- 239000003245 coal Substances 0.000 claims description 36
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000000567 combustion gas Substances 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 119
- 239000000446 fuel Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 238000009841 combustion method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 241001618237 Peltophorum africanum Species 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Description
【考案の詳細な説明】
〔考案の利用分野〕
本考案は、微粉炭燃焼ボイラに係り、特に、低
NOx化を達成するために好適なバーナを用い、
そのバーナ配置と燃焼条件を変化させて、低
NOx化を図る低NOx燃焼ボイラに関する。[Detailed description of the invention] [Field of application of the invention] The invention relates to a pulverized coal combustion boiler, and in particular,
Using a suitable burner to achieve NOx conversion,
By changing the burner arrangement and combustion conditions,
Regarding low NOx combustion boilers that aim to reduce NOx.
石炭を燃料とする場合、塊炭を粉砕機(ミル)
で微粉化した、いわゆる微粉炭を直接バーナから
火炉内に噴出させて燃焼させる微粉炭燃焼法が広
く実用に供されている。微粉炭燃焼の際発生する
窒素酸化物(NOx)は、石炭中に含有される窒
素分(N分)が酸化されて発生するFuelNOxと、
燃焼用空気中の窒素分(N2)が酸化されて発生
するThermalNOxとに大別されるが、石炭中に
は1%前後の多量の窒素分が含まれ、全NOx発
生量の80%以上はFuelNOxである。従つて、微
粉炭燃焼でのNOx対策はこのFuelNOxに主眼点
が置かれ、多くの機関で検討されているが、現状
では実用化までには至つていない。しかし、微粉
炭燃焼法を改善することによつて、燃焼領域で低
NOx化を図る低NOx燃焼法の関発が活発に推進
されている。特に、ボイラの火炉内を反応器とし
て利用し、微粉炭燃焼条件を種々設定することに
よつて、NOxとNOxの還元性物質とが生成する
ことに着目し、発生したNOxを火炉内で還元性
物質と反応させ、N2に還元する燃焼法が特公昭
55−21922号に記載されている。この発明は、従
来の微粉炭燃焼に対し、NOxを低減できること
で一歩前進した燃焼法である。この発明は、火炉
内のバーナ配置と、燃料と燃焼用空気量の配分比
率を選定し、主バーナでは微粉炭を完全に燃焼さ
せ、NOxを比率的多く発生させ、未燃分を少な
くする燃焼条件に設定し、後流側の副バーナでは
不完全燃焼条件で還元性物質(例えばNH3)な
どを発生させ、主バーナで発生したNOxと還元
性物質を反応させてNOxをN2に還元しようとす
るもので、最後流側では燃焼用補助空気のみを火
炉内に噴出させ、副バーナでの不完全燃焼域で生
成した未燃分を完全に燃焼させて、未燃分を増加
させることなく、低NOx化を達成しようとする
ものである。しかし、次に示すような問題点があ
る。一つは、火炉内の限られた反応場で、主バー
ナで生成したNOxと、副バーナで生成したNH3
等の還元性物質を反応させるためには両者の火炎
の混合を充分に促進することが必要である。これ
と同時に、混合が促進されても火炉内の限られた
滞留時間内では、全ての生成NOxが100%N2に
還元することは不可能であり、主バーナで生成し
た一部のNOxはそのまま排出される。この未反
応のNOx量は、主バーナから生成するNOx量に
大きく左右され、特公昭55−21922号には主バー
ナでのNOx生成量が明記されておらず、主バー
ナの空気比が1.0以上の場合では、NOx生成量も
多いことから、未反応のNOxが多くなる懸念が
ある。第二に、主バーナと副バーナから燃焼する
微粉炭の配分量が不明確であり、仮に副バーナの
燃料量が多い場合には、副バーナでは空気比1.0
以下の空気不足の条件で燃焼させるために、未燃
分が多く、これを後流側で噴出させる補助燃焼空
気によつて燃焼させる。この未燃分を燃焼させる
際に、未燃分中に残留する窒素分が酸化されて生
成するCharNOxが無対策のまま排出されること
になる。このCharNOxの生成量は副バーナから
の供給量に左右されるため、火炉内からの排出
NOx量が無視できなくなる。さらに、副バーナ
からの未燃分増加は補助空気との混合によつて促
進されるもので、混合条件によつて排出される未
燃分が増加し、燃焼効率の低下を招く。
If coal is used as fuel, the lump coal is crushed by a mill.
A pulverized coal combustion method, in which so-called pulverized coal is pulverized directly from a burner into a furnace and combusted, is widely used in practice. Nitrogen oxides (NOx) generated during pulverized coal combustion are FuelNOx, which is generated when the nitrogen content (N content) contained in coal is oxidized, and
Thermal NOx is generated by the oxidation of nitrogen (N 2 ) in the combustion air. Coal contains a large amount of nitrogen, around 1%, and accounts for over 80% of the total NOx generated. is FuelNOx. Therefore, fuel NOx is the main focus of NOx countermeasures in pulverized coal combustion, and is being considered by many organizations, but it has not yet been put into practical use. However, by improving the pulverized coal combustion method, low
The involvement of low NOx combustion methods to reduce NOx emissions is being actively promoted. In particular, we focused on the fact that NOx and NOx reducing substances are generated by using the furnace of a boiler as a reactor and setting various pulverized coal combustion conditions, and reducing the generated NOx in the furnace. A combustion method that reacts with a chemical substance and reduces it to N2 was developed by the Special Publication Show.
No. 55-21922. This invention is a combustion method that is one step ahead of conventional pulverized coal combustion by reducing NOx. This invention is a combustion engine that selects the burner arrangement in the furnace and the distribution ratio of fuel and combustion air to completely burn pulverized coal in the main burner, generate a proportionate amount of NOx, and reduce unburned matter. The secondary burner on the downstream side generates reducing substances (such as NH 3 ) under incomplete combustion conditions, and the NOx generated in the main burner reacts with the reducing substances to reduce NOx to N 2 . At the last stream side, only auxiliary air for combustion is injected into the furnace, and the unburned matter generated in the incomplete combustion area of the auxiliary burner is completely combusted, thereby increasing the amount of unburned matter. The aim is to achieve low NOx emissions. However, there are problems as shown below. One is the limited reaction field inside the furnace, where NOx generated in the main burner and NH3 generated in the auxiliary burner are
In order to react with reducing substances such as, it is necessary to sufficiently promote the mixing of the flames of the two. At the same time, even if mixing is promoted, it is impossible to reduce all the generated NOx to 100% N2 within the limited residence time in the furnace, and some NOx generated in the main burner is It is discharged as is. The amount of unreacted NOx is greatly affected by the amount of NOx generated from the main burner, and the amount of NOx generated by the main burner is not specified in Japanese Patent Publication No. 55-21922, and the air ratio of the main burner is 1.0 or more. In this case, since the amount of NOx produced is large, there is a concern that unreacted NOx will increase. Second, the amount of pulverized coal burned from the main burner and the auxiliary burner is unclear, and if the amount of fuel in the auxiliary burner is large, the air ratio in the auxiliary burner is 1.0.
In order to carry out combustion under the following air shortage conditions, there is a large amount of unburned matter, which is combusted by the auxiliary combustion air jetted out on the downstream side. When this unburned content is combusted, the nitrogen content remaining in the unburned content is oxidized and CharNOx is generated without any countermeasures being taken and discharged. The amount of CharNOx produced depends on the amount supplied from the auxiliary burner, so the amount of CharNOx emitted from the furnace
The amount of NOx can no longer be ignored. Furthermore, the increase in unburned matter from the auxiliary burner is promoted by mixing with auxiliary air, and depending on the mixing conditions, the amount of unburned matter discharged increases, leading to a decrease in combustion efficiency.
本考案の目的は、火炉内を反応器として利用
し、排出未燃分を少なくし、且つ、効果的に低
NOx化を達成することのできる低NOx燃焼ボイ
ラを提供すにある。
The purpose of this invention is to use the inside of the furnace as a reactor to reduce unburned emissions and effectively reduce
The purpose of the present invention is to provide a low NOx combustion boiler that can achieve NOx reduction.
本考案は、微粉炭を二分割し、中心部より微粉
炭と一次空気を、外周より微粉炭と二次空気を、
さらに、外周からは燃焼補助空気を噴出させる構
造とした低NOxバーナを用いた。主バーナでは
空気比1.0以上で未燃分を少なくし、且つ、NOx
濃度を低減するようにすると共に、主バーナから
の微粉炭供給量は副バーナからの供給量より多く
することで、副バーナからは空気比1.0以下の低
空気比燃焼を行ない、主バーナから生成された低
NOx濃度を還元するのに必要な還元性物質の発
生量となる空気比を選定する。この条件は、比較
的空気比が1.0に近い領域となり、未燃分の生成
量は従来技術に比べ低いと同時に、微粉炭供給量
も主バーナに比べ少ないので未燃分の総量を低減
することができる。従つて、最終段での未燃分燃
焼領域で生成するCharNOxを低減でき、未燃分
の排出量も低減され、高い燃焼効率を保ちながら
効果的に低NOx化を達成できる。
This invention divides pulverized coal into two parts, pulverized coal and primary air from the center, and pulverized coal and secondary air from the outer periphery.
Furthermore, we used a low NOx burner with a structure that blows out combustion auxiliary air from the outer periphery. In the main burner, the air ratio is 1.0 or more to reduce unburned content and reduce NOx.
In addition to reducing the concentration, the amount of pulverized coal supplied from the main burner is greater than the amount supplied from the auxiliary burner, so that the auxiliary burner performs low air ratio combustion with an air ratio of 1.0 or less, and the pulverized coal is generated from the main burner. low
Select the air ratio that will generate the amount of reducing substances necessary to reduce the NOx concentration. Under this condition, the air ratio is relatively close to 1.0, and the amount of unburned matter produced is lower than that of conventional technology, and at the same time, the amount of pulverized coal supplied is smaller than that of the main burner, so the total amount of unburned matter can be reduced. Can be done. Therefore, CharNOx generated in the unburnt combustion region in the final stage can be reduced, the amount of unburnt emissions also reduced, and NOx reduction can be effectively achieved while maintaining high combustion efficiency.
以下、本考案の実施例を第1図ないし第7図を
用いて具体的に説明する。第1図は本考案の一つ
である主バーナに用いる低NOxバーナの略図を
示す。本バーナは円軸円筒状から形成する。中心
ノズル1は点火用の重油噴出ノズルである。微粉
炭は中心ノズル1の外周に設けたノズル3と、さ
らに外周のリング状に形成したノズル4から二分
割して噴出できるよう構成される。さらに外周に
は三次空気ノズル7が配置される。ノズル3より
噴出する微粉炭及び空気を一次燃料と一次空気と
称し、ノズル4より噴出する微粉炭と空気を二次
燃料と二次空気と呼ぶ。本バーナの特性を第2
図、第3図に示す。第2図で明らかなように、二
次燃料比(=二次燃料/全燃料)は0.5、すなわ
ち、一次及び二次燃料は等分して供給することで
最も低NOx化が達成できる。第3図は、第2図
の結果を基に燃料を等分に供給し、一次空気量を
一次燃料に対し、空気比を0.2とした場合の全空
気比に対する燃焼灰中の未燃分の関係を示したも
ので、二次燃料が空気比≫1.0の条件で燃焼させ
ることで、未燃分が極めて少ないことが判る。ま
た、第2図で示すように低NOx化が図れる原因
としては、第4図に示すように、一次燃料が空気
比が0.2程度で燃焼していることで、還元性物質
の一つであるNH3が多量に生成し、二次燃料の
燃焼で発生したNOxと反応し、NOxをN2に還元
することができるためである。特に、NH3など
の還元性物質とNOxを一次火炎と二次火炎で同
時に発生させ、二次火炎は、第1図に示した旋回
器5によつて旋回した火炎を形成するために、
NH3などの還元性物質とNOxを火炎後流側で積
極的に混合を促進できるために低NOx化が効果
的に実施できる。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 7. FIG. 1 shows a schematic diagram of a low NOx burner used as the main burner, which is one of the inventions. This burner is formed from a cylindrical shape. The center nozzle 1 is a heavy oil injection nozzle for ignition. The pulverized coal is divided into two parts and ejected from a nozzle 3 provided on the outer periphery of the central nozzle 1 and a nozzle 4 formed in a ring shape on the outer periphery. Furthermore, a tertiary air nozzle 7 is arranged on the outer periphery. The pulverized coal and air ejected from the nozzle 3 are referred to as primary fuel and primary air, and the pulverized coal and air ejected from the nozzle 4 are referred to as secondary fuel and secondary air. The characteristics of this burner are as follows.
As shown in Fig. 3. As is clear from FIG. 2, the lowest NOx reduction can be achieved by setting the secondary fuel ratio (=secondary fuel/total fuel) to 0.5, that is, by supplying the primary and secondary fuels in equal parts. Figure 3 shows the amount of unburned ash in the combustion ash relative to the total air ratio when fuel is supplied equally based on the results in Figure 2, and the amount of primary air is set to 0.2 relative to the primary fuel. This shows the relationship, and it can be seen that by burning the secondary fuel under the condition that the air ratio≫1.0, the amount of unburned matter is extremely small. Also, as shown in Figure 2, the reason for the low NOx reduction is that the primary fuel is burned at an air ratio of about 0.2, which is one of the reducing substances, as shown in Figure 4. This is because a large amount of NH 3 is generated, which reacts with NOx generated by the combustion of secondary fuel and can reduce NOx to N 2 . In particular, in order to simultaneously generate reducing substances such as NH 3 and NOx in a primary flame and a secondary flame, and the secondary flame to form a flame swirled by the swirler 5 shown in FIG.
Since reducing substances such as NH 3 and NOx can be actively mixed on the flame trail side, NOx reduction can be effectively achieved.
次に、主バーナと副バーナから供給する微粉炭
の配分量の決定を第5図に従い説明する。微粉炭
燃焼では、石炭中に含有される窒素分に起因する
FuelNOxが全NOxの大部分を占めることを述べ
たが、さらにFuelNOxは、揮発分の燃焼の際発
生するVolatileNOxと固定成分であるチヤーの
燃焼に伴つて発生するCharNOxとに分類される。
第5図は、このVolatileNOxとCharNOxの発生
割合を測定した結果であり、燃焼は予め微粉炭と
燃焼用空気の全量を混合させて噴出する完全予混
合型のバーナを用いて実験を行なつた。この結
果、FuelNOxの大半はVolatileNOxであるが、
低NOx化を達成するにはCharNOxも無視できな
いことが明らかにできた。すなわち、主バーナに
第1図のの燃料分割バーナを用い、且つ、微粉炭
の供給量は副バーナに比べ多量とする。これによ
つて副バーナの燃焼量を低減し、副バーナは第4
図に示すように、主バーナで生成したNOxを還
元するためのNH3などの還元性物質を生成させ
るために、空気比1.0以下にする必要がある。こ
の燃焼条件によつて灰中未燃分も増加することに
なるが、微粉炭の絶対量が主バーナより少ないた
めに、未燃分の量も低減できる。しかも、主バー
ナから発生するNOx濃度は低濃度であることか
ら副バーナの燃焼条件は空気が1.0に近い領域で
燃焼させることができ、未燃分も比較的少なく抑
えることができる。従つて、微粉炭の供給配分は
主バーナが副バーナに比べて多い程効果が大き
い。 Next, the determination of the amount of pulverized coal to be distributed from the main burner and the auxiliary burner will be explained with reference to FIG. In pulverized coal combustion, this is caused by the nitrogen content in the coal.
As mentioned above, FuelNOx accounts for most of the total NOx, but FuelNOx is further classified into VolatileNOx, which is generated when volatile matter is burned, and CharNOx, which is generated when the fixed component, char, is burned.
Figure 5 shows the results of measuring the generation ratio of VolatileNOx and CharNOx, and the experiment was conducted using a fully premixed burner that mixes the entire amount of pulverized coal and combustion air beforehand. . As a result, most of FuelNOx is VolatileNOx,
It became clear that CharNOx cannot be ignored in order to achieve low NOx reduction. That is, the fuel split burner shown in FIG. 1 is used as the main burner, and the amount of pulverized coal supplied is larger than that of the auxiliary burner. This reduces the combustion amount of the auxiliary burner, and the auxiliary burner
As shown in the figure, in order to generate reducing substances such as NH 3 to reduce NOx generated in the main burner, the air ratio needs to be 1.0 or less. This combustion condition also increases the unburned content in the ash, but since the absolute amount of pulverized coal is smaller than that of the main burner, the amount of unburned content can also be reduced. Moreover, since the concentration of NOx generated from the main burner is low, the combustion conditions in the auxiliary burner can be such that combustion can be performed in a region where the air content is close to 1.0, and unburned matter can also be kept relatively low. Therefore, the supply distribution of pulverized coal is more effective as the number of main burners is greater than the number of sub-burners.
次に、副バーナからの燃焼量が少なくできる波
及効果として、第5図に示すようにCharNOxの
絶対量も低減可能となる。且つ、これによつて最
終領域での未燃分の完全燃焼も容易にすることが
できる。 Next, as a ripple effect of reducing the amount of combustion from the auxiliary burner, the absolute amount of CharNOx can also be reduced, as shown in FIG. Moreover, this also facilitates complete combustion of unburned matter in the final region.
次に、以上説明した個々の特徴を総括し、本考
案低NOxボイラの一実施例を第6図に従い説明
する。主バーナ9は火炉8の最下段(最上流側)
に位置し、その後流側に副バーナ10、さらに後
流側には燃焼用の補助空気の噴出ノズル11が配
置される。本実施例では前面燃焼型(フロントフ
アイアリング)ボイラを例にとつた。又、主バー
ナ9、副バーナ10及びノズル11は複数個配列
した。主バーナ9は第1図に示す燃料分割型の低
NOxバーナを用い、副バーナ10は2段燃焼型
バーナを用いた。主バーナ9には中心ノズルより
一次燃料と一次空気の混合流12を、外周ノズル
より二次燃料と二次空気の混合流13を、さら
に、その外周ノズルより三次空気14を噴出させ
て燃焼火炎Aを形成する。火炎Aは一次火炎によ
つて空気不足の状態で還元性物質の発生を、二次
火炎はNOxの発生をそれぞれ、同時に独立して
進行できるもので、未燃分を抑制しながらNOx
をN2に還元し低NOx化を図ることができる。従
つて、火炎Aからは低濃度のNOxを含む燃焼ガ
スが副バーナからの火炎Bに接触・混合する。副
バーナ10は微粉炭と一次空気の混合流15と燃
焼用補助空気16が供給され、一次、二次空気量
の総量は、微粉炭の理論燃焼空気量以下の空気不
足の条件下で燃焼火炎Bを形成する。前述のよう
に、火炎BではNOxの生成はほとんどなく、還
元性物質の生成が行なわれるから、主バーナで発
生したNOxをこの火炎Bとの混合によつてN2に
還元することができる。また、火炎Bでは未燃分
が発生するために、燃焼補助空気17がノズル1
1から火炉8内に噴出するために、火炎Bで発生
した未燃分の燃焼火炎Cが形成し、最終燃焼領域
で未燃分対策が実施される。 Next, the individual features explained above will be summarized, and one embodiment of the low NOx boiler of the present invention will be described with reference to FIG. The main burner 9 is the lowest stage (most upstream side) of the furnace 8
An auxiliary burner 10 is placed on the downstream side, and a combustion auxiliary air jet nozzle 11 is placed on the downstream side. In this embodiment, a front firing boiler is taken as an example. Further, a plurality of main burners 9, sub-burners 10, and nozzles 11 were arranged. The main burner 9 is a fuel split type low burner shown in Figure 1.
A NOx burner was used, and the auxiliary burner 10 was a two-stage combustion type burner. In the main burner 9, a mixed flow 12 of primary fuel and primary air is ejected from the center nozzle, a mixed flow 13 of secondary fuel and secondary air is ejected from the outer nozzle, and tertiary air 14 is ejected from the outer nozzle to create a combustion flame. Form A. Flame A is a primary flame that generates reducing substances in an air-starved state, and the secondary flame generates NOx, both of which can proceed independently at the same time.
can be reduced to N 2 to reduce NOx. Therefore, combustion gas containing a low concentration of NOx from flame A contacts and mixes with flame B from the auxiliary burner. The auxiliary burner 10 is supplied with a mixed flow 15 of pulverized coal and primary air and auxiliary air 16 for combustion, and the total amount of primary and secondary air is equal to or less than the theoretical combustion air amount of pulverized coal. Form B. As mentioned above, in the flame B, almost no NOx is generated, and reducing substances are generated, so that the NOx generated in the main burner can be reduced to N 2 by mixing with the flame B. In addition, since unburned matter is generated in the flame B, the combustion auxiliary air 17 is supplied to the nozzle 1.
1 into the furnace 8, a combustion flame C of the unburned matter generated in the flame B is formed, and countermeasures against the unburned matter are implemented in the final combustion region.
以上述べた第6図の構成に基づき、火炉8内で
燃焼する全微粉炭量の配分割合を主バーナ9から
60%、副バーナ10より40%とし、且つ、主バーナ
9では全空気比λ1=0.9〜1.2、副バーナ10では
全空気比λ2=0.8〜0.9、及びノズル11からは火
炉8内に供給する総燃料の微粉炭量に対し、空気
比λ3=1.3に相当する燃焼空気17を噴出して燃
焼した結果、火炉出口NOxは80〜100ppm、未燃
分は2〜3%が得られた。これらの試験結果では
λ1=1.0、λ2=0.9、λ3=1.3で最も低いNOx=
80ppmの値が得られている。 Based on the configuration shown in FIG.
60%, 40% from the auxiliary burner 10, and the total air ratio λ 1 = 0.9 to 1.2 in the main burner 9, the total air ratio λ 2 = 0.8 to 0.9 in the auxiliary burner 10, and from the nozzle 11 into the furnace 8. As a result of ejecting and burning combustion air 17 corresponding to an air ratio λ 3 = 1.3 with respect to the amount of pulverized coal in the total fuel supplied, the NOx at the furnace outlet was 80 to 100 ppm, and the unburned content was 2 to 3%. Ta. These test results show the lowest NOx = λ 1 = 1.0, λ 2 = 0.9, and λ 3 = 1.3.
A value of 80ppm has been obtained.
以上はフロントフアイアリング型燃焼ボイラに
ついて本考案を説明したが、対向燃焼ボイラでも
同様の効果が得られる。 Although the present invention has been described above with respect to a front-firing combustion boiler, similar effects can be obtained with a facing combustion boiler.
なお、図中2は一次燃料供給管、6は三次空気
供給管である。 In addition, in the figure, 2 is a primary fuel supply pipe, and 6 is a tertiary air supply pipe.
本考案によれば、高い燃焼効率を保ちながら、
100ppm以下の超低NOx化が達成でき、波及効果
として、従来の排煙脱硝装置の省略など排煙処理
プロセスの簡略化ができる。
According to this invention, while maintaining high combustion efficiency,
Ultra-low NOx levels of 100 ppm or less can be achieved, and the ripple effect is that the flue gas treatment process can be simplified, such as by eliminating the need for conventional flue gas denitrification equipment.
第1図は本考案の低NOxバーナの断面図、第
2図、第3図は第1図のバーナの特性図、第4図
は低空気比領域でのNOxと還元性物質の一つで
あるNH3の生成特性図、第5図はFuelNOxの内
訳け図、第6図は本考案の全体構成図である。
9……主バーナ、10……副バーナ、11……
空気ノズル、12……一次燃料と一次空気の混合
流、13……二次燃料と二次空気の混合流。
Figure 1 is a cross-sectional view of the low NOx burner of the present invention, Figures 2 and 3 are characteristic diagrams of the burner in Figure 1, and Figure 4 shows the relationship between NOx and one of the reducing substances in the low air ratio region. A certain NH 3 production characteristic diagram, Figure 5 is a breakdown diagram of Fuel NOx, and Figure 6 is an overall configuration diagram of the present invention. 9...Main burner, 10...Sub-burner, 11...
Air nozzle, 12...Mixed flow of primary fuel and primary air, 13...Mixed flow of secondary fuel and secondary air.
Claims (1)
し、最上流側に位置させた複数個の主バーナ、中
段に設けた複数個の副バーナ、さらに上流に燃焼
空気を火炉内に噴出させる複数個の空気ノズルか
ら成り、前記主バーナで生成したNOxを前記副
バーナで生成した還元性物質で還元し、最終段で
噴出する空気により未燃分を燃焼させるものにお
いて、 前記主バーナとして、同心状であつて、その中
心部は微粉炭と一次空気の供給ノズル、これに隣
接する外周には旋回羽根が設けられ、火炎形成可
能な量の微粉炭と二次空気の供給ノズル、さら
に、その外周には燃焼用空気のみを噴出するノズ
ルから構成されることを特徴とする低NOx燃焼
ボイラ。[Scope of claim for utility model registration] A plurality of main burners located at the most upstream side with respect to the flow direction of combustion gas in a pulverized coal combustion boiler, a plurality of auxiliary burners located in the middle stage, and combustion air further upstream. The NOx produced by the main burner is reduced by the reducing substance produced by the auxiliary burner, and the unburned matter is combusted by the air ejected at the final stage. The main burner is concentric, with a supply nozzle for pulverized coal and primary air in the center, and swirl vanes on the outer periphery adjacent to this, and a supply nozzle for supplying pulverized coal and secondary air in an amount capable of forming a flame. A low NOx combustion boiler characterized by comprising a supply nozzle, and a nozzle on its outer periphery that spouts only combustion air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1551883U JPS59124811U (en) | 1983-02-07 | 1983-02-07 | Low NOx combustion boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1551883U JPS59124811U (en) | 1983-02-07 | 1983-02-07 | Low NOx combustion boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59124811U JPS59124811U (en) | 1984-08-22 |
JPH0229369Y2 true JPH0229369Y2 (en) | 1990-08-07 |
Family
ID=30146855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1551883U Granted JPS59124811U (en) | 1983-02-07 | 1983-02-07 | Low NOx combustion boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59124811U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127836A (en) * | 2009-12-17 | 2011-06-30 | Mitsubishi Heavy Ind Ltd | Solid fuel burning burner and solid fuel burning boiler |
JP5374404B2 (en) | 2009-12-22 | 2013-12-25 | 三菱重工業株式会社 | Combustion burner and boiler equipped with this combustion burner |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS549502A (en) * | 1977-06-24 | 1979-01-24 | Pioneer Electronic Corp | Fm stereo democulator beat distortion eliminating circuit |
JPS5495021A (en) * | 1978-01-13 | 1979-07-27 | Babcock Hitachi Kk | Particle coal containing vent air treating low nox burner |
JPS5649803A (en) * | 1979-08-24 | 1981-05-06 | Babcock Hitachi Kk | Combustion method with low nitroxide |
-
1983
- 1983-02-07 JP JP1551883U patent/JPS59124811U/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS549502A (en) * | 1977-06-24 | 1979-01-24 | Pioneer Electronic Corp | Fm stereo democulator beat distortion eliminating circuit |
JPS5495021A (en) * | 1978-01-13 | 1979-07-27 | Babcock Hitachi Kk | Particle coal containing vent air treating low nox burner |
JPS5649803A (en) * | 1979-08-24 | 1981-05-06 | Babcock Hitachi Kk | Combustion method with low nitroxide |
Also Published As
Publication number | Publication date |
---|---|
JPS59124811U (en) | 1984-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2442929C1 (en) | Method of reduction of nitrogen oxides in the boiler working with dispenced carbon where internal combustion type burners are used | |
EP0388886B1 (en) | Method of burning a premixed gas and a combustor for practicing the method | |
US6189464B1 (en) | Pulverized coal combustion burner and combustion method thereby | |
JPH0754162B2 (en) | Burner for low NOx combustion | |
JP4056752B2 (en) | Biomass fuel combustion apparatus and method | |
JPH0447204B2 (en) | ||
JPH0229369Y2 (en) | ||
JPH0627561B2 (en) | Pulverized coal combustion equipment | |
JPH0814505A (en) | Method and apparatus for burning low nox of boiler | |
JPS6138961B2 (en) | ||
JPH08121711A (en) | Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner | |
KR0181527B1 (en) | Low nox emission burner | |
JPH09126412A (en) | Low nox boiler | |
JPH0113207Y2 (en) | ||
KR100253994B1 (en) | Two stage low nox nozzle with the same spray angle | |
JPS6021607Y2 (en) | Premix combustion burner | |
JPS6234090Y2 (en) | ||
JPS58102006A (en) | Low nox pulverized coal burner | |
KR200157863Y1 (en) | Boiler furnace of nitrogen oxide reduction type | |
JPS60162108A (en) | Low nox high efficiency combustion chamber | |
JPS62116818A (en) | Burner device for use in igniting gas, oil coal | |
RU2013699C1 (en) | Gas/oil fuel combustion method | |
JPH0794881B2 (en) | Low NO ▲ Lower x ▼ Combustion burner | |
KR200145483Y1 (en) | Low pollutant burner using three stage combustion | |
JPH0688609A (en) | Exhaust gas-burning gas burner |