JPH08121711A - Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner - Google Patents

Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner

Info

Publication number
JPH08121711A
JPH08121711A JP25316694A JP25316694A JPH08121711A JP H08121711 A JPH08121711 A JP H08121711A JP 25316694 A JP25316694 A JP 25316694A JP 25316694 A JP25316694 A JP 25316694A JP H08121711 A JPH08121711 A JP H08121711A
Authority
JP
Japan
Prior art keywords
pulverized coal
coal
air
nitrogen content
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25316694A
Other languages
Japanese (ja)
Inventor
Hirofumi Okazaki
洋文 岡崎
Yoshinobu Kobayashi
啓信 小林
Masayuki Taniguchi
正行 谷口
Kiyoshi Narato
清 楢戸
Takeshi Kono
豪 河野
Shigeki Morita
茂樹 森田
Shunichi Tsumura
俊一 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP25316694A priority Critical patent/JPH08121711A/en
Publication of JPH08121711A publication Critical patent/JPH08121711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a combustion device provided with a pulverized coal burner being able to decrease a generation quantity of NOx during usage of a plurality of coal kinds. CONSTITUTION: Coal is fractionated according to a nitrogen content including quantity through an ultimate anabysis, and a supplying to pulverized coal burners 52, 53 is executed respectively. Coal having a large nitrogen content is supplied to the pulverized coal burner 52 injecting pulverized coal to a region having an air ratio less than 1 in a combustion room 11, and less nitrogen content including coal is supplied to the pulverized coal burner 53 injecting pulveized coal to a region having an air ratio of 1 and more. By this, NOx generating quantity is, in a reduction region, receive no influence from a nitrogen content of coal. Therefore, if coal having a large nitrogen content is supplied, in the reduction region having an air ratio being less then than 1, reducing type nytrogen compounds such as NH3 , HCN and the like are largely produced and NOx generation quantity can be largely decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭燃焼方法および
微粉炭燃焼装置およびこの微粉炭燃焼装置に用いる微粉
炭バーナに係り、特に、複数の炭種を使用する微粉炭燃
焼装置の窒素酸化物を低減する燃焼方法および燃焼手段
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverized coal combustion method, a pulverized coal combustion device, and a pulverized coal burner used in the pulverized coal combustion device, and more particularly to nitrogen oxidation of a pulverized coal combustion device using a plurality of coal species. The present invention relates to a combustion method and a combustion means for reducing the amount of substances.

【0002】[0002]

【従来の技術】いわゆる化石燃料中には、炭素,水素等
の燃料成分の他に、窒素分が含まれている。この窒素分
が燃焼時に酸化されて生じる窒素酸化物(NOx)は、大
気汚染物質であり、極力低減することが望まれている。
特に石炭の燃焼においては、他の気体燃料や液体燃料に
比べて、燃料中の窒素分の含有量が多い。このため、石
炭燃焼時のNOx生成量は、気体燃料等の燃焼時のNO
x生成量よりも多く、その低減は、重要な課題である。
2. Description of the Related Art So-called fossil fuel contains nitrogen components in addition to fuel components such as carbon and hydrogen. Nitrogen oxides (NOx) produced by the oxidation of this nitrogen component during combustion are air pollutants and are desired to be reduced as much as possible.
Particularly in the combustion of coal, the content of nitrogen in the fuel is higher than that of other gas fuels and liquid fuels. Therefore, the amount of NOx produced during combustion of coal depends on the amount of NOx produced during combustion of gaseous fuel or the like.
It is more than x production amount, and its reduction is an important issue.

【0003】種々の燃料の燃焼時に生ずるNOxは、そ
の発生要因により、サーマルNOxとフューエルNOx
とに分別される。サーマルNOxは、燃焼用空気中の窒
素が高温雰囲気中で酸化されて生成する化合物である。
一方、フューエルNOxは、燃料中に含まれる窒素分が
酸化されて生成する化合物である。微粉炭燃焼の場合
は、発生するNOxの80%近くが、フューエルNOx
であって、全体としてのNOxの低減には、フューエル
NOxの低減が重要となる。
The NOx generated during combustion of various fuels depends on the generation factors of thermal NOx and fuel NOx.
Be sorted into Thermal NOx is a compound produced by oxidizing nitrogen in combustion air in a high temperature atmosphere.
On the other hand, fuel NOx is a compound produced by oxidizing the nitrogen content contained in fuel. In the case of pulverized coal combustion, nearly 80% of the NOx generated is fuel NOx.
Therefore, reduction of fuel NOx is important for reducing NOx as a whole.

【0004】石炭中の可燃成分は、揮発成分と固体成分
とに大別できる。微粉炭の燃焼機構は、揮発成分が石炭
中から放出される熱分解過程と、可燃性固体成分すなわ
ちチャーの燃焼過程とからなる。このうちで、揮発成分
は、燃焼の初期過程で燃焼する。石炭中に含まれる窒素
分も、他の可燃成分と同様に、揮発成分とチャーの中に
残るものとに分かれる。
Combustible components in coal can be roughly classified into volatile components and solid components. The combustion mechanism of pulverized coal includes a thermal decomposition process in which volatile components are released from the coal and a combustion process of combustible solid components, that is, char. Among these, the volatile components burn in the initial stage of combustion. The nitrogen content contained in coal is divided into volatile components and those remaining in char, like other combustible components.

【0005】揮発性の窒素分は、燃焼の初期過程および
酸素不足の燃焼領域において、NH 3,HCN等の窒素
化合物になることが知られている。窒素化合物は、酸素
と反応してNOxとなる他に、NOxと反応してNOx
を窒素に分解する還元反応を起こす。この還元性を有す
る窒素化合物によるNOx還元反応は、低酸素雰囲気に
なるほど進行し易い。
Volatile nitrogen is a component of the early stages of combustion and
In the oxygen-deficient combustion region, NH 3, HCN and other nitrogen
It is known to be a compound. Nitrogen compounds are oxygen
Reacts with NOx and reacts with NOx to NOx
Causes a reduction reaction that decomposes nitrogen into nitrogen. Has this reducibility
NOx reduction reaction by nitrogen compounds
It's easy to progress.

【0006】これに対して、チャーの中に残る窒素分か
ら発生するNOxを低減させる方法としては、チャーの
中の窒素分を一旦気体として放出させ、このうちNOx
として放出されるものを窒素に還元する方法が有効であ
る。チャーの中の窒素分を気体として放出させるには、
チャーを完全燃焼させる必要がある。そこで、微粉炭の
低NOx燃焼では、完全燃焼が不可欠な要素となる。
On the other hand, as a method for reducing NOx generated from the nitrogen content remaining in the char, the nitrogen content in the char is once released as a gas, and NOx
The method of reducing what is released as nitrogen to nitrogen is effective. To release nitrogen in char as gas,
It is necessary to completely burn the char. Therefore, complete combustion is an essential element in low NOx combustion of pulverized coal.

【0007】このように、微粉炭燃焼時のNOx排出量
の低減方法としては、還元性を有する窒素化合物および
チャーをNOxと共存させ、還元性を有する窒素化合物
によりNOxを窒素に還元する燃焼方法が有効である。
As described above, as a method for reducing the NOx emission amount during the combustion of pulverized coal, a combustion method in which a reducing nitrogen compound and char coexist with NOx and NOx is reduced to nitrogen by the reducing nitrogen compound Is effective.

【0008】このような方針に基づき、燃料を分割して
供給する燃焼方法が、例えば特公昭55−21922号
公報に記載されている。この燃焼方法においては、複数
個の微粉炭バーナを使用し、燃料の2段燃焼を行なわせ
る。2段燃焼方法は、主微粉炭バーナから噴出する微粉
炭混合気を空気比が1以上で燃焼させる工程と、NOx
を還元するために2段目の微粉炭バーナから燃料を供給
し空気比が1未満の還元領域を形成する工程と、さらに
空気投入口から空気を供給し,余剰燃料を完全燃焼させ
る工程とからなる。
A combustion method in which fuel is divided and supplied based on such a policy is described in, for example, Japanese Patent Publication No. 55-21922. In this combustion method, a plurality of pulverized coal burners are used to perform two-stage combustion of fuel. The two-stage combustion method includes a step of burning a pulverized coal mixture jetted from the main pulverized coal burner at an air ratio of 1 or more, and NOx.
To supply fuel from the second stage pulverized coal burner to form a reduction region with an air ratio of less than 1, and to supply air from the air inlet to completely burn excess fuel. Become.

【0009】また、特公平4-47204号公報は、単
一微粉炭バーナにおいて、空気比が1未満の還元領域と
空気比が1以上の領域とを明瞭に区分する手段とを開示
している。この燃焼方法では、還元領域を広くとること
により、この還元領域においてNH3,HCN等の還元
性窒素化合物を大量に生成させ、NOxを還元するよう
になっている。
Further, Japanese Examined Patent Publication No. 4-47204 discloses means for clearly distinguishing a reducing region having an air ratio of less than 1 and a region having an air ratio of 1 or more in a single pulverized coal burner. . In this combustion method, by making the reduction region wide, a large amount of reducing nitrogen compounds such as NH 3 and HCN are generated in this reduction region to reduce NOx.

【0010】[0010]

【発明が解決しようとする課題】ところで、一般に、N
Ox排出量を低減しようとすると、未燃焼分の放出が増
加する傾向があるので、NOx排出量と未燃焼分とを同
時に低減するように還元領域を形成することが重要とな
る。特に、近年は、微粉炭燃焼において使用する石炭種
が多様化し、複数炭種の同時燃焼への要望が高まってい
る。複数炭種を同時に燃焼させる場合、還元領域でのN
3,HCN等の還元性窒素化合物の発生量とNOx量
とのバランスをとることが困難になり易く、NOx排出
量の急増につながることがある。
By the way, in general, N
Since attempts to reduce the Ox emission amount tend to increase the release of the unburned component, it is important to form the reduction region so as to reduce the NOx emission amount and the unburned component at the same time. In particular, in recent years, coal types used in pulverized coal combustion have diversified, and there is an increasing demand for simultaneous combustion of multiple coal types. When burning multiple coal types simultaneously, N in the reduction region
It tends to be difficult to balance the amount of reducing nitrogen compounds such as H 3 and HCN generated with the amount of NOx, which may lead to a rapid increase in NOx emissions.

【0011】本発明の目的は、複数の石炭種を使用する
燃焼装置において、火炎中に形成される還元領域でNH
3,HCN等の還元性窒素化合物を大量に発生させ、こ
れらの還元性窒素化合物の還元作用によりNOx排出量
を大幅に低減する微粉炭燃焼方法および微粉炭燃焼装置
およびこの微粉炭燃焼装置に用いる微粉炭バーナを提供
することである。
An object of the present invention is to provide NH in the reduction region formed in the flame in a combustion device using a plurality of coal species.
3 , a pulverized coal combustion method and a pulverized coal combustion apparatus and a pulverized coal combustion apparatus which generate a large amount of reducing nitrogen compounds such as HCN and significantly reduce NOx emissions by the reducing action of these reducing nitrogen compounds The purpose is to provide a pulverized coal burner.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するために、複数の炭種の石炭を複数の微粉炭バーナ
に個別に供給し燃焼させる微粉炭燃焼方法において、複
数の炭種の石炭を元素分析により得られる窒素分の含有
量に応じて予め分別し、空気比(=実際の投入空気量と
微粉炭を完全燃焼させるのに必要な空気量との比)が1
未満の領域に微粉炭および空気の混合気を噴出させる微
粉炭バーナには、分別した石炭のうち窒素分の含有量の
多い石炭を供給し、空気比が1以上の領域に微粉炭およ
び空気の混合気を噴出させる微粉炭バーナには、分別し
た石炭のうち窒素分の含有量の少ない石炭を供給する微
粉炭燃焼方法を提案するものである。
In order to achieve the above object, the present invention provides a pulverized coal combustion method in which coals of a plurality of coal types are individually supplied to a plurality of pulverized coal burners and burned. Of coal is preliminarily fractionated according to the nitrogen content obtained by elemental analysis, and the air ratio (= the ratio of the actual input air amount to the air amount necessary for complete combustion of pulverized coal) is 1
The pulverized coal burner that injects a mixture of pulverized coal and air into the area below is supplied with coal having a high nitrogen content among the separated coal, and the air ratio of 1 or more A pulverized coal combustion method is proposed in which pulverized coal burner for ejecting air-fuel mixture is supplied with coal having a small nitrogen content among the fractionated coals.

【0013】本発明は、また、上記目的を達成するため
に、複数の炭種の石炭を複数の微粉炭バーナに個別に供
給し燃焼させる微粉炭燃焼方法において、複数の炭種の
石炭を元素分析により得られる窒素分の含有量に応じて
予め分別し、空気比を1未満に設定した微粉炭バーナに
は、分別した石炭のうち窒素分の含有量の多い石炭を供
給し、空気比を1以上に設定した微粉炭バーナには、分
別した石炭のうち窒素分の含有量の少ない石炭を供給す
る微粉炭燃焼方法を提案するものである。
In order to achieve the above object, the present invention also provides a pulverized coal combustion method in which coals of a plurality of coal types are individually supplied to and burned by a plurality of pulverized coal burners. The pulverized coal burner, which was previously fractionated according to the nitrogen content obtained by the analysis and whose air ratio was set to less than 1, was supplied with coal having a high nitrogen content among the fractionated coals, and the air ratio was changed. For the pulverized coal burner set to 1 or more, a pulverized coal combustion method is proposed in which coal having a small nitrogen content content among the fractionated coals is supplied.

【0014】本発明は、さらに、上記目的を達成するた
めに、複数の炭種の石炭を複数の微粉炭バーナに個別に
供給するとともに最終的に過剰な空気を空気投入口から
投入し石炭を完全燃焼させる微粉炭燃焼方法において、
複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し、空気投入口から離れた位置に
ある微粉炭バーナには、分別した石炭のうち窒素分の含
有量の多い石炭を供給し、空気投入口から近い位置にあ
る微粉炭バーナには、分別した石炭のうち窒素分の含有
量の少ない石炭を供給する微粉炭燃焼方法を提案するも
のである。
Further, in order to achieve the above object, the present invention further supplies coals of a plurality of coal types to a plurality of pulverized coal burners individually and finally supplies excess air from an air charging port to load the coals. In the pulverized coal combustion method for complete combustion,
According to the content of nitrogen content obtained by elemental analysis of coal of multiple coal species in advance, the pulverized coal burner located away from the air inlet, the content of nitrogen content of the fractionated coal It proposes a pulverized coal combustion method in which a large amount of coal is supplied and a pulverized coal burner located near the air inlet is supplied with coal having a small nitrogen content among the separated coal.

【0015】上記いずれの微粉炭燃焼方法においても、
微粉炭バーナの起動後に所定の負荷に達するまでは、微
粉炭バーナに分別した石炭のうち窒素分の含有量の少な
い石炭のみを供給し、所定の負荷以上では、窒素分の含
有量の少ない石炭と窒素分の含有量の多い石炭とをそれ
ぞれの微粉炭バーナに並行して供給するようにしてもよ
い。
In any of the above pulverized coal combustion methods,
Until the specified load is reached after the pulverized coal burner is activated, only coal with a low nitrogen content is supplied to the pulverized coal burner and the coal with a low nitrogen content is supplied above the specified load. Alternatively, coal having a high nitrogen content may be supplied in parallel to each pulverized coal burner.

【0016】また、燃焼状態を監視し、燃焼状態が所定
の条件を満たすときは、分別した石炭の一部を混合して
微粉炭バーナの少なくとも一つに供給することもでき
る。
Further, the combustion state is monitored, and when the combustion state satisfies a predetermined condition, a part of the separated coal can be mixed and supplied to at least one of the pulverized coal burners.

【0017】さらに、窒素分の含有量に応じて石炭を分
別する際に、元素分析により得られる窒素分の平均含有
量の相対的な差は0.1(重量%)以上とする。
Furthermore, when the coal is fractionated according to the nitrogen content, the relative difference in the average nitrogen content obtained by elemental analysis is set to 0.1 (wt%) or more.

【0018】本発明は、上記目的を達成するために、上
下方向または対向方向に複数の微粉炭バーナを有し、複
数の炭種の石炭を複数の微粉炭バーナに個別に供給し燃
焼させる微粉炭燃焼装置において、複数の炭種の石炭を
元素分析により得られる窒素分の含有量に応じて予め分
別し貯える貯炭場と、分別された石炭を個別に微粉化す
る微粉炭機と、空気比が1未満の領域に微粉炭および空
気の混合気を噴出させる微粉炭バーナに微粉炭のうち窒
素分の含有量の多い微粉炭を供給する手段と、空気比が
1以上の領域に微粉炭および空気の混合気を噴出させる
微粉炭バーナに微粉炭のうち窒素分の含有量の少ない微
粉炭を供給する手段とを備えた微粉炭燃焼装置を提案す
るものである。
In order to achieve the above-mentioned object, the present invention has a plurality of pulverized coal burners in the vertical direction or the opposite direction, and supplies fine coal powder of a plurality of coal types to the plurality of pulverized coal burners individually for combustion. In a charcoal combustor, a coal storage yard that preliminarily separates and stores coal of multiple coal types according to the nitrogen content obtained by elemental analysis, a pulverized coal machine that individually pulverizes the separated coal, and an air ratio. With a ratio of less than 1 for supplying a pulverized coal burner for injecting a mixture of pulverized coal and air to the pulverized coal burner having a high nitrogen content in the pulverized coal burner; The present invention proposes a pulverized coal combustion apparatus including means for supplying pulverized coal having a small nitrogen content in the pulverized coal burner for ejecting an air-fuel mixture.

【0019】本発明は、また、上記目的を達成するため
に、上下方向または対向方向に複数の微粉炭バーナを有
し、複数の炭種の石炭を複数の微粉炭バーナに個別に供
給し燃焼させる微粉炭燃焼装置において、複数の炭種の
石炭を元素分析により得られる窒素分の含有量に応じて
予め分別し貯える貯炭場と、分別された石炭を個別に微
粉化する微粉炭機と、空気比を1未満に設定した微粉炭
バーナに微粉炭のうち窒素分の含有量の多い微粉炭を供
給する手段と、空気比を1以上に設定した微粉炭バーナ
に微粉炭のうち窒素分の含有量の少ない微粉炭を供給す
る手段とを備えた微粉炭燃焼装置を提案するものであ
る。
In order to achieve the above object, the present invention further comprises a plurality of pulverized coal burners in the vertical direction or the opposite direction, and coals of a plurality of coal types are individually supplied to the plurality of pulverized coal burners and burned. In the pulverized coal combustion apparatus, a coal storage place for preliminarily fractionating and storing coal of a plurality of coal types according to the nitrogen content obtained by elemental analysis, and a pulverized coal machine for individually pulverizing the fractionated coal, A means for supplying the pulverized coal burner with an air ratio set to less than 1 with a high nitrogen content in the pulverized coal burner, and a pulverized coal burner with an air ratio set to 1 or more have a nitrogen content in the pulverized coal burner. The present invention proposes a pulverized coal combustion apparatus provided with a means for supplying pulverized coal having a low content.

【0020】本発明は、さらに、上記目的を達成するた
めに、上下方向または対向方向に複数の微粉炭バーナを
有し、複数の炭種の石炭を複数の微粉炭バーナに個別に
供給するとともに過剰な空気を空気投入口から投入し石
炭を完全燃焼させる微粉炭燃焼装置において、複数の炭
種の石炭を元素分析により得られる窒素分の含有量に応
じて予め分別し貯える貯炭場と、分別された石炭を個別
に微粉化する微粉炭機と、空気投入口から離れた位置に
ある微粉炭バーナに微粉炭のうち窒素分の含有量の多い
微粉炭を供給する手段と、空気投入口から近い位置にあ
る微粉炭バーナに微粉炭のうち窒素分の含有量の少ない
微粉炭を供給する手段とを備えた微粉炭燃焼装置を提案
するものである。
In order to achieve the above object, the present invention further has a plurality of pulverized coal burners in the vertical direction or the opposite direction, and supplies coal of a plurality of coal types to the plurality of pulverized coal burners individually. In a pulverized coal combustor that injects excess air from the air inlet to completely burn coal, a coal storage yard that separates and stores coal of multiple coal types in advance according to the nitrogen content obtained by elemental analysis, and Pulverized coal machine for individually pulverizing the pulverized coal, a means for supplying pulverized coal with a high nitrogen content of the pulverized coal to a pulverized coal burner located at a position away from the air inlet, and an air inlet The present invention proposes a pulverized coal combustion device provided with a means for supplying pulverized coal having a small nitrogen content in the pulverized coal burner located at a close position.

【0021】いずれの微粉炭燃焼装置においても、対向
方向に備えられた複数の微粉炭バーナが、空気比または
石炭種の異なる微粉炭バーナにより形成される火炎が互
いに衝突するように微粉炭燃焼装置の火炉壁面に対して
傾けて配置してもよい。
In any of the pulverized coal combustion apparatuses, a plurality of pulverized coal burners provided in opposite directions are arranged so that flames formed by the pulverized coal burners having different air ratios or coal types collide with each other. You may incline and arrange with respect to the furnace wall surface.

【0022】本発明は、上記目的を達成するために、同
心円状に配置され微粉炭および空気の混合気を噴出させ
る複数の微粉炭バーナとその外周に配置され燃焼用空気
を供給する手段とを有し、複数の炭種の石炭を複数の微
粉炭バーナに個別に供給し燃焼させる微粉炭燃焼装置に
おいて、複数の炭種の石炭を元素分析により得られる窒
素分の含有量に応じて予め分別し貯える貯炭場と、分別
された石炭を個別に微粉化する微粉炭機と、同心円状の
微粉炭バーナのうちで内側の微粉炭バーナに微粉炭のう
ち窒素分の含有量の多い微粉炭を供給する手段と、同心
円状の微粉炭バーナのうちで外側の微粉炭バーナに微粉
炭のうち窒素分の含有量の少ない微粉炭を供給する手段
とを備えた微粉炭燃焼装置を提案するものである。
In order to achieve the above object, the present invention comprises a plurality of pulverized coal burners which are arranged concentrically and eject a mixture of pulverized coal and air, and means for supplying combustion air to the periphery thereof. In a pulverized coal combustion device that has a plurality of coal types and supplies them to multiple pulverized coal burners individually and burns them, the coals of multiple coal types are separated in advance according to the nitrogen content obtained by elemental analysis. The coal yard that stores and stores, the pulverized coal machine that pulverizes the separated coal individually, and the pulverized coal burner inside the concentric pulverized coal burner It proposes a pulverized coal combustion device provided with a means for supplying and a means for supplying pulverized coal having a small nitrogen content in the pulverized coal to the outer pulverized coal burner of the concentric pulverized coal burners. is there.

【0023】前記同心円の中心部には、混合気の噴出領
域に液体または気体の補助燃料を供給する補助燃料ノズ
ルを備えることが可能である。
At the center of the concentric circles, it is possible to provide an auxiliary fuel nozzle for supplying liquid or gaseous auxiliary fuel to the jet region of the air-fuel mixture.

【0024】本発明は、上記目的を達成するために、微
粉炭および空気の混合気を噴出させる第1微粉炭バーナ
とその上下に近接して配置され微粉炭とは異なる炭種の
微粉炭および空気の混合気を噴出させる第2微粉炭バー
ナとその上下に近接して配置され燃焼用空気を供給する
手段とを有し、複数の炭種の石炭を複数の微粉炭バーナ
に個別に供給し燃焼させる微粉炭燃焼装置において、複
数の炭種の石炭を元素分析により得られる窒素分の含有
量に応じて予め分別し貯える貯炭場と、分別された石炭
を個別に微粉化する微粉炭機と、第1微粉炭バーナに微
粉炭のうち窒素分の含有量の多い微粉炭を供給する手段
と、第2微粉炭バーナに微粉炭のうち窒素分の含有量の
少ない微粉炭を供給する手段とを備えた微粉炭燃焼装置
を提案するものである。
In order to achieve the above object, the present invention provides a first pulverized coal burner for ejecting a mixture of pulverized coal and air, and a pulverized coal of a coal type different from that of the pulverized coal arranged close to and above and below the first pulverized coal burner. A second pulverized coal burner for ejecting an air-fuel mixture and means for supplying combustion air, which are arranged vertically above and below the second pulverized coal burner, are provided to individually supply coal of a plurality of coal types to a plurality of pulverized coal burners. In a pulverized coal combustion device that burns, a coal storage place that preliminarily sorts and stores coal of multiple coal types according to the nitrogen content obtained by elemental analysis, and a pulverized coal machine that individually pulverizes the sorted coal. A means for supplying the first pulverized coal burner with pulverized coal having a high nitrogen content in the pulverized coal, and a means for supplying the second pulverized coal burner with a pulverized coal having a low nitrogen content. To propose a pulverized coal combustion device equipped with That.

【0025】上記いずれの微粉炭燃焼装置においても、
微粉炭燃焼装置の負荷をモニタする手段を備え、微粉炭
バーナの起動後に所定の負荷に達するまでは、微粉炭バ
ーナに窒素分の含有量の少ない微粉炭を供給する手段の
みを作動させ、所定の負荷以上では、微粉炭バーナにそ
れぞれ窒素分の含有量の少ない微粉炭を供給する手段と
窒素分の含有量の多い微粉炭を供給する手段とを並行し
て動作させることができる。
In any of the above pulverized coal combustion devices,
A means for monitoring the load of the pulverized coal burner is provided, and only the means for supplying pulverized coal with a low nitrogen content to the pulverized coal burner is activated until the prescribed load is reached after the pulverized coal burner is activated. When the load is higher than, the means for supplying the pulverized coal burner with a low nitrogen content and the means for supplying the pulverized coal with a high nitrogen content can be operated in parallel.

【0026】また、燃焼状態を監視する手段と炭種の異
なる微粉炭の一部を混合する手段とを備え、燃焼状態が
所定の条件を満たすときは、炭種の異なる微粉炭の一部
を混合して微粉炭バーナの少なくとも一つに供給するよ
うにできる。
Further, a means for monitoring the combustion state and a means for mixing a part of the pulverized coal having different coal types are provided. When the combustion state satisfies a predetermined condition, a part of the pulverized coal having a different coal type is provided. It can be mixed and fed to at least one of the pulverized coal burners.

【0027】さらに、窒素分の含有量に応じて石炭を分
別し貯炭場に貯炭する際に、元素分析により得られる窒
素分の平均含有量の相対的な差を0.1(重量%)以上
とすることが望ましい。
Further, when the coal is sorted according to the nitrogen content and stored in the coal stock yard, the relative difference in the average nitrogen content obtained by elemental analysis is 0.1 (wt%) or more. Is desirable.

【0028】本発明は、上記目的を達成するために、複
数の炭種の石炭を個別に供給し燃焼させる微粉炭燃焼装
置の微粉炭バーナにおいて、同心円状に配置され微粉炭
および空気の混合気を噴出させる複数の1次燃料ノズル
と、その外周に配置され燃焼用空気を供給する2次空気
ノズルと、2次空気ノズルからの空気に旋回流を形成さ
せる旋回流発生器と、同心円状の内側の1次燃料ノズル
に微粉炭のうち窒素分の含有量の多い微粉炭を供給する
1次燃料供給管と、同心円状の外側の1次燃料ノズルに
微粉炭のうち窒素分の含有量の少ない微粉炭を供給する
1次燃料供給管と、1次燃料ノズル出口部に形成され微
粉炭バーナの燃焼室側に向かい末広がりとなるスリーブ
とを備えた微粉炭バーナを提案するものである。
In order to achieve the above object, the present invention provides a pulverized coal burner of a pulverized coal combustion apparatus for individually supplying and burning coals of a plurality of types of coal, and the mixture of pulverized coal and air arranged concentrically. A plurality of primary fuel nozzles for ejecting air, a secondary air nozzle arranged on the outer periphery of the primary fuel nozzle for supplying combustion air, a swirl flow generator for forming a swirl flow in the air from the secondary air nozzle, and a concentric circle The primary fuel supply pipe that supplies the pulverized coal having a high nitrogen content among the pulverized coal to the inner primary fuel nozzle and the concentric outer primary fuel nozzle to The present invention proposes a pulverized coal burner provided with a primary fuel supply pipe for supplying a small amount of pulverized coal and a sleeve formed at the outlet of the primary fuel nozzle and expanding toward the combustion chamber side of the pulverized coal burner.

【0029】本発明は、また、上記目的を達成するため
に、複数の炭種の石炭を個別に供給し燃焼させる微粉炭
燃焼装置の微粉炭バーナにおいて、微粉炭および空気の
混合気を噴出させる内側の1次燃料ノズルと、内側の1
次燃料ノズルとは同心円状に配置され燃焼室側に向かい
内側の1次燃料ノズルよりも突出し微粉炭および空気の
混合気を噴出させる外側の1次燃料ノズルと、その外周
に配置され燃焼用空気を供給する2次空気ノズルと、2
次空気ノズルからの空気に旋回流を形成させる旋回流発
生器と、同心円状の内側の1次燃料ノズルに微粉炭のう
ち窒素分の含有量の多い微粉炭を供給する1次燃料供給
管と、同心円状の外側の1次燃料ノズルに微粉炭のうち
窒素分の含有量の少ない微粉炭を供給する1次燃料供給
管と、外側の1次燃料ノズル出口部に形成され微粉炭バ
ーナの燃焼室側に向かい末広がりとなるスリーブとを備
えた微粉炭バーナを提案するものである。
In order to achieve the above-mentioned object, the present invention also jets a mixture of pulverized coal and air in a pulverized coal burner of a pulverized coal combustion apparatus which individually supplies and burns coal of plural types of coal. Inner primary fuel nozzle and inner 1
The secondary fuel nozzle is arranged concentrically with the primary fuel nozzle facing the combustion chamber and protruding from the primary fuel nozzle on the inner side to eject a mixture of pulverized coal and air. Secondary air nozzle for supplying air and 2
A swirling flow generator that forms a swirling flow in the air from the secondary air nozzle, and a primary fuel supply pipe that supplies pulverized coal with a high nitrogen content in the pulverized coal to the concentric inner primary fuel nozzle. , A combustion of a pulverized coal burner formed at a primary fuel supply pipe for supplying pulverized coal having a small nitrogen content in the pulverized coal to the concentric outer primary fuel nozzle and an outlet of the outer primary fuel nozzle The present invention proposes a pulverized coal burner including a sleeve that widens toward the room side.

【0030】これらの微粉炭バーナにおいては、混合気
の噴出領域に液体または気体の補助燃料を供給する補助
燃料ノズルを同心円の中心部に備えることが可能であ
る。
In these pulverized coal burners, it is possible to equip the central portion of the concentric circle with an auxiliary fuel nozzle for supplying the liquid or gaseous auxiliary fuel to the jetting region of the air-fuel mixture.

【0031】[0031]

【作用】発明者らは、微粉炭の燃焼を解析するに当たっ
て、石炭中に含まれる窒素分の量と気相の空気比との関
係に着目した。ここで空気比とは、実際の空気量と燃料
を完全燃焼するのに必要な空気量との比を表わす。ま
た、気相の空気比とは、実際の空気量と石炭中の揮発成
分を完全燃焼するのに必要な空気量との比を表す。
In analyzing the combustion of pulverized coal, the inventors paid attention to the relationship between the amount of nitrogen contained in coal and the air ratio in the gas phase. Here, the air ratio represents the ratio between the actual air amount and the air amount required to completely burn the fuel. Further, the gas phase air ratio represents the ratio of the actual air amount to the air amount required to completely burn the volatile components in the coal.

【0032】発明者らの実験によると、高温の還元雰囲
気中においては、燃焼温度,石炭粒径,石炭の性状(特
に窒素分の含有量)に関わらず、気相の空気比を指標と
して、生成するNOx量が定まることが明らかになっ
た。
According to the experiments conducted by the inventors, in a high-temperature reducing atmosphere, regardless of the combustion temperature, the coal particle size, and the coal properties (particularly the nitrogen content), the gas phase air ratio was used as an index. It became clear that the amount of NOx produced is determined.

【0033】図1は、層流燃焼炉における気相の空気比
と生成するNOx量との関係を求めた発明者らの実験結
果の一例を示す図である。この場合、燃料としては、表
1に示すように、燃料比が0.9〜2.5であり、窒素分
の含有量が1.0〜2.2重量%である4種類の石炭を用
いている。
FIG. 1 is a diagram showing an example of the results of an experiment conducted by the inventors for obtaining the relationship between the gas phase air ratio and the amount of NOx produced in a laminar flow combustion furnace. In this case, as the fuel, as shown in Table 1, four types of coal having a fuel ratio of 0.9 to 2.5 and a nitrogen content of 1.0 to 2.2 wt% were used. ing.

【0034】[0034]

【表1】 [Table 1]

【0035】図1から明らかなように、気相の空気比が
0.9を超えた領域すなわち1以上の場合は、石炭中に
含まれる窒素分の量に応じて、生成するNOx量は大き
く異なる。ところが、気相の空気比が0.9以下の場合
は、石炭中に含まれる窒素分の量に関わらず、すなわち
石炭種に関わらず、気相の空気比のみに基づいて、NO
xの生成量を規定できる。この実験結果から、空気比が
1以上の場合、窒素分の含有量が多い石炭を使用する
と、NOx生成量は増加する。これに対して、空気比が
1未満の還元領域においては、NOx生成量は、石炭の
窒素分の含有量に影響されないと結論付けられる。
As is clear from FIG. 1, when the air ratio in the gas phase exceeds 0.9, that is, when it is 1 or more, the amount of NOx produced is large depending on the amount of nitrogen contained in the coal. different. However, when the gas-phase air ratio is 0.9 or less, NO is determined based on only the gas-phase air ratio regardless of the amount of nitrogen content contained in the coal, that is, regardless of the type of coal.
The amount of x generated can be specified. From this experimental result, when the air ratio is 1 or more, the NOx production amount increases when coal having a large nitrogen content is used. On the other hand, in the reduction region where the air ratio is less than 1, it can be concluded that the NOx production amount is not affected by the nitrogen content of coal.

【0036】そこで、本発明では、複数の石炭種を使用
する燃焼装置において、元素分析により得られる窒素分
の含有量に応じて予め石炭を分別し、それぞれ個別の微
粉炭バーナに供給する。このとき、窒素分の含有量の多
い石炭を空気比が1未満の還元領域に供給する。空気比
が1未満の還元領域では、NOx排出量は、石炭中に含
有される窒素分の量により影響されない。また、窒素分
の含有量の少ない石炭を、空気比が1以上の領域に供給
する。空気比が1以上の領域では、NOx排出量は、石
炭中に含有される窒素分の量により変化する。
Therefore, in the present invention, in a combustion apparatus using a plurality of coal species, the coal is fractionated in advance according to the nitrogen content obtained by elemental analysis, and the coal is supplied to individual pulverized coal burners. At this time, coal having a large nitrogen content is supplied to the reduction region having an air ratio of less than 1. In the reduction region where the air ratio is less than 1, the NOx emission amount is not affected by the amount of nitrogen content contained in coal. Further, coal having a low nitrogen content is supplied to a region having an air ratio of 1 or more. In the region where the air ratio is 1 or more, the NOx emission amount changes depending on the amount of nitrogen content contained in coal.

【0037】従来は、石炭中に含まれる窒素分の量が多
い石炭を混合して燃焼するとNOx排出量も増加するこ
とになっていた。これに対して、本発明により、石炭を
窒素分の含有量に応じて分別し、窒素分の多い石炭を空
気比が1未満の領域に供給すると、NOx排出量を低減
できる。
Conventionally, when coal with a large amount of nitrogen contained in coal was mixed and burned, the NOx emission amount was also increased. On the other hand, according to the present invention, when coal is separated according to the nitrogen content and coal with a large nitrogen content is supplied to a region where the air ratio is less than 1, the NOx emission amount can be reduced.

【0038】本発明の第1の要素は、微粉炭の貯蔵,供
給過程において、元素分析により得られる窒素分の含有
量に応じて石炭を分別し、別個に貯蔵,粉砕,輸送する
ことである。
The first element of the present invention is that, in the process of storing and supplying pulverized coal, the coal is separated according to the content of nitrogen content obtained by elemental analysis, and separately stored, crushed and transported. .

【0039】本発明の第2の要素は、窒素分の含有量に
応じて分別した石炭のうち、窒素分の含有量の多い石炭
を火炎中の空気比が1未満の領域に供給し、窒素分の含
有量の少ない石炭を火炎中の空気比が1以上の領域に供
給することである。
The second element of the present invention is to supply coal having a large nitrogen content among coal classified according to the nitrogen content to a region where the air ratio in the flame is less than 1, Is to supply coal with a small content of min to a region where the air ratio in the flame is 1 or more.

【0040】[0040]

【実施例】次に、図2〜図14を参照して、本発明によ
る微粉炭燃焼方法および微粉炭燃焼装置およびこの微粉
炭燃焼装置に用いる微粉炭バーナの実施例を説明する。
EXAMPLES Examples of a pulverized coal combustion method, a pulverized coal combustion apparatus, and a pulverized coal burner used in the pulverized coal combustion apparatus according to the present invention will now be described with reference to FIGS.

【0041】《第1実施例》図2は、微粉炭バーナを上
下2段に備えた本発明による燃焼装置の第1実施例の系
統構成を示す図である。第1実施例において、石炭は、
窒素分の含有量に応じて分別され、貯炭場41,42に
貯蔵される。貯炭場41,42の石炭は、各々別個にホ
ッパ43,44から微粉炭機45,46に供給されて、
微粉化される。微粉化された石炭は、ブロア47,48
からの搬送空気とともに、微粉炭バーナ52,53に搬
送される。一方、燃焼用空気は、ブロア49により供給
される。
<< First Embodiment >> FIG. 2 is a diagram showing a system configuration of a first embodiment of a combustion apparatus according to the present invention having pulverized coal burners provided in upper and lower two stages. In the first embodiment, coal is
It is sorted according to the nitrogen content, and stored in the coal storage stations 41, 42. The coal in the coal storage yard 41, 42 is separately supplied to the pulverized coal machines 45, 46 from the hoppers 43, 44, respectively,
Pulverized. The pulverized coal is blower 47,48
It is carried to the pulverized coal burners 52 and 53 together with the carrier air from. On the other hand, the combustion air is supplied by the blower 49.

【0042】複数の炭種の石炭を同時に燃焼させる場
合、石炭の元素分析によって得られる窒素分の含有量に
応じて石炭を予め分別し、各々別個の微粉炭バーナ5
2,53に供給する。燃焼装置では、石炭を完全燃焼さ
せる目的で、燃焼室11内には最終的に過剰な空気が、
空気投入口54から投入される。このため、各段の空気
比の設定が同じ場合においても、空気投入口54に近い
上段の微粉炭バーナ53では、実際の空気比が高くな
る。そこで、下段の微粉炭バーナ52には、窒素分の含
有量に応じて分別した石炭のうち、窒素分の含有量の多
い石炭を供給し、上段の微粉炭バーナ53には、窒素分
の含有量に応じて分別した石炭のうち、窒素分の含有量
の少ない石炭を供給する。
When coals of a plurality of coal types are simultaneously burned, the coals are previously fractionated according to the nitrogen content obtained by elemental analysis of the coals, and each of the pulverized coal burners 5 is separated.
Supply to 2,53. In the combustion device, excess air is finally contained in the combustion chamber 11 for the purpose of completely burning the coal.
It is introduced from the air inlet 54. Therefore, even when the air ratios of the respective stages are the same, the actual air ratio becomes higher in the pulverized coal burner 53 in the upper stage near the air inlet 54. Therefore, the pulverized coal burner 52 in the lower stage is supplied with coal having a higher nitrogen content among the coals classified according to the nitrogen content, and the pulverized coal burner 53 in the upper stage contains the nitrogen content. Among the coals sorted according to the amount, coal with a low nitrogen content is supplied.

【0043】図1により既に説明した発明者らの実験結
果から明らかなように、空気比が1未満の還元領域にお
いては、生成するNOx量は、石炭の窒素分の含有量に
影響されない。そこで、生成するNOx量が窒素分の含
有量に影響される空気比が1以上の領域には、窒素分の
含有量の少ない石炭を供給する。また、石炭の窒素分の
含有量に影響されない空気比が1未満の還元領域には、
窒素分の含有量の多い石炭を供給する。このようにする
と、全体として生成するNOx量を低く抑制できる。
As is clear from the experimental results of the inventors already described with reference to FIG. 1, the NOx amount produced is not affected by the nitrogen content of coal in the reduction region where the air ratio is less than 1. Therefore, coal having a low nitrogen content is supplied to the region where the air ratio in which the amount of NOx produced is affected by the nitrogen content is 1 or more. In addition, in the reduction region where the air ratio is less than 1, which is not affected by the nitrogen content of coal,
Supply coal with a high nitrogen content. In this way, the amount of NOx generated as a whole can be suppressed low.

【0044】図3は、図2の第1実施例の効果を示すた
めに、石炭の窒素分含有量の差に対する従来方式による
排出NOx量と本発明による排出NOx量との差の関係
を示す特性図である。すなわち、図2に示す上下2段の
微粉炭バーナを有する本発明の第1実施例の燃焼装置に
おいて、燃料比0.9〜2.5,窒素分の含有量1.0〜
2.2(重量%)の4種類の石炭を用いて実験した結果を
示す。
To show the effect of the first embodiment of FIG. 2, FIG. 3 shows the relationship between the difference in the nitrogen content of coal and the difference between the NOx amount discharged by the conventional method and the NOx amount discharged by the present invention. It is a characteristic diagram. That is, in the combustion device of the first embodiment of the present invention having the upper and lower pulverized coal burners shown in FIG. 2, the fuel ratio is 0.9 to 2.5, and the nitrogen content is 1.0 to 1.0.
The results of experiments using four types of 2.2 (wt%) coal are shown.

【0045】この実験において、各微粉炭バーナの空気
比は、同一に設定したが、既に述べた通り、各段毎の実
際の空気比は異なり、上段の微粉炭バーナ53では空気
比が1.0であり、下段の微粉炭バーナ52では0.8で
あった。図3の横軸は、このような燃焼条件において、
窒素分の含有量の異なる複数の炭種を燃焼させたとき
に、使用した各石炭種の窒素分の平均含有量の差を示し
ている。図3の縦軸は、複数の炭種の石炭を予め混合し
て燃焼させた場合と、複数の炭種の石炭を別個に供給す
る本発明の燃焼方法で燃焼させた場合の燃焼装置出口5
5でのNOx排出量の差を示している。
In this experiment, the air ratio of each pulverized coal burner was set to the same, but as described above, the actual air ratio of each stage is different, and the pulverized coal burner 53 in the upper stage has an air ratio of 1. It was 0, and it was 0.8 in the lower pulverized coal burner 52. The horizontal axis of FIG.
It shows the difference in the average nitrogen content of each coal type used when a plurality of coal types having different nitrogen contents were burned. The vertical axis of FIG. 3 indicates the combustion device outlet 5 when the coals of a plurality of coal types are premixed and burned and when the coals of a plurality of coal types are separately burned by the combustion method of the present invention.
5 shows the difference in NOx emission amount in No. 5.

【0046】例えば、窒素分の含有量が1.4(重量%)
の石炭Aと窒素分の含有量が1.9 (重量%)の石炭Cと
を燃焼させる場合について考えてみる。このとき、石炭
Aと石炭Cとを予め混合して供給する従来方法の場合、
上段の微粉炭バーナ53で生成するNOx量は、約53
0ppm(6%O2)となる。
For example, the nitrogen content is 1.4 (wt%)
Consider the case of burning the coal A and the coal C having a nitrogen content of 1.9 (% by weight). At this time, in the case of the conventional method in which coal A and coal C are mixed and supplied in advance,
The amount of NOx produced in the upper pulverized coal burner 53 is about 53
It becomes 0 ppm (6% O 2 ).

【0047】これに対して、石炭を窒素分の含有量に応
じて分別し、相対的に窒素含有量の少ない石炭Aを空気
比が1未満の領域に供給する本発明の場合、上段の微粉
炭バーナ53に供給する石炭の窒素分の含有量は1.4
(重量%)であり、NOx生成量は、約410ppm(6%
2)となる。すなわち、従来方法に比べ、上段の微粉炭
バーナ53で生成するNOx量は、約120ppm(6%
2)程度低くなる。
On the other hand, in the case of the present invention in which coal is separated according to the nitrogen content and coal A having a relatively low nitrogen content is supplied to the region where the air ratio is less than 1, fine powder in the upper stage is used. The nitrogen content of the coal supplied to the charcoal burner 53 is 1.4.
(Wt%), NOx production is about 410ppm (6%
O 2 ). That is, compared with the conventional method, the amount of NOx generated in the upper pulverized coal burner 53 is about 120 ppm (6%
O 2 ).

【0048】一方、空気比が1未満の還元領域では、生
成するNOx量は、石炭の窒素分の含有量に影響され
ず、空気比のみで決まる。下段の微粉炭バーナ火炎56
の空気比が0.8の場合、生成するNOx量は、石炭の
窒素分の含有量で変化せず、約100ppm(6%O2)とな
る。そのために、複数の炭種からなる石炭を予め混合し
て供給する従来方法では、燃焼装置出口55でのNOx
量は、約320ppm(6%O2)となる。
On the other hand, in the reducing region where the air ratio is less than 1, the amount of NOx produced is not affected by the nitrogen content of coal and is determined only by the air ratio. Lower pulverized coal burner flame 56
When the air ratio is 0.8, the amount of NOx produced does not change depending on the nitrogen content of the coal and is about 100 ppm (6% O 2 ). Therefore, in the conventional method in which coal composed of a plurality of coal types is mixed in advance and supplied, NOx at the combustor outlet 55 is used.
The amount will be about 320 ppm (6% O 2 ).

【0049】これに対して、本発明による燃焼方法で
は、NOx排出量は、約260ppm(6%O2)であり、約6
0ppm(6%O2)程度低くなる。
On the other hand, in the combustion method according to the present invention, the NOx emission amount is about 260 ppm (6% O 2 ), which is about 6 ppm.
It is about 0 ppm (6% O 2 ) lower.

【0050】図3に示されるように、複数の炭種の石炭
において、その相対的な窒素分の含有量が0.1(重量
%)の場合でも、同様の効果があり、本実験例に示す燃
焼条件では、NOx排出量は、約20ppm(6%O2)程度
低くなる。
As shown in FIG. 3, even in the case where the relative nitrogen content of a plurality of coal types is 0.1 (wt%), the same effect can be obtained. Under the combustion conditions shown, the NOx emission amount is about 20 ppm (6% O 2 ) lower.

【0051】また、上段の微粉炭バーナ53から噴出さ
せる石炭および空気の混合気の空気比を、下段の微粉炭
バーナ52から噴出させる石炭および空気の混合気の空
気比よりも低くすると、NOx排出量の低減にはさらに
効果的となる。
Further, if the air ratio of the mixture of coal and air ejected from the pulverized coal burner 53 in the upper stage is made lower than the air ratio of the mixture of coal and air ejected from the pulverized coal burner 52 in the lower stage, NOx emissions are reduced. It is even more effective in reducing the amount.

【0052】図2に示す実施例では各微粉炭バーナの空
気比の設定は同一とし、火炎での実際の空気比が異なる
場合を示していたが、微粉炭バーナの空気比の設定を変
えた場合も、本発明を同様に適用できることは明らかで
あろう。
In the embodiment shown in FIG. 2, the setting of the air ratio of each pulverized coal burner was the same and the actual air ratio in the flame was different. However, the setting of the air ratio of the pulverized coal burner was changed. In this case, it will be apparent that the present invention can be similarly applied.

【0053】《第2実施例》図4は、図2の第1実施例
に燃焼状態を監視するセンサと微粉炭混合器とを追加設
置した燃焼装置の第2実施例の系統構成を示す図であ
る。燃焼室11内に設けたセンサ50は、燃焼装置出口
55における酸素濃度,一酸化炭素濃度,NOx濃度,
石炭中の未燃焼分,燃焼室11内の火炎温度などの燃焼
状態を監視する。微粉炭供給路中に設けた微粉炭混合器
51は、センサ50により計測した燃焼状態に基づき、
石炭中の窒素分の含有量に応じて分別し複数の系統で搬
送される微粉炭の一部を混合する手段である。微粉炭バ
ーナ52,微粉炭バーナ53の少なくとも一方に、他の
微粉炭バーナに搬送すべき炭種を微粉炭混合器51で混
合した微粉炭を供給すれば、それぞれの微粉炭バーナに
おける燃焼状態の調整や全体として生成するNOx排出
量の調整が可能となる。
<Second Embodiment> FIG. 4 is a diagram showing a system configuration of a second embodiment of a combustion apparatus in which a sensor for monitoring a combustion state and a pulverized coal mixer are additionally installed in the first embodiment of FIG. Is. The sensor 50 provided in the combustion chamber 11 is configured to detect the oxygen concentration, carbon monoxide concentration, NOx concentration,
The combustion state such as the unburned amount in the coal and the flame temperature in the combustion chamber 11 is monitored. The pulverized coal mixer 51 provided in the pulverized coal supply path is based on the combustion state measured by the sensor 50.
This is a means for separating a part of pulverized coal which is separated according to the content of nitrogen in the coal and conveyed in a plurality of systems. If at least one of the pulverized coal burner 52 and the pulverized coal burner 53 is supplied with the pulverized coal in which the coal species to be conveyed to another pulverized coal burner is mixed by the pulverized coal mixer 51, the combustion state of each pulverized coal burner can be improved. It is possible to adjust and adjust the NOx emission amount generated as a whole.

【0054】《第3実施例》図5は、微粉炭バーナを対
向させて配置した本発明による燃焼装置の第3実施例の
系統構成を示す図である。図2の第1実施例は、上下方
向に複数本の微粉炭バーナを有する前面燃焼方式の燃焼
装置であったが、図5に示す対向燃焼方式の燃焼装置の
場合も本願発明を同様に適用でき、燃焼装置出口55で
のNOx排出量のより一層の低減が可能となる。
<< Third Embodiment >> FIG. 5 is a diagram showing a system configuration of a third embodiment of a combustion apparatus according to the present invention in which pulverized coal burners are arranged to face each other. The first embodiment shown in FIG. 2 was a front combustion type combustion device having a plurality of pulverized coal burners in the vertical direction, but the present invention is also applied to the case of the opposed combustion type combustion device shown in FIG. Therefore, the NOx emission amount at the combustion device outlet 55 can be further reduced.

【0055】すなわち、第3実施例の場合、空気比また
は石炭種の異なる微粉炭バーナにより形成される火炎を
互いに衝突させることできる。空気比を低く設定した一
方の微粉炭バーナ52で形成される火炎で生成する還元
性窒素化合物を、空気比を高く設定した微粉炭バーナ5
3で形成される火炎で生成するNOxに直接混合させら
れる。この場合に、還元性窒素化合物は、火炎中から出
ないので酸化されにくく、NOxとの間に還元反応を起
こしやすい。その結果、火炎同士が衝突しない場合より
も、NOx排出量が更に少なくなる。
That is, in the case of the third embodiment, the flames formed by the pulverized coal burners having different air ratios or coal types can be made to collide with each other. The reducing nitrogen compound generated in the flame formed by one of the pulverized coal burners 52 with a low air ratio is set to the pulverized coal burner 5 with a high air ratio.
It is directly mixed with NOx produced in the flame formed in 3. In this case, the reducing nitrogen compound does not come out of the flame and is therefore difficult to be oxidized, so that a reducing reaction with NOx is likely to occur. As a result, the NOx emission amount is further reduced as compared with the case where the flames do not collide with each other.

【0056】《第4実施例》図6は、図5の第3実施例
に燃焼状態を監視するセンサと微粉炭混合器とを追加設
置した燃焼装置の第4実施例の系統構成を示す図であ
る。燃焼室11内に設けたセンサ50は、燃焼装置出口
55における酸素濃度,一酸化炭素濃度,NOx濃度,
石炭中の未燃焼分,燃焼室11内の火炎温度などの燃焼
状態を監視する。微粉炭供給路中に設けた微粉炭混合器
51は、センサ50により計測した燃焼状態に基づき、
石炭中の窒素分の含有量に応じて分別し複数の系統で搬
送される微粉炭の一部を混合する手段である。微粉炭バ
ーナ52,微粉炭バーナ53の少なくとも一方に、他の
微粉炭バーナに搬送すべき炭種を微粉炭混合器51で混
合した微粉炭を供給すれば、それぞれの微粉炭バーナに
おける燃焼状態の調整や全体として生成するNOx排出
量の調整が可能となる。
<Fourth Embodiment> FIG. 6 is a diagram showing a system configuration of a fourth embodiment of a combustion apparatus in which a sensor for monitoring a combustion state and a pulverized coal mixer are additionally installed in the third embodiment of FIG. Is. The sensor 50 provided in the combustion chamber 11 is configured to detect the oxygen concentration, carbon monoxide concentration, NOx concentration,
The combustion state such as the unburned amount in the coal and the flame temperature in the combustion chamber 11 is monitored. The pulverized coal mixer 51 provided in the pulverized coal supply path is based on the combustion state measured by the sensor 50.
This is a means for separating a part of pulverized coal which is separated according to the content of nitrogen in the coal and conveyed in a plurality of systems. If at least one of the pulverized coal burner 52 and the pulverized coal burner 53 is supplied with the pulverized coal in which the coal species to be conveyed to another pulverized coal burner is mixed by the pulverized coal mixer 51, the combustion state of each pulverized coal burner can be improved. It is possible to adjust and adjust the NOx emission amount generated as a whole.

【0057】《第5実施例》図7は、微粉炭バーナを火
炉壁面に対して傾けて配置した本発明による燃焼装置の
第5実施例の系統構成を示す図である。図2の第1実施
例は、上下方向に複数本の微粉炭バーナを有する前面燃
焼方式の燃焼装置であったが、微粉炭バーナを火炉壁面
に対して傾けて配置し、燃焼室11内に旋回流を形成す
る燃焼方式の場合も本願発明を同様に適用でき、燃焼装
置出口55でのNOx排出量のより一層の低減が可能と
なる。
<Fifth Embodiment> FIG. 7 is a diagram showing a system configuration of a fifth embodiment of a combustion apparatus according to the present invention in which a pulverized coal burner is arranged so as to be inclined with respect to a furnace wall surface. The first embodiment shown in FIG. 2 was a front combustion type combustion apparatus having a plurality of pulverized coal burners in the vertical direction. However, the pulverized coal burners are arranged so as to be inclined with respect to the wall surface of the furnace, and are placed in the combustion chamber 11. The invention of the present application can be similarly applied to the case of the combustion method of forming the swirling flow, and the NOx emission amount at the combustion device outlet 55 can be further reduced.

【0058】すなわち、第5実施例の場合、空気比また
は石炭種の異なる微粉炭バーナにより形成される火炎を
互いに衝突させることができる。空気比を低く設定した
微粉炭バーナ52で形成される火炎70で生成する還元
性窒素化合物を、空気比を高く設定した微粉炭バーナ5
3で形成される火炎71で生成するNOxに直接混合さ
せられる。この場合、還元性窒素化合物は、火炎中から
出ないので酸化されにくく、NOxとの間に還元反応を
起こしやすい。その結果、火炎同士が衝突しない場合よ
りも、NOx排出量が更に少なくなる。
That is, in the case of the fifth embodiment, the flames formed by the pulverized coal burners having different air ratios or coal types can be made to collide with each other. The reducing nitrogen compound generated in the flame 70 formed by the pulverized coal burner 52 with a low air ratio is set to the pulverized coal burner 5 with a high air ratio.
It is directly mixed with NOx generated in the flame 71 formed in 3. In this case, the reducing nitrogen compound does not come out of the flame and is therefore difficult to be oxidized and easily causes a reducing reaction with NOx. As a result, the NOx emission amount is further reduced as compared with the case where the flames do not collide with each other.

【0059】《第6実施例》図8は、それぞれのバーナ
単位で複数の炭種の微粉炭を燃焼させNOx排出量を抑
制する本発明による燃焼装置の第6実施例の系統構成を
示す図である。第6実施例においても、石炭は、窒素分
の含有量に応じて分別されて、貯炭場41,42に貯蔵
される。貯炭場41,42の石炭は、各々別個にホッパ
43,44から微粉炭機45,46に供給され、微粉化
される。微粉化された石炭は、ブロア47,48からの
搬送空気とともに、微粉炭バーナ10に搬送される。一
方、燃焼用空気は、ブロア49により供給される。
<< Sixth Embodiment >> FIG. 8 is a diagram showing a system configuration of a sixth embodiment of a combustion apparatus according to the present invention for suppressing the NOx emission amount by burning pulverized coal of a plurality of coal types in each burner unit. Is. Also in the sixth embodiment, coal is sorted according to the content of nitrogen and stored in the coal storage sites 41, 42. The coals in the coal stockyards 41 and 42 are separately supplied from the hoppers 43 and 44 to the pulverized coal machines 45 and 46 to be pulverized. The pulverized coal is conveyed to the pulverized coal burner 10 together with the carrier air from the blowers 47 and 48. On the other hand, the combustion air is supplied by the blower 49.

【0060】複数の炭種の石炭を同時に燃焼させる場
合、石炭の元素分析によって得られる窒素分の含有量に
応じて石炭を予め分別し、詳しくは図9〜図11を参照
して後述する微粉炭バーナ10に各々別個に供給する。
NOx生成量が窒素分の含有量に影響される空気比が1
以上の領域に、窒素分の含有量の少ない石炭を供給し、
石炭の窒素分の含有量に影響されない空気比が1未満の
還元領域に、窒素分の含有量の多い石炭を供給すること
により、NOx排出量を低減する。
When a plurality of coal types are burned at the same time, the coal is preliminarily fractionated according to the nitrogen content obtained by elemental analysis of the coal, and the fine powder described later with reference to FIGS. 9 to 11 will be described in detail. The charcoal burners 10 are supplied separately.
The air ratio in which the NOx production amount is affected by the nitrogen content is 1
Supplying coal with a low nitrogen content to the above areas,
The NOx emission amount is reduced by supplying coal having a large nitrogen content to the reduction region where the air ratio is less than 1 and which is not affected by the nitrogen content of the coal.

【0061】第6実施例も、石炭の供給系を複数備えて
いる。したがって、微粉炭機45,46の1台当りの負
荷を低くできる。起動後、所定の負荷までは、分別した
石炭のうち窒素分の含有量の少ない石炭の供給系のみを
使用し、窒素分の含有量の多い石炭の供給系を停止する
ようにしてもよい。このようにすると、NOx排出量を
低減したまま、微粉炭バーナの燃焼負荷範囲を広くとる
ことが可能となる。
The sixth embodiment also has a plurality of coal supply systems. Therefore, the load per pulverized coal machine 45, 46 can be reduced. After the start-up, up to a predetermined load, only the coal supply system having a small nitrogen content in the separated coal may be used and the coal supply system having a large nitrogen content may be stopped. By doing so, it is possible to widen the combustion load range of the pulverized coal burner while reducing the NOx emission amount.

【0062】図9は、図8の第6実施例に設置され個々
のバーナ単位で複数の炭種の微粉炭を燃焼させる微粉炭
バーナの構造の一例を示す断面図であり、図10は、図
9の微粉炭バーナをA−A方向から見た構造を示す図で
ある。図9の微粉炭バーナ10は、燃焼室11を構成す
る炉壁12に開口部13を通して取り付けられている。
炉壁12は、断熱材で作られており、燃焼室11内の熱
が外部に拡散するのを防止している。微粉炭バーナ10
が蒸気発生用ボイラとして使用される場合は、熱交換の
ための水管群が、炉壁12に設置される。
FIG. 9 is a sectional view showing an example of the structure of a pulverized coal burner which is installed in the sixth embodiment of FIG. 8 and burns pulverized coal of a plurality of coal types in units of individual burners, and FIG. It is a figure which shows the structure which looked at the pulverized coal burner of FIG. 9 from the AA direction. The pulverized coal burner 10 shown in FIG. 9 is attached to a furnace wall 12 forming a combustion chamber 11 through an opening 13.
The furnace wall 12 is made of a heat insulating material and prevents heat in the combustion chamber 11 from diffusing to the outside. Pulverized coal burner 10
Is used as a steam generating boiler, a water tube group for heat exchange is installed on the furnace wall 12.

【0063】微粉炭バーナ10の中心部には、補助燃料
ノズル14が設置されている。補助燃料は、燃焼装置の
起動時に燃焼室11を予熱し、微粉炭に着火させるため
使用し、微粉炭の火炎が安定した時点で、その供給を停
止する。補助燃料としては、通常、液体または気体燃料
を使用する。
An auxiliary fuel nozzle 14 is installed at the center of the pulverized coal burner 10. The auxiliary fuel is used to preheat the combustion chamber 11 at the start of the combustion device and ignite the pulverized coal, and when the flame of the pulverized coal becomes stable, the supply of the auxiliary fuel is stopped. Liquid or gas fuel is usually used as the auxiliary fuel.

【0064】補助燃料ノズル14の外周には、内筒15
の内壁と補助燃料ノズル14の外壁との間に、燃料ノズ
ルが設置される。第6実施例においては、燃料ノズルを
同心円状に複数個設置してある。同心円状に設置した1
次燃料ノズル32,33は、それぞれ別個の1次燃料供
給管34,35に接続されており、各々独立に燃料を供
給できる。1次燃料ノズル32,33内には、微粉炭と
この微粉炭を搬送するための空気とが流される。本明細
書では、この混合流体を1次燃料という。1次燃料ノズ
ル32,33の出口部には、微粉炭バーナ10の燃焼室
11側に向かい末広がりとなるスリーブ19を設けても
よい。このようにスリーブ19を設けると、火炎を保持
し、空気比が1未満の還元領域を拡大する効果が得られ
る。
An inner cylinder 15 is provided on the outer periphery of the auxiliary fuel nozzle 14.
A fuel nozzle is installed between the inner wall of the fuel tank and the outer wall of the auxiliary fuel nozzle 14. In the sixth embodiment, a plurality of fuel nozzles are installed concentrically. 1 installed concentrically
The secondary fuel nozzles 32 and 33 are connected to separate primary fuel supply pipes 34 and 35, respectively, and can supply fuel independently. In the primary fuel nozzles 32 and 33, pulverized coal and air for carrying the pulverized coal are flowed. In this specification, this mixed fluid is referred to as a primary fuel. A sleeve 19 may be provided at the outlets of the primary fuel nozzles 32 and 33 so as to widen toward the combustion chamber 11 side of the pulverized coal burner 10. By providing the sleeve 19 in this way, the effect of holding the flame and expanding the reduction region where the air ratio is less than 1 is obtained.

【0065】1次燃料ノズル33の外周には、燃焼用空
気を噴出させる2次空気ノズル21が設置されている。
2次空気ノズル21は、内筒15の外壁と外筒22の内
壁とにより形成されている。本明細書では、2次空気ノ
ズル21内を流れる空気を2次空気という。2次空気
は、2次空気供給管23を通して風箱24に供給され、
旋回流発生器25により旋回流となり、燃焼室11内に
供給される。
A secondary air nozzle 21 for ejecting combustion air is installed on the outer periphery of the primary fuel nozzle 33.
The secondary air nozzle 21 is formed by the outer wall of the inner cylinder 15 and the inner wall of the outer cylinder 22. In this specification, the air flowing through the secondary air nozzle 21 is referred to as secondary air. The secondary air is supplied to the wind box 24 through the secondary air supply pipe 23,
A swirl flow is generated by the swirl flow generator 25 and is supplied into the combustion chamber 11.

【0066】2次空気ノズル21の外周には、燃焼用空
気を噴出させる3次空気ノズル26が設置されている。
3次空気ノズル26は、外筒22の外壁と炉壁12の開
口部13とにより形成されている。本明細書では、3次
空気ノズル26内を流れる空気を3次空気という。3次
空気は、3次空気供給管27を通して風箱28に供給さ
れ、旋回流発生器29により旋回流となり、燃焼室11
内に供給される。
A tertiary air nozzle 26 for ejecting combustion air is installed on the outer periphery of the secondary air nozzle 21.
The tertiary air nozzle 26 is formed by the outer wall of the outer cylinder 22 and the opening 13 of the furnace wall 12. In this specification, the air flowing through the tertiary air nozzle 26 is referred to as tertiary air. The tertiary air is supplied to the wind box 28 through the tertiary air supply pipe 27, becomes a swirl flow by the swirl flow generator 29, and the combustion chamber 11
Supplied within.

【0067】第6実施例では、2次空気,3次空気,燃
焼用空気を同心円状に供給してあって、さらに、旋回流
発生手段等を設置してあるので、1次燃料と空気との混
合は遅れる。そのため、火炎30内の中央部には、空気
比が1未満の還元領域31が形成される。火炎中の空気
比が1未満の還元領域31において、石炭中に含まれる
窒素分が、HCN,NH3などの還元性窒素化合物を生
成する。この還元性窒素化合物が、NOxを窒素に還元
する還元反応を起こし、NOx排出量を低減する。
In the sixth embodiment, the secondary air, the tertiary air, and the combustion air are supplied concentrically, and the swirling flow generating means and the like are further installed, so that the primary fuel and the air are Is delayed in mixing. Therefore, a reducing region 31 having an air ratio of less than 1 is formed in the center of the flame 30. In the reducing region 31 where the air ratio in the flame is less than 1, the nitrogen content contained in the coal produces reducing nitrogen compounds such as HCN and NH 3 . This reducing nitrogen compound causes a reduction reaction that reduces NOx to nitrogen, and reduces the NOx emission amount.

【0068】複数の炭種の石炭を同時に燃焼させる場
合、元素分析により得られる窒素分の含有量に応じて分
別し、1次燃料供給管34,35から供給する。このと
き、石炭の窒素分の含有量に応じて分別した石炭のう
ち、窒素分の含有量の多い石炭を内側に設けたノズル3
2から噴出させ、窒素分の含有量の少ない石炭を外側に
設けたノズル33から噴出させる。すなわち、微粉炭バ
ーナ10からは、窒素分の含有量が多い石炭を中心に噴
出させ、この窒素分の含有量が多い石炭を取り囲むよう
に、その外側から窒素分の含有量が少ない石炭を噴出さ
せる。
When a plurality of types of coal are simultaneously burned, they are separated according to the content of nitrogen content obtained by elemental analysis and supplied from the primary fuel supply pipes 34 and 35. At this time, among the coals sorted according to the nitrogen content of the coal, the nozzle 3 provided inside has coal with a large nitrogen content.
2 is ejected, and coal having a low nitrogen content is ejected from the nozzle 33 provided outside. That is, from the pulverized coal burner 10, a coal having a high nitrogen content is mainly ejected, and a coal having a low nitrogen content is ejected from the outside so as to surround the coal having a high nitrogen content. Let

【0069】燃焼用空気の大部分を占める2次空気およ
び3次空気は、1次燃料ノズル32,33の外側から燃
料と混合する。そのため、燃焼用空気と混合し易い外側
の混合気は、空気比が高い領域となる。一方、混合気の
中心部は、燃焼用空気と混合しにくいので、空気比が1
未満の還元領域となる。すなわち、ノズル32を通る窒
素分の含有量の多い石炭は、矢印36で示すように、火
炎30内の空気比が1未満の還元領域31に供給され
る。ノズル33を通る窒素分の含有量の少ない石炭は、
矢印37で示すように、火炎30内のうち、還元領域3
1を囲んで形成される空気比が1以上の領域に供給され
る。
The secondary air and the tertiary air which occupy most of the combustion air are mixed with the fuel from the outside of the primary fuel nozzles 32 and 33. Therefore, the air-fuel mixture on the outside that is easily mixed with the combustion air has a high air ratio. On the other hand, since the center of the air-fuel mixture is difficult to mix with the combustion air, the air ratio is 1
The reduction region is less than. That is, the coal having a large nitrogen content passing through the nozzle 32 is supplied to the reduction region 31 in which the air ratio in the flame 30 is less than 1 as shown by an arrow 36. Coal with a low nitrogen content passing through the nozzle 33 is
As shown by the arrow 37, the reduction region 3 in the flame 30
The air ratio formed around 1 is supplied to a region having an air ratio of 1 or more.

【0070】上記発明者らの実験結果から明らかなよう
に、空気比が1未満の還元領域においては、生成するN
Ox量が、石炭の窒素分の含有量に影響されない。そこ
で、生成するNOx量が窒素分の含有量に影響される空
気比が1以上の領域には、窒素分の含有量の少ない石炭
を供給する。また、石炭の窒素分の含有量に影響されな
い空気比が1未満の還元領域には、窒素分の含有量の多
い石炭を供給する。この燃焼方法により、全体としての
NOx排出量を低減できる。
As is clear from the results of the experiments conducted by the inventors, the N produced is reduced in the reduction region where the air ratio is less than 1.
The Ox amount is not affected by the nitrogen content of coal. Therefore, coal having a low nitrogen content is supplied to the region where the air ratio in which the amount of NOx produced is affected by the nitrogen content is 1 or more. Further, coal having a large nitrogen content is supplied to the reduction region in which the air ratio is less than 1 and is not affected by the nitrogen content of the coal. By this combustion method, the NOx emission amount as a whole can be reduced.

【0071】また、空気比が1未満の還元領域に窒素含
有量の多い石炭を供給すると、還元性窒素化合物の生成
量が増加する。したがって、還元性窒素化合物によるN
Oxの還元反応も進み、NOx排出量は、より一層低く
なる。
When coal having a high nitrogen content is supplied to the reducing region where the air ratio is less than 1, the amount of reducing nitrogen compound produced increases. Therefore, N by the reducing nitrogen compound
The reduction reaction of Ox also progresses, and the NOx emission amount becomes even lower.

【0072】さらに、ノズル32から噴出させる石炭と
空気の混合気の空気比をノズル33から噴出させる石炭
と空気の混合気の空気比よりも低くすると、還元性窒素
化合物の生成量が、さらに増加し、NOx排出量の低減
にさらに効果的となる。
Further, when the air ratio of the mixture of coal and air ejected from the nozzle 32 is made lower than the air ratio of the mixture of coal and air ejected from the nozzle 33, the amount of reducing nitrogen compound produced further increases. However, it becomes more effective in reducing the NOx emission amount.

【0073】図11は、図8の第6実施例に設置されそ
れぞれのバーナ単位で複数の炭種の微粉炭を燃焼させる
微粉炭バーナの構造の他の例を示す断面図である。図1
1の例においては、複数に分割された燃料供給管34,
35は、微粉炭バーナ10の直管部の途中において合流
する。この場合、複数の炭種の石炭の混合を遅らせるに
は、燃料供給管34,35を流れる1次燃料の流速が等
しいことが望ましい。
FIG. 11 is a sectional view showing another example of the structure of the pulverized coal burner which is installed in the sixth embodiment of FIG. 8 and burns the pulverized coal of a plurality of coal types in each burner unit. FIG.
In the first example, the fuel supply pipes 34,
35 joins in the middle of the straight pipe part of the pulverized coal burner 10. In this case, in order to delay the mixing of coals of a plurality of coal types, it is desirable that the flow rates of the primary fuels flowing through the fuel supply pipes 34 and 35 be equal.

【0074】図11の例では、微粉炭バーナ10の出口
部が二重管とならないので、微粉炭バーナの構造が簡略
化され、燃焼負荷量に対して微粉炭バーナの口径を小さ
くできる。また、微粉炭バーナ出口部における微粉炭の
流れが速やかになり、逆火や灰の付着による閉塞の恐れ
が無くなる。
In the example of FIG. 11, since the outlet of the pulverized coal burner 10 is not a double pipe, the structure of the pulverized coal burner is simplified, and the diameter of the pulverized coal burner can be reduced with respect to the combustion load amount. Further, the flow of pulverized coal at the outlet of the pulverized coal burner becomes quick, and there is no risk of blockage due to flashback or ash adhesion.

【0075】なお、図8の第6実施例では、微粉炭バー
ナ10が一つの燃焼装置を示してあるが、微粉炭バーナ
10が複数本の燃焼装置の場合も、第6実施例と同様の
効果が得られる。
In the sixth embodiment shown in FIG. 8, the pulverized coal burner 10 is shown as a single combustion device. However, even when the pulverized coal burner 10 is composed of a plurality of combustion devices, it is the same as in the sixth embodiment. The effect is obtained.

【0076】《第7実施例》図12は、図8の第6実施
例に燃焼状態を監視するセンサと微粉炭混合器とを追加
設置した燃焼装置の第7実施例の系統構成を示す図であ
る。燃焼室11内に設けたセンサ50は、燃焼装置出口
55における酸素濃度,一酸化炭素濃度,NOx濃度,
石炭中の未燃焼分,燃焼室11内の火炎温度などの燃焼
状態を監視する。微粉炭供給路中に設けた微粉炭混合器
51は、センサ50により計測した燃焼状態に基づき、
石炭中の窒素分の含有量に応じて分別し複数の系統で搬
送される微粉炭の一部を混合する手段である。一次燃料
供給管34,35の少なくとも一方に、微粉炭混合器5
1で他の一次燃料供給管で搬送すべき炭種を混合した微
粉炭を供給すれば、火炎30,還元領域31における燃
焼状態の調整や全体として生成するNOx排出量の調整
が可能となる。
<< Seventh Embodiment >> FIG. 12 is a diagram showing a system configuration of a seventh embodiment of a combustion apparatus in which a sensor for monitoring a combustion state and a pulverized coal mixer are additionally installed in the sixth embodiment of FIG. Is. The sensor 50 provided in the combustion chamber 11 is configured to detect the oxygen concentration, carbon monoxide concentration, NOx concentration,
The combustion state such as the unburned amount in the coal and the flame temperature in the combustion chamber 11 is monitored. The pulverized coal mixer 51 provided in the pulverized coal supply path is based on the combustion state measured by the sensor 50.
This is a means for separating a part of pulverized coal which is separated according to the content of nitrogen in the coal and conveyed in a plurality of systems. At least one of the primary fuel supply pipes 34, 35 is provided with the pulverized coal mixer 5
If the pulverized coal mixed with the coal species to be conveyed in the other primary fuel supply pipe in 1 is supplied, it becomes possible to adjust the combustion state in the flame 30 and the reduction region 31 and the NOx emission amount produced as a whole.

【0077】《第8実施例》図13は、それぞれのバー
ナ単位で複数の炭種の微粉炭を燃焼させNOx排出量を
抑制する本発明による燃焼装置の第8実施例の系統構成
を示す図であり、図14は、図13の微粉炭バーナをB
−B方向から見た構造を示す図である。第8実施例の微
粉炭バーナは、特に図14から明らかなように、矩形の
ノズルおよび管路からなる。中央部には、微粉炭と搬送
空気を噴出させる燃料ノズル61とこの燃料ノズル61
に通ずる燃料供給管62がある。燃料ノズル61と燃料
供給管62の隣には、燃料ノズル63と燃料供給管64
とが配置されている。さらに、燃料ノズル63と燃料供
給管64の隣には、内筒65の外壁と外筒67の内壁と
から形成される燃焼用空気供給管66が設けられ、燃焼
室11に燃焼用空気を供給する。第8実施例において
は、燃料ノズル63および燃料供給管64と燃焼用空気
供給管66とは、燃料ノズル61および燃料供給管62
を挟んで、両側に設けてある。このように、燃焼用空気
が別個に供給されるので、微粉炭バーナ出口での燃料と
燃焼用空気との混合が遅れる。そのため、ノズル61の
出口近くには、空気比が1未満の還元領域31が形成さ
れる。
<Eighth Embodiment> FIG. 13 is a diagram showing a system configuration of an eighth embodiment of the combustion apparatus according to the present invention for suppressing the NOx emission amount by burning pulverized coal of a plurality of coal types in each burner unit. FIG. 14 shows the pulverized coal burner of FIG.
It is a figure which shows the structure seen from the -B direction. The pulverized coal burner of the eighth embodiment comprises rectangular nozzles and pipes, as is clear from FIG. At the center, a fuel nozzle 61 for ejecting pulverized coal and carrier air, and the fuel nozzle 61
There is a fuel supply pipe 62 leading to the. Next to the fuel nozzle 61 and the fuel supply pipe 62, a fuel nozzle 63 and a fuel supply pipe 64 are provided.
And are arranged. Further, next to the fuel nozzle 63 and the fuel supply pipe 64, a combustion air supply pipe 66 formed by the outer wall of the inner cylinder 65 and the inner wall of the outer cylinder 67 is provided to supply combustion air to the combustion chamber 11. To do. In the eighth embodiment, the fuel nozzle 63, the fuel supply pipe 64, and the combustion air supply pipe 66 are the fuel nozzle 61 and the fuel supply pipe 62.
It is provided on both sides of the. Thus, the combustion air is supplied separately, so that the mixing of the fuel and the combustion air at the pulverized coal burner outlet is delayed. Therefore, a reduction region 31 having an air ratio of less than 1 is formed near the outlet of the nozzle 61.

【0078】複数の炭種の石炭を同時に燃焼させる場
合、元素分析により得られる窒素分の含有量に応じて石
炭を予め分別し、燃料供給管62,64から供給する。
このときに、複数の燃料ノズルのうち、内側に設けたノ
ズル61からは、窒素分の含有量に応じて分別した石炭
のうち、窒素分の含有量の多い石炭を噴出させる。外側
に設けたノズル63からは、窒素分の含有量の少ない石
炭を噴出させる。すなわち、微粉炭バーナの中心から
は、窒素分の含有量が多い石炭を噴出させ、その外側か
らは、窒素分の含有量が多い石炭を取り囲むように、窒
素分の含有量が少ない石炭を噴出させる。
When coals of a plurality of coal species are simultaneously burned, the coals are preliminarily separated according to the nitrogen content obtained by elemental analysis, and the coals are supplied from the fuel supply pipes 62 and 64.
At this time, among the plurality of fuel nozzles, the nozzle 61 provided on the inner side ejects the coal having a large nitrogen content among the coals sorted according to the nitrogen content. Coal having a low nitrogen content is ejected from the nozzle 63 provided outside. That is, coal with a high nitrogen content is ejected from the center of the pulverized coal burner, and coal with a low nitrogen content is ejected from the outside so as to surround the coal with a high nitrogen content. Let

【0079】燃焼用空気は、燃料ノズル63の外側に位
置する燃焼用空気供給管66から噴出し、燃料と混合す
るために、燃焼用空気と混合し易い燃料ノズル63から
噴出する混合気は空気比が高くなる。また、燃料ノズル
61から噴出する混合気は、燃焼用空気と混合しにくい
ため、空気比が1未満の還元領域が形成される。すなわ
ち、ノズル61を通る窒素分の含有量の多い石炭は、矢
印36で示すように、火炎30のうち空気比が1未満の
還元領域31に供給される。ノズル63を通る窒素分の
含有量の少ない石炭は、矢印37で示すように、火炎3
0内のうち還元領域31を囲んで形成される空気比が1
以上の領域に供給される。
The combustion air is ejected from the combustion air supply pipe 66 located outside the fuel nozzle 63 and mixes with the fuel. Therefore, the mixture air ejected from the fuel nozzle 63 which is easily mixed with the combustion air is air. The ratio becomes higher. Further, the air-fuel mixture ejected from the fuel nozzle 61 is difficult to mix with the combustion air, so that a reducing region having an air ratio of less than 1 is formed. That is, the coal having a high nitrogen content passing through the nozzle 61 is supplied to the reducing region 31 of the flame 30 in which the air ratio is less than 1 as shown by the arrow 36. Coal having a low nitrogen content passing through the nozzle 63 is heated by the flame 3 as shown by an arrow 37.
Within 0, the air ratio formed around the reduction region 31 is 1
It is supplied to the above area.

【0080】上記発明者らの実験結果から明らかなよう
に、空気比が1未満の還元領域においては、NOx生成
量は、石炭の窒素分の含有量に影響されない。そこで、
第8実施例においても、NOx生成量が石炭中に含有さ
れる窒素分の量に影響される空気比が1以上の領域には
窒素分の含有量の少ない石炭を供給する。また、石炭の
窒素分の含有量に影響されない空気比が1未満の還元領
域には窒素分の含有量の多い石炭を供給する。この方法
により、全体としてのNOx排出量を抑制できる。ま
た、ノズル61から噴出させる石炭と空気の混合気の空
気比をノズル63から噴出させる石炭と空気の混合気の
空気比よりも低くすると、NOx排出量の低減にさらに
効果的となる。
As is clear from the above experimental results of the inventors, the NOx production amount is not affected by the nitrogen content of coal in the reduction region where the air ratio is less than 1. Therefore,
Also in the eighth embodiment, coal having a low nitrogen content is supplied to the region where the NOx generation amount is influenced by the amount of nitrogen content contained in the coal and the air ratio is 1 or more. Further, coal having a large nitrogen content is supplied to the reduction region where the air ratio is less than 1 and is not affected by the nitrogen content of the coal. By this method, the NOx emission amount as a whole can be suppressed. Further, if the air ratio of the mixture of coal and air ejected from the nozzle 61 is made lower than the air ratio of the mixture of coal and air ejected from the nozzle 63, it will be more effective in reducing the NOx emission amount.

【0081】図13および図14に示された矩形のノズ
ルおよび管路からなる微粉炭バーナにおいて、側壁68
側は、燃料ノズルが、空気ノズルまたは他の燃料ノズル
により挟まれていないので、燃料ノズルからの噴流は、
側壁68側で大きな循環流を形成し易い。このように形
成された循環流は、微粉炭の着火促進および安定化に有
効である。着火が促進されると、火炎30中に形成され
る還元領域31が、微粉炭バーナ出口に近づき、更にに
大きくなるため、NOx排出量をより一層低減できる。
In the pulverized coal burner consisting of the rectangular nozzle and pipe shown in FIGS. 13 and 14, the side wall 68 is provided.
On the side, the fuel nozzle is not sandwiched by air nozzles or other fuel nozzles, so the jet from the fuel nozzle is
It is easy to form a large circulation flow on the side wall 68 side. The circulation flow formed in this way is effective for promoting ignition and stabilization of pulverized coal. When the ignition is promoted, the reduction region 31 formed in the flame 30 approaches the pulverized coal burner outlet and further increases, so that the NOx emission amount can be further reduced.

【0082】[0082]

【発明の効果】本発明によれば、複数の石炭種を使用す
る微粉炭燃焼装置において、元素分析により得られる窒
素分の含有量に応じて石炭を予め分別し、NOx生成量
が窒素分の含有量に影響されない空気比が1未満の還元
領域には、窒素分の含有量の多い石炭が供給され、NO
x生成量が窒素分の含有量に影響される空気比が1以上
の領域には、窒素分の含有量の少ない石炭を供給され
る。その結果、従来は、石炭の窒素分の含有量が多い石
炭を混合するとNOx生成量も増加する傾向があったの
に対して、本発明においては、窒素分の含有量の多い石
炭を還元領域に供給するので、NOx排出量を低減でき
る。
EFFECTS OF THE INVENTION According to the present invention, in a pulverized coal combustion apparatus using a plurality of coal species, coal is preliminarily fractionated according to the content of nitrogen content obtained by elemental analysis, and the NOx production amount is equal to the content of nitrogen content. Coal with a high nitrogen content is supplied to the reduction region where the air ratio is less than 1 and is not affected by the content, and NO
Coal having a low nitrogen content is supplied to the region where the air ratio in which the x generation amount is affected by the nitrogen content is 1 or more. As a result, conventionally, when coal with a high nitrogen content in the coal was mixed, the NOx production amount also tended to increase, whereas in the present invention, a coal with a high nitrogen content was reduced in the reduction region. The NOx emission amount can be reduced because it is supplied to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による微粉炭燃焼方法の基礎となってい
る層流燃焼炉における気相の空気比と生成するNOx濃
度との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a gas phase air ratio and a generated NOx concentration in a laminar flow combustion furnace which is a basis of a pulverized coal combustion method according to the present invention.

【図2】微粉炭バーナを上下2段に備えた本発明による
燃焼装置の第1実施例の系統構成を示す図である。
FIG. 2 is a diagram showing a system configuration of a first embodiment of a combustion apparatus according to the present invention in which pulverized coal burners are provided in upper and lower two stages.

【図3】図2の第1実施例の効果を示すために、石炭の
窒素分含有量の差に対する従来方式による排出NOx量
と本発明による排出NOx量との差の関係を示す特性図
である。
3 is a characteristic diagram showing the relationship between the difference between the NOx amount discharged by the conventional method and the NOx amount discharged by the present invention with respect to the difference in the nitrogen content of coal in order to show the effect of the first embodiment of FIG. is there.

【図4】図2の第1実施例に燃焼状態を監視するセンサ
と微粉炭混合器とを追加設置した燃焼装置の第2実施例
の系統構成を示す図である。
FIG. 4 is a diagram showing a system configuration of a second embodiment of a combustion apparatus in which a sensor for monitoring a combustion state and a pulverized coal mixer are additionally installed in the first embodiment of FIG.

【図5】微粉炭バーナを対向させて配置した本発明によ
る燃焼装置の第3実施例の系統構成を示す図である。
FIG. 5 is a diagram showing a system configuration of a third embodiment of a combustion apparatus according to the present invention in which pulverized coal burners are arranged so as to face each other.

【図6】図5の第3実施例に燃焼状態を監視するセンサ
と微粉炭混合器とを追加設置した燃焼装置の第4実施例
の系統構成を示す図である。
FIG. 6 is a diagram showing a system configuration of a fourth embodiment of a combustion apparatus in which a sensor for monitoring a combustion state and a pulverized coal mixer are additionally installed in the third embodiment of FIG.

【図7】微粉炭バーナを火炉壁面に対して傾けて配置し
た本発明による燃焼装置の第5実施例の系統構成を示す
図である。
FIG. 7 is a diagram showing a system configuration of a fifth embodiment of a combustion apparatus according to the present invention in which a pulverized coal burner is arranged so as to be inclined with respect to a furnace wall surface.

【図8】それぞれのバーナ単位で複数の炭種の微粉炭を
燃焼させNOx排出量を抑制する本発明による燃焼装置
の第6実施例の系統構成を示す図である。
FIG. 8 is a diagram showing a system configuration of a sixth embodiment of a combustion apparatus according to the present invention, in which pulverized coal of a plurality of coal types is burned in each burner unit to suppress NOx emission amount.

【図9】図8の第6実施例に設置されそれぞれのバーナ
単位で複数の炭種の微粉炭を燃焼させる微粉炭バーナの
構造の一例を示す断面図である。
9 is a cross-sectional view showing an example of the structure of a pulverized coal burner which is installed in the sixth embodiment of FIG. 8 and burns pulverized coal of a plurality of coal types in each burner unit.

【図10】図9の微粉炭バーナをA−A方向から見た構
造を示す図である。
10 is a diagram showing the structure of the pulverized coal burner of FIG. 9 seen from the AA direction.

【図11】図8の第6実施例に設置されそれぞれのバー
ナ単位で複数の炭種の微粉炭を燃焼させる微粉炭バーナ
の構造の別の例を示す断面図である。
FIG. 11 is a cross-sectional view showing another example of the structure of the pulverized coal burner installed in the sixth embodiment of FIG. 8 and burning the pulverized coal of a plurality of coal types in each burner unit.

【図12】図8の第6実施例に燃焼状態を監視するセン
サと微粉炭混合器とを追加設置した燃焼装置の第7実施
例の系統構成を示す図である。
FIG. 12 is a diagram showing a system configuration of a seventh embodiment of a combustion apparatus in which a sensor for monitoring a combustion state and a pulverized coal mixer are additionally installed in the sixth embodiment of FIG.

【図13】それぞれのバーナ単位で複数の炭種の微粉炭
を燃焼させNOx排出量を抑制する本発明による燃焼装
置の第8実施例の系統構成を示す図である。
FIG. 13 is a diagram showing a system configuration of an eighth embodiment of the combustion apparatus according to the present invention, which burns pulverized coal of a plurality of coal types for each burner unit to suppress NOx emission amount.

【図14】図13の微粉炭バーナをB−B方向から見た
構造を示す図である。
FIG. 14 is a view showing a structure of the pulverized coal burner of FIG. 13 as seen from the BB direction.

【符号の説明】[Explanation of symbols]

10 微粉炭バーナ 11 燃焼室 12 炉壁 13 開口部 14 補助燃料ノズル 15 内筒 19 スリーブ 21 2次空気ノズル 22 外筒 23 2次空気供給管 24 風箱 25 旋回流発生器 26 3次空気ノズル 27 3次空気供給管 28 風箱 29 旋回流発生器 30 燃焼火炎 31 還元領域 32,33 1次燃料ノズル 34,35 1次燃料供給管 36,37 矢印(燃料の流れ) 41 貯炭場(窒素分小) 42 貯炭場(窒素分大) 43,44 ホッパ 45,46 微粉炭機 47,48,49 ブロア 50 センサ 51 微粉炭混合器 52,53 微粉炭バーナ 54 空気投入口 55 燃焼室出口 56,57 火炎 61,63 燃料ノズル 62,64 燃料供給管 65 内筒 66 燃焼用空気供給管 67 外筒 68 側壁 10 Pulverized Coal Burner 11 Combustion Chamber 12 Furnace Wall 13 Opening 14 Auxiliary Fuel Nozzle 15 Inner Cylinder 19 Sleeve 21 Secondary Air Nozzle 22 Outer Cylinder 23 Secondary Air Supply Pipe 24 Wind Box 25 Swirling Flow Generator 26 Tertiary Air Nozzle 27 Tertiary air supply pipe 28 Wind box 29 Swirling flow generator 30 Combustion flame 31 Reduction area 32,33 Primary fuel nozzle 34,35 Primary fuel supply pipe 36,37 Arrow (fuel flow) 41 Coal storage plant (small nitrogen content) ) 42 coal storage yard (large nitrogen content) 43,44 hopper 45,46 pulverized coal machine 47,48,49 blower 50 sensor 51 pulverized coal mixer 52,53 pulverized coal burner 54 air inlet 55 combustion chamber outlet 56,57 flame 61,63 Fuel Nozzle 62,64 Fuel Supply Pipe 65 Inner Cylinder 66 Combustion Air Supply Pipe 67 Outer Cylinder 68 Side Wall

フロントページの続き (72)発明者 谷口 正行 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 楢戸 清 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 河野 豪 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 森田 茂樹 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内Front Page Continuation (72) Inventor Masayuki Taniguchi 7-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory Ltd. (72) Inventor Kiyoshi Narato 7-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd., Hitachi Research Laboratory (72) Inventor, Go Kono, 7-1, 1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory, (72) Inventor Shigeki Morita 6-9 Takaracho, Kure-shi, Hiroshima Prefecture No. Babcock Hitachi Kure Factory (72) Inventor Shunichi Tsumura No. 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 複数の炭種の石炭を複数の微粉炭バーナ
に個別に供給し燃焼させる微粉炭燃焼方法において、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し、 空気比(=実際の投入空気量と前記微粉炭を完全燃焼さ
せるのに必要な空気量との比)が1未満の領域に微粉炭
および空気の混合気を噴出させる微粉炭バーナには、前
記分別した石炭のうち窒素分の含有量の多い石炭を供給
し、 前記空気比が1以上の領域に微粉炭および空気の混合気
を噴出させる微粉炭バーナには、前記分別した石炭のう
ち窒素分の含有量の少ない石炭を供給することを特徴と
する微粉炭燃焼方法。
1. In a pulverized coal combustion method in which coals of a plurality of coal types are individually supplied to a plurality of pulverized coal burners and burned, coals of a plurality of coal types are burned according to the content of nitrogen content obtained by elemental analysis. Pulverized coal burner for preliminarily fractionating and injecting a mixture of pulverized coal and air into a region where the air ratio (= the ratio of the actual input air amount and the air amount required to completely burn the pulverized coal) is less than 1 In the pulverized coal burner for supplying a coal having a high nitrogen content among the fractionated coals and injecting a mixture of pulverized coal and air into the region where the air ratio is 1 or more, the fractionated coals Among them, a pulverized coal combustion method characterized by supplying coal having a low nitrogen content.
【請求項2】 複数の炭種の石炭を複数の微粉炭バーナ
に個別に供給し燃焼させる微粉炭燃焼方法において、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し、 空気比(=実際の投入空気量と前記微粉炭を完全燃焼さ
せるのに必要な空気量との比)を1未満に設定した微粉
炭バーナには、前記分別した石炭のうち窒素分の含有量
の多い石炭を供給し、 前記空気比を1以上に設定した微粉炭バーナには、前記
分別した石炭のうち窒素分の含有量の少ない石炭を供給
することを特徴とする微粉炭燃焼方法。
2. A pulverized coal combustion method in which a plurality of pulverized coal burners are individually supplied to a plurality of pulverized coal burners and burned, according to the nitrogen content obtained by elemental analysis of the plurality of coal types. In the pulverized coal burner which has been fractionated in advance and the air ratio (= the ratio of the actual input air amount and the air amount required for complete combustion of the pulverized coal) set to less than 1, the nitrogen content of the fractionated coal is Mining coal is supplied, and the pulverized coal burner in which the air ratio is set to 1 or more is supplied with coal having a low nitrogen content among the fractionated coals. Combustion method.
【請求項3】 複数の炭種の石炭を複数の微粉炭バーナ
に個別に供給するとともに過剰な空気を空気投入口から
投入し石炭を完全燃焼させる微粉炭燃焼方法において、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し、 前記空気投入口から離れた位置にある微粉炭バーナに
は、前記分別した石炭のうち窒素分の含有量の多い石炭
を供給し、 前記空気投入口から近い位置にある微粉炭バーナには、
前記分別した石炭のうち窒素分の含有量の少ない石炭を
供給することを特徴とする微粉炭燃焼方法。
3. A pulverized coal combustion method in which coals of a plurality of coal types are individually supplied to a plurality of pulverized coal burners and excess air is introduced from an air inlet to completely burn the coals. According to the content of nitrogen content obtained by elemental analysis in advance, to the pulverized coal burner located away from the air inlet, the coal with a high nitrogen content of the fractionated coal is supplied. However, in the pulverized coal burner located near the air inlet,
A pulverized coal combustion method comprising supplying coal having a low nitrogen content among the separated coals.
【請求項4】 請求項1ないし3のいずれか一項に記載
の微粉炭燃焼方法において、 前記微粉炭バーナの起動後に所定の負荷に達するまで
は、前記微粉炭バーナに前記分別した石炭のうち窒素分
の含有量の少ない石炭のみを供給し、 前記所定の負荷以上では、窒素分の含有量の少ない石炭
と窒素分の含有量の多い石炭とをそれぞれの前記微粉炭
バーナに並行して供給することを特徴とする微粉炭燃焼
方法。
4. The pulverized coal combustion method according to any one of claims 1 to 3, wherein the pulverized coal burner has a predetermined load after the pulverized coal burner is activated until a predetermined load is reached. Supplying only coal with a low content of nitrogen, and above the predetermined load, coal with a low content of nitrogen and coal with a high content of nitrogen are supplied in parallel to each of the pulverized coal burners. A pulverized coal combustion method characterized by:
【請求項5】 請求項1ないし4のいずれか一項に記載
の微粉炭燃焼方法において、 前記燃焼状態を監視し、 前記燃焼状態が所定の条件を満たすときは、前記分別し
た石炭の一部を混合して前記微粉炭バーナの少なくとも
一つに供給することを特徴とする微粉炭燃焼方法。
5. The pulverized coal combustion method according to any one of claims 1 to 4, wherein the combustion state is monitored, and when the combustion state satisfies a predetermined condition, a part of the separated coal Is mixed and supplied to at least one of the pulverized coal burners.
【請求項6】 請求項1ないし5のいずれか一項に記載
の微粉炭燃焼方法において、 前記窒素分の含有量に応じて石炭を分別する際に、元素
分析により得られる窒素分の平均含有量の相対的な差を
0.1(重量%)以上とすることを特徴とする微粉炭燃
焼方法。
6. The pulverized coal combustion method according to claim 1, wherein an average nitrogen content obtained by elemental analysis is obtained when the coal is separated according to the nitrogen content. A pulverized coal combustion method, characterized in that the relative difference in amount is 0.1 (wt%) or more.
【請求項7】 上下方向または対向方向に複数の微粉炭
バーナを有し、複数の炭種の石炭を前記複数の微粉炭バ
ーナに個別に供給し燃焼させる微粉炭燃焼装置におい
て、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し貯える貯炭場と、 前記分別された石炭を個別に微粉化する微粉炭機と、 空気比(=実際の投入空気量と前記微粉炭を完全燃焼さ
せるのに必要な空気量との比)が1未満の領域に微粉炭
および空気の混合気を噴出させる微粉炭バーナに前記微
粉炭のうち窒素分の含有量の多い微粉炭を供給する手段
と、 前記空気比が1以上の領域に微粉炭および空気の混合気
を噴出させる微粉炭バーナに前記微粉炭のうち窒素分の
含有量の少ない微粉炭を供給する手段とを備えたことを
特徴とする微粉炭燃焼装置。
7. A pulverized coal combustion apparatus which has a plurality of pulverized coal burners in an up-down direction or an opposite direction and which individually supplies coal of a plurality of coal types to the plurality of pulverized coal burners and burns the coal. Coal storage area for preliminarily fractionating and storing the coal according to the nitrogen content obtained by elemental analysis, pulverized coal machine for individually pulverizing the fractionated coal, and air ratio (= actual input air amount A pulverized coal burner for injecting a mixture of pulverized coal and air into a region where the ratio of the amount of air required to completely burn the pulverized coal is less than 1 Means for supplying charcoal, and means for supplying pulverized coal having a small nitrogen content in the pulverized coal to a pulverized coal burner for ejecting a mixture of pulverized coal and air to the region where the air ratio is 1 or more. Pulverized coal combustion equipment characterized by having .
【請求項8】 上下方向または対向方向に複数の微粉炭
バーナを有し、複数の炭種の石炭を前記複数の微粉炭バ
ーナに個別に供給し燃焼させる微粉炭燃焼装置におい
て、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し貯える貯炭場と、 前記分別された石炭を個別に微粉化する微粉炭機と、 空気比(=実際の投入空気量と前記微粉炭を完全燃焼さ
せるのに必要な空気量との比)を1未満に設定した微粉
炭バーナに前記微粉炭のうち窒素分の含有量の多い微粉
炭を供給する手段と、 前記空気比を1以上に設定した微粉炭バーナに前記微粉
炭のうち窒素分の含有量の少ない微粉炭を供給する手段
とを備えたことを特徴とする微粉炭燃焼装置。
8. A pulverized coal combustion apparatus which has a plurality of pulverized coal burners in an up-down direction or an opposite direction and which individually supplies coal of a plurality of pulverized coal burners to the plurality of pulverized coal burners and burns them. Coal storage area for preliminarily fractionating and storing the coal according to the nitrogen content obtained by elemental analysis, pulverized coal machine for individually pulverizing the fractionated coal, and air ratio (= actual input air amount A ratio of the amount of air required to completely burn the pulverized coal) less than 1 to a pulverized coal burner for supplying pulverized coal having a high nitrogen content in the pulverized coal burner; And a means for supplying pulverized coal having a low nitrogen content of the pulverized coal to the pulverized coal burner set to 1 or more.
【請求項9】 上下方向または対向方向に複数の微粉炭
バーナを有し、複数の炭種の石炭を前記複数の微粉炭バ
ーナに個別に供給するとともに過剰な空気を空気投入口
から投入し石炭を完全燃焼させる微粉炭燃焼装置におい
て、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し貯える貯炭場と、 前記分別された石炭を個別に微粉化する微粉炭機と、 前記空気投入口から離れた位置にある微粉炭バーナに前
記微粉炭のうち窒素分の含有量の多い微粉炭を供給する
手段と、 前記空気投入口から近い位置にある微粉炭バーナに前記
微粉炭のうち窒素分の含有量の少ない微粉炭を供給する
手段とを備えたことを特徴とする微粉炭燃焼装置。
9. A coal having a plurality of pulverized coal burners in a vertical direction or a facing direction, wherein coals of a plurality of coal types are individually supplied to the plurality of pulverized coal burners and excess air is introduced from an air introduction port. In a pulverized coal combustion device that completely burns the coal, a coal storage yard that preliminarily sorts and stores coals of a plurality of coal types according to the nitrogen content obtained by elemental analysis, and a pulverized powder that individually pulverizes the sorted coals. A coal machine, a means for supplying pulverized coal with a high nitrogen content in the pulverized coal to the pulverized coal burner located at a position distant from the air charging port, and a pulverized coal burner located at a position near the air charging port. And a means for supplying pulverized coal having a low nitrogen content in the pulverized coal.
【請求項10】 請求項7ないし9のいずれか一項に記
載の微粉炭燃焼装置において、 前記対向方向に備えられた複数の微粉炭バーナが、空気
比または石炭種の異なる前記微粉炭バーナにより形成さ
れる火炎が互いに衝突するように前記微粉炭燃焼装置の
火炉壁面に対して傾けて配置されることを特徴とする微
粉炭燃焼装置。
10. The pulverized coal combustion apparatus according to claim 7, wherein the plurality of pulverized coal burners provided in the facing direction are the pulverized coal burners having different air ratios or coal types. A pulverized coal combustion apparatus, which is arranged so as to be inclined with respect to a furnace wall surface of the pulverized coal combustion apparatus so that the formed flames collide with each other.
【請求項11】 同心円状に配置され微粉炭および空気
の混合気を噴出させる複数の微粉炭バーナとその外周に
配置され燃焼用空気を供給する手段とを有し、複数の炭
種の石炭を前記複数の微粉炭バーナに個別に供給し燃焼
させる微粉炭燃焼装置において、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し貯える貯炭場と、 前記分別された石炭を個別に微粉化する微粉炭機と、 前記同心円状の微粉炭バーナのうちで内側の微粉炭バー
ナに前記微粉炭のうち窒素分の含有量の多い微粉炭を供
給する手段と、 前記同心円状の微粉炭バーナのうちで外側の微粉炭バー
ナに前記微粉炭のうち窒素分の含有量の少ない微粉炭を
供給する手段とを備えたことを特徴とする微粉炭燃焼装
置。
11. A plurality of pulverized coal burners which are arranged concentrically and eject a mixture of pulverized coal and air, and means for supplying combustion air which are arranged on the outer periphery of the pulverized coal burner are provided. In a pulverized coal combustion apparatus that individually supplies and burns to the plurality of pulverized coal burners, a coal storage place for preliminarily fractionating and storing coal of a plurality of coal types according to the nitrogen content obtained by elemental analysis, and the fractionation. A pulverized coal machine for individually pulverizing the coal, a means for supplying pulverized coal having a high nitrogen content in the pulverized coal to the inner pulverized coal burner of the concentric pulverized coal burners, A pulverized coal combustion apparatus comprising: means for supplying pulverized coal having a smaller nitrogen content of the pulverized coal to an outer pulverized coal burner of the concentric pulverized coal burners.
【請求項12】 請求項11に記載の微粉炭燃焼装置に
おいて、 前記混合気の噴出領域に液体または気体の補助燃料を供
給する補助燃料ノズルを前記同心円の中心部に備えたこ
とを特徴とする微粉炭燃焼装置。
12. The pulverized coal combustion apparatus according to claim 11, wherein an auxiliary fuel nozzle for supplying an auxiliary fuel of liquid or gas to the jetting region of the air-fuel mixture is provided in the central portion of the concentric circles. Pulverized coal combustion equipment.
【請求項13】 微粉炭および空気の混合気を噴出させ
る第1微粉炭バーナとその上下に近接して配置され前記
微粉炭とは異なる炭種の微粉炭および空気の混合気を噴
出させる第2微粉炭バーナとその上下に近接して配置さ
れ燃焼用空気を供給する手段とを有し、複数の炭種の石
炭を前記複数の微粉炭バーナに個別に供給し燃焼させる
微粉炭燃焼装置において、 複数の炭種の石炭を元素分析により得られる窒素分の含
有量に応じて予め分別し貯える貯炭場と、 前記分別された石炭を個別に微粉化する微粉炭機と、 前記第1微粉炭バーナに前記微粉炭のうち窒素分の含有
量の多い微粉炭を供給する手段と、 前記第2微粉炭バーナに前記微粉炭のうち窒素分の含有
量の少ない微粉炭を供給する手段とを備えたことを特徴
とする微粉炭燃焼装置。
13. A first pulverized coal burner for ejecting an air-fuel mixture of pulverized coal and air and a second pulverized coal burner for ejecting an air-fuel mixture of pulverized coal having a coal type different from that of the pulverized coal arranged vertically above and below it. A pulverized coal burner having a means for supplying combustion air that is disposed close to and above and below the pulverized coal burner, and individually supplies coal of a plurality of coal types to the plurality of pulverized coal burners and burns them, A coal storage yard for preliminarily fractionating and storing coal of a plurality of coal types according to the nitrogen content obtained by elemental analysis, a pulverized coal machine for individually pulverizing the fractionated coal, and the first pulverized coal burner And means for supplying pulverized coal having a high nitrogen content in the pulverized coal, and means for supplying pulverized coal having a low nitrogen content in the pulverized coal to the second pulverized coal burner. A pulverized coal combustion device characterized in that
【請求項14】 請求項7ないし13のいずれか一項に
記載の微粉炭燃焼装置において、 前記微粉炭燃焼装置の負荷をモニタする手段を備え、 前記微粉炭バーナの起動後に所定の負荷に達するまで
は、前記微粉炭バーナに窒素分の含有量の少ない微粉炭
を供給する手段のみを作動させ、 前記所定の負荷以上では、前記微粉炭バーナにそれぞれ
窒素分の含有量の少ない微粉炭を供給する手段と窒素分
の含有量の多い微粉炭を供給する手段とを並行して動作
させることを特徴とする微粉炭燃焼装置。
14. The pulverized coal combustion apparatus according to claim 7, further comprising means for monitoring a load of the pulverized coal combustion apparatus, wherein a predetermined load is reached after the pulverized coal burner is activated. Up to the operation of only means for supplying pulverized coal having a low nitrogen content to the pulverized coal burner, and above the predetermined load, supplying pulverized coal having a low nitrogen content to the pulverized coal burner, respectively. A pulverized coal combustion apparatus characterized in that the pulverized coal combustion device and the means for supplying pulverized coal having a high nitrogen content are operated in parallel.
【請求項15】 請求項7ないし14のいずれか一項に
記載の微粉炭燃焼装置において、 前記燃焼状態を監視する手段と前記炭種の異なる微粉炭
の一部を混合する手段とを備え、 前記燃焼状態が所定の条件を満たすときは、前記炭種の
異なる微粉炭の一部を混合して前記微粉炭バーナの少な
くとも一つに供給することを特徴とする微粉炭燃焼装
置。
15. The pulverized coal combustion apparatus according to any one of claims 7 to 14, comprising means for monitoring the combustion state and means for mixing a part of the pulverized coal having different coal types. When the combustion state satisfies a predetermined condition, a part of the pulverized coal having a different coal type is mixed and supplied to at least one of the pulverized coal burners.
【請求項16】 請求項7ないし15のいずれか一項に
記載の微粉炭燃焼装置において、 前記窒素分の含有量に応じて石炭を分別し前記貯炭場に
貯炭する際に、元素分析により得られる窒素分の平均含
有量の相対的な差を0.1(重量%)以上とすることを
特徴とする微粉炭燃焼装置。
16. The pulverized coal combustion apparatus according to claim 7, wherein when the coal is separated according to the content of the nitrogen content and stored in the coal storage yard, it is obtained by elemental analysis. A pulverized coal combustion apparatus, characterized in that the relative difference in the average content of the generated nitrogen content is 0.1 (% by weight) or more.
【請求項17】 複数の炭種の石炭を個別に供給し燃焼
させる微粉炭燃焼装置の微粉炭バーナにおいて、 同心円状に配置され微粉炭および空気の混合気を噴出さ
せる複数の1次燃料ノズルと、 その外周に配置され燃焼用空気を供給する2次空気ノズ
ルと、 前記2次空気ノズルからの空気に旋回流を形成させる旋
回流発生器と、 前記同心円状の内側の1次燃料ノズルに前記微粉炭のう
ち窒素分の含有量の多い微粉炭を供給する1次燃料供給
管と、 前記同心円状の外側の1次燃料ノズルに前記微粉炭のう
ち窒素分の含有量の少ない微粉炭を供給する1次燃料供
給管と、 前記1次燃料ノズル出口部に形成され前記微粉炭バーナ
の燃焼室側に向かい末広がりとなるスリーブとを備えた
ことを特徴とする微粉炭バーナ。
17. A pulverized coal burner of a pulverized coal combustion apparatus that individually supplies and burns coal of a plurality of types of coal, and a plurality of primary fuel nozzles arranged concentrically to eject a mixture of pulverized coal and air. A secondary air nozzle disposed on the outer periphery of the secondary air nozzle for supplying combustion air; a swirl flow generator for generating a swirl flow in the air from the secondary air nozzle; Of the pulverized coal, the pulverized coal having a low nitrogen content is supplied to the primary fuel supply pipe for supplying the pulverized coal having a high nitrogen content and the concentric outer primary fuel nozzle. A pulverized coal burner, which comprises: a primary fuel supply pipe, and a sleeve that is formed at the outlet of the primary fuel nozzle and that widens toward the combustion chamber side of the pulverized coal burner.
【請求項18】 複数の炭種の石炭を個別に供給し燃焼
させる微粉炭燃焼装置の微粉炭バーナにおいて、 微粉炭および空気の混合気を噴出させる内側の1次燃料
ノズルと、 前記内側の1次燃料ノズルとは同心円状に配置され燃焼
室側に向かい前記内側の1次燃料ノズルよりも突出し微
粉炭および空気の混合気を噴出させる外側の1次燃料ノ
ズルと、 その外周に配置され燃焼用空気を供給する2次空気ノズ
ルと、 前記2次空気ノズルからの空気に旋回流を形成させる旋
回流発生器と、 前記同心円状の内側の1次燃料ノズルに前記微粉炭のう
ち窒素分の含有量の多い微粉炭を供給する1次燃料供給
管と、 前記同心円状の外側の1次燃料ノズルに前記微粉炭のう
ち窒素分の含有量の少ない微粉炭を供給する1次燃料供
給管と、 前記外側の1次燃料ノズル出口部に形成され前記微粉炭
バーナの燃焼室側に向かい末広がりとなるスリーブとを
備えたことを特徴とする微粉炭バーナ。
18. A pulverized coal burner of a pulverized coal combustion device for individually supplying and burning coal of a plurality of types of coal, an inner primary fuel nozzle for ejecting a mixture of pulverized coal and air, and the inner 1 The secondary fuel nozzle is arranged concentrically with the primary fuel nozzle on the outer side, which projects toward the combustion chamber and protrudes from the primary fuel nozzle on the inner side, and injects a mixture of pulverized coal and air. A secondary air nozzle that supplies air, a swirl flow generator that forms a swirl flow in the air from the secondary air nozzle, and a concentric inner primary fuel nozzle that contains a nitrogen content of the pulverized coal. A primary fuel supply pipe for supplying a large amount of pulverized coal, and a primary fuel supply pipe for supplying a pulverized coal having a small nitrogen content in the pulverized coal to the concentric outer primary fuel nozzles, Primary combustion of the outside Pulverized coal burner, characterized in that a sleeve is formed in the nozzle outlet becomes divergent toward the combustion chamber side of the pulverized coal burner.
【請求項19】 請求項17または18に記載の微粉炭
バーナにおいて、 前記混合気の噴出領域に液体または気体の補助燃料を供
給する補助燃料ノズルを前記同心円の中心部に備えたこ
とを特徴とする微粉炭バーナ。
19. The pulverized coal burner according to claim 17 or 18, wherein an auxiliary fuel nozzle for supplying an auxiliary fuel of liquid or gas to the jetting region of the air-fuel mixture is provided in the central portion of the concentric circles. Pulverized coal burner.
JP25316694A 1994-10-19 1994-10-19 Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner Pending JPH08121711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25316694A JPH08121711A (en) 1994-10-19 1994-10-19 Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25316694A JPH08121711A (en) 1994-10-19 1994-10-19 Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner

Publications (1)

Publication Number Publication Date
JPH08121711A true JPH08121711A (en) 1996-05-17

Family

ID=17247455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25316694A Pending JPH08121711A (en) 1994-10-19 1994-10-19 Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner

Country Status (1)

Country Link
JP (1) JPH08121711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069251A (en) * 2002-08-09 2004-03-04 Mitsubishi Heavy Ind Ltd Pulverized coal combustion system
CN100455885C (en) * 2007-02-28 2009-01-28 哈尔滨工业大学 Method for burning of low nitrogen oxides in coal-burning boiler
WO2011145493A1 (en) * 2010-05-18 2011-11-24 株式会社神戸製鋼所 Method for preventing ignition in mill and device for preventing ignition in mill
WO2011145483A1 (en) * 2010-05-17 2011-11-24 株式会社神戸製鋼所 Ignition prevention method and ignition prevention apparatus for crusher
JP2012107789A (en) * 2010-11-16 2012-06-07 Ihi Corp Low volatile fuel burner device
AU2021273581B2 (en) * 2020-11-26 2023-08-24 Yanggu Xiangguang Copper CO., Ltd Burner and cyclone smelting method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069251A (en) * 2002-08-09 2004-03-04 Mitsubishi Heavy Ind Ltd Pulverized coal combustion system
CN100455885C (en) * 2007-02-28 2009-01-28 哈尔滨工业大学 Method for burning of low nitrogen oxides in coal-burning boiler
WO2011145483A1 (en) * 2010-05-17 2011-11-24 株式会社神戸製鋼所 Ignition prevention method and ignition prevention apparatus for crusher
JP2011242032A (en) * 2010-05-17 2011-12-01 Kobe Steel Ltd Ignition prevention method and ignition prevention apparatus for crusher
WO2011145493A1 (en) * 2010-05-18 2011-11-24 株式会社神戸製鋼所 Method for preventing ignition in mill and device for preventing ignition in mill
JP2011240250A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Method for preventing ignition in mill and device for preventing ignition in mill
CN102893089A (en) * 2010-05-18 2013-01-23 株式会社神户制钢所 Method for preventing ignition in mill and device for preventing ignition in mill
KR101369705B1 (en) * 2010-05-18 2014-03-03 가부시키가이샤 고베 세이코쇼 Method for preventing ignition in mill and device for preventing ignition in mill
JP2012107789A (en) * 2010-11-16 2012-06-07 Ihi Corp Low volatile fuel burner device
AU2021273581B2 (en) * 2020-11-26 2023-08-24 Yanggu Xiangguang Copper CO., Ltd Burner and cyclone smelting method

Similar Documents

Publication Publication Date Title
US10281148B2 (en) Biomass-mixed, pulverized coal-fired burner and fuel combustion method
CA2487215C (en) Solid fuel burner, solid fuel burner combustion method, combustion apparatus and combustion apparatus operation method
EP2829800B1 (en) Pulverized coal/biomass mixed-combustion burner and fuel combustion method
EP0260382B2 (en) Low NOx burner
US6189464B1 (en) Pulverized coal combustion burner and combustion method thereby
EP2623861A1 (en) Combustion system and method for operating same
BG64878B1 (en) Solid fuel burner and method for the adjustment of burning effected by the solid fuel burner
JPH05215312A (en) Burner assembly and flame holder
KR20040007278A (en) Nox-reduced combustion of concentrated coal streams
US4669398A (en) Pulverized fuel firing apparatus
US6298796B1 (en) Fine coal powder combustion method for a fine coal powder combustion burner
JPH0447204B2 (en)
EP0747629A1 (en) Low-emission vortex furnace
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
JPH04214102A (en) Pulverized coal boiler, pulverized coal boiler system, and pulverized coal burner
JPH0627561B2 (en) Pulverized coal combustion equipment
JP2001330211A (en) Pulverized coal burner, pulverized coal boiler using it, its system, and coal-fired thermal power generation system
JP2749365B2 (en) Pulverized coal burner
JPH0555763B2 (en)
JP2003156203A (en) Solid fuel burner, and burning for the same
JPS58127005A (en) Low nox burner using pulverized coal
JP2649375B2 (en) Low NOx combustion method for pulverized coal and its burner for pulverized coal combustion
JPS6219645B2 (en)
JPH0221107A (en) Low nox combustion method for pulverized coal
JPS5929904A (en) Combustion device for low nitrogen oxide