JP2011240250A - Method for preventing ignition in mill and device for preventing ignition in mill - Google Patents

Method for preventing ignition in mill and device for preventing ignition in mill Download PDF

Info

Publication number
JP2011240250A
JP2011240250A JP2010114451A JP2010114451A JP2011240250A JP 2011240250 A JP2011240250 A JP 2011240250A JP 2010114451 A JP2010114451 A JP 2010114451A JP 2010114451 A JP2010114451 A JP 2010114451A JP 2011240250 A JP2011240250 A JP 2011240250A
Authority
JP
Japan
Prior art keywords
coal
pulverizer
ratio
ignition
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114451A
Other languages
Japanese (ja)
Other versions
JP5385853B2 (en
Inventor
Katsuya Akiyama
勝哉 秋山
Umihiro Boku
海洋 朴
Yoji Takubo
陽司 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010114451A priority Critical patent/JP5385853B2/en
Priority to CN201180024007.1A priority patent/CN102893089B/en
Priority to KR1020127030113A priority patent/KR101369705B1/en
Priority to PCT/JP2011/060827 priority patent/WO2011145493A1/en
Publication of JP2011240250A publication Critical patent/JP2011240250A/en
Application granted granted Critical
Publication of JP5385853B2 publication Critical patent/JP5385853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/13Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft and combined with sifting devices, e.g. for making powdered fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/31Safety devices or measures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/04Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1003Processes to make pulverulent fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1006Mills adapted for use with furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/501Blending with other fuels or combustible waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/102Flashback safety, e.g. inertizing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/104Metering devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent ignition inside a mill.SOLUTION: The ratio of the oxygen content rate and/or the hydrogen content rate to the carbon content rate in the mixed coal obtained by mixing coal A with coal B are calculated beforehand as analytical values. The amounts of the coal A and coal B to be supplied to the mill 5 are adjusted respectively on the basis of measured results of the concentrations of carbon monoxide and/or carbon dioxide in a gas at an outlet of the mill 5 and the analytical value so as to vary the ratio, which is the ratio of the oxygen content rate and/or the hydrogen content rate to the carbon content rate in the mixed coal to be supplied to the mill 5, the ratio being in the same type as the analytical value.

Description

本発明は、ボイラの燃料となる固体燃料を粉砕する粉砕機の発火防止方法及び発火防止装置に関する。   The present invention relates to an ignition prevention method and an ignition prevention apparatus for a pulverizer that pulverizes a solid fuel serving as a boiler fuel.

固体燃料を燃料とするボイラには、粉砕機で粉砕された固体燃料が、搬送用空気とともに供給される。   A solid fuel pulverized by a pulverizer is supplied to a boiler using the solid fuel as fuel together with the air for conveyance.

日本では、発火温度の高い瀝青炭をボイラの燃料に使用しているので、粉砕機での発火についてはあまり注目されていない。むしろ、初期の微粉炭燃焼ボイラには、火災が起こった後の対策として、粉砕機内に、不活性ガス(水蒸気など)を供給するシステムや破裂板(ラプチャーディスク)を設けているものがある。   In Japan, bituminous coal, which has a high ignition temperature, is used as boiler fuel, so much attention has not been paid to ignition in a pulverizer. Rather, some of the early pulverized coal combustion boilers are provided with a system for supplying an inert gas (such as water vapor) and a rupture disk (rupture disk) as a countermeasure after a fire has occurred.

一方、海外、特に米国では、1980年代に、西部産の低品位炭を使うことにより、粉砕機内での火災・爆発を数多く経験している。今後、日本でも低品位炭、つまり発火温度が低い石炭や、亜瀝青炭、改質褐炭(UBC)等を使用する機会が増えてくることから、粉砕機内での発火を事前に検知して、これを防止する必要がある。   On the other hand, in the United States, especially in the United States, many fires and explosions were experienced in the crusher in the 1980s by using low-grade coal produced in the West. In the future, there will be more opportunities to use low-grade coal, that is, low-ignition coal, subbituminous coal, modified brown coal (UBC), etc. in Japan. Need to prevent.

特許文献1には、石炭を粉砕する粉砕ミルに石炭を供給する石炭供給管にバイオマスを定量的に供給することで、粉砕ミルに供給される石炭量とバイオマス燃料量との比率を安定化させ、バイオマスの発火を防ぎ、ひいては粉砕ミルの運転状態を安定化させた石炭・有機物燃料混合粉砕装置が開示されている。   In Patent Document 1, biomass is quantitatively supplied to a coal supply pipe that supplies coal to a pulverizing mill for pulverizing coal, thereby stabilizing the ratio of the amount of coal supplied to the pulverizing mill and the amount of biomass fuel. In addition, a coal / organic fuel mixed pulverization apparatus that prevents the ignition of biomass and thus stabilizes the operation state of the pulverization mill is disclosed.

また、特許文献2には、混合空気のミル入口温度計測値とミル入口温度設定値とを比較して、ミル入口温度計測値がミル入口温度設定値以上になった場合に、ミル出口温度設定値を下げることで、ミル入口温度の過剰上昇による発火事故を防止しながら、ミル出口温度の制御を継続するミル装置ならびにそれを備えた石炭焚ボイラ設備が開示されている。   Further, Patent Document 2 compares the mill inlet temperature measurement value of the mixed air with the mill inlet temperature set value, and if the mill inlet temperature measured value is equal to or higher than the mill inlet temperature set value, the mill outlet temperature setting A mill device that continues to control the mill outlet temperature while reducing the value while preventing ignition accidents due to excessive rise of the mill inlet temperature and a coal-fired boiler facility equipped with the same are disclosed.

また、特許文献3には、被粉砕物の供給量に応じてミルの入口温度を制御することで、ミルの出口温度の変化を小さくして、微粉炭の発火を防止したローラミル装置が開示されている。   Patent Document 3 discloses a roller mill device that controls the mill inlet temperature in accordance with the supply amount of the object to be pulverized, thereby reducing the change in the mill outlet temperature and preventing the pulverized coal from igniting. ing.

また、特許文献4には、加熱空気管および石炭粉砕機内の温度を測定し、石炭粉砕機に供給する空気の温度および供給量を制御することで、発火の虞をなくした石炭粉砕機用空気温度制御装置が開示されている。   In Patent Document 4, the temperature in the heated air pipe and the coal pulverizer is measured, and the temperature and the supply amount of the air supplied to the coal pulverizer are controlled to eliminate the possibility of ignition. A temperature control device is disclosed.

また、特許文献5には、ミル入口温度とミルへの給炭量から原炭水分を求め、この原炭水分に応じて、ミル出口温度を設定することで、ミル出口温度を原炭水分に応じた最適値として、発火を防止したミル出口温度制御方法が開示されている。   In Patent Document 5, the raw coal moisture is obtained from the mill inlet temperature and the amount of coal supplied to the mill, and the mill outlet temperature is set to the raw coal moisture by setting the mill outlet temperature according to the raw coal moisture. As an optimum value according to this, a mill outlet temperature control method that prevents ignition is disclosed.

また、特許文献6には、微粉ビン内で微粉炭のくすぶりやおき火燃焼状態を検知したときに、微粉炭の搬送媒体を空気から不活性ガスに切り替えることで、微粉爆発を防止する微粉炭燃焼方法が開示されている。   Further, Patent Document 6 discloses a pulverized coal that prevents a pulverized explosion by switching a carrier of pulverized coal from air to an inert gas when a smoldering or smoldering combustion state of pulverized coal is detected in a pulverized bottle. A combustion method is disclosed.

特開2004−347241号公報JP 2004-347241 A 特開2006−102666号公報JP 2006-102666 A 特開平4−244246号公報JP-A-4-244246 特開昭56−152750号公報JP-A-56-152750 特開昭63−315158号公報JP-A-63-315158 特開昭63−267814号公報JP-A 63-267814

しかしながら、現状では、これまで想定されていなかった発火温度が低い固体燃料に対する運転指標がない。そのため、どのような運転条件、具体的には、どのような入口・出口温度と燃料供給量で粉砕機を操作すべきかわからない。そこで、粉砕機を安全に運転するための運転条件を得て、粉砕機内での発火を防止することが望まれる。   However, at present, there is no operation index for solid fuel having a low ignition temperature, which has not been assumed so far. For this reason, it is not known what operating conditions, specifically, what inlet / outlet temperatures and fuel supply amount should be used to operate the pulverizer. Therefore, it is desired to obtain operating conditions for safely operating the pulverizer and prevent ignition in the pulverizer.

本発明の目的は、粉砕機内での発火を防止することが可能な粉砕機の発火防止方法及び発火防止装置を提供することである。   The objective of this invention is providing the ignition prevention method and ignition prevention apparatus of a grinder which can prevent the ignition in a grinder.

本発明における粉砕機の発火防止方法は、固体燃料を粉砕する粉砕機の発火防止方法であって、1種類以上の固体燃料中の酸素含有率及び/又は水素含有率と炭素含有率との比を分析値として予め求めておき、前記粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定し、前記濃度の測定結果と前記分析値とに基づいて、前記粉砕機に供給される前記1種類以上の固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、前記分析値と同種の比を変化させるように、前記粉砕機に供給される前記1種類以上の固体燃料の供給量を調整することを特徴とする。   The method for preventing ignition of a pulverizer in the present invention is a method for preventing ignition of a pulverizer that pulverizes solid fuel, and the ratio of oxygen content and / or hydrogen content to carbon content in one or more types of solid fuel. Is determined in advance as an analytical value, and the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer is measured. Based on the measurement result of the concentration and the analytical value, the pulverizer The ratio of the oxygen content and / or the hydrogen content to the carbon content in the one or more types of solid fuel to be supplied, and supplied to the pulverizer so as to change the ratio of the same kind as the analysis value. The supply amount of the one or more types of solid fuel is adjusted.

上記の構成によれば、熱風(搬送用空気)が供給されながら固体燃料を粉砕する粉砕機に発火温度が低い固体燃料を使用すれば、粉砕機内において、加熱された燃料が発火する危険性がある。そして、粉砕機内において、発火の予兆である燃料の酸化反応が起これば、粉砕機の出口におけるガス中において、一酸化炭素や二酸化炭素が検知されることになる。そこで、粉砕内での発火を防止するためには、粉砕機内において、発火の予兆である燃料の酸化反応が起こらないように、即ち、粉砕機の出口におけるガス中において、一酸化炭素や二酸化炭素が検知されないようにする必要がある。   According to the above configuration, if a solid fuel having a low ignition temperature is used in a pulverizer that pulverizes the solid fuel while hot air (conveying air) is supplied, there is a risk that the heated fuel may ignite in the pulverizer. is there. And if the oxidation reaction of the fuel which is a precursor of ignition occurs in the pulverizer, carbon monoxide and carbon dioxide are detected in the gas at the outlet of the pulverizer. Therefore, in order to prevent ignition in the pulverization, in the pulverizer, the oxidation reaction of fuel, which is a sign of ignition, does not occur, that is, in the gas at the outlet of the pulverizer, carbon monoxide and carbon dioxide. Need to be detected.

ここで、1種類以上の固体燃料中の酸素含有率及び/又は水素含有率と炭素含有率との比が高くなるほど、1種類以上の固体燃料の発火温度が低下する。これは、酸素含有率及び/又は水素含有率と炭素含有率との比が高くなるほど、低温で可燃性ガスなどの揮発分が放出されやすくなり、発火しやすくなるためであると考えられる。そこで、酸素含有率及び/又は水素含有率と炭素含有率との比が低くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整すれば、粉砕機に供給される1種類以上の固体燃料の発火温度が高くなり、粉砕機内において、発火の予兆である燃料の酸化反応が起こりにくくなるのである。   Here, the ignition temperature of one or more types of solid fuels decreases as the ratio of the oxygen content and / or the hydrogen content to the carbon content in one or more types of solid fuels increases. This is considered to be because as the ratio of the oxygen content and / or the hydrogen content to the carbon content increases, volatile components such as combustible gas are easily released at a low temperature, and ignition is likely to occur. Therefore, if the supply amount of one or more kinds of solid fuel supplied to the pulverizer is adjusted so that the ratio of the oxygen content and / or the hydrogen content to the carbon content is low, the pulverizer is supplied. The ignition temperature of one or more kinds of solid fuels becomes high, and the oxidation reaction of the fuel, which is a sign of ignition, hardly occurs in the pulverizer.

ただし、単純に酸素含有率及び/又は水素含有率と炭素含有率との比を低くして、粉砕機に供給される1種類以上の固体燃料の発火温度を高くしていたのでは、安価で発火温度が低い固体燃料の供給量を増やすことができない。コストダウンを図るためには、粉砕機内で発火が起こらない程度で、安価で発火温度が低い固体燃料の供給量をできるだけ増やすことが必要である。   However, simply reducing the ratio of oxygen content and / or hydrogen content to carbon content and increasing the ignition temperature of one or more solid fuels supplied to the pulverizer is inexpensive. The supply of solid fuel with a low ignition temperature cannot be increased. In order to reduce the cost, it is necessary to increase the supply amount of the solid fuel that is inexpensive and has a low ignition temperature as much as possible without causing ignition in the pulverizer.

そこで、粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定した結果、一酸化炭素や二酸化炭素が検知されない場合には、発火の予兆である燃料の酸化反応が起こっていないので、予め求めておいた分析値に基づいて、固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、分析値と同種の比が高くなる、つまり、固体燃料の発火温度が低くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整する。具体的には、発火温度が低い方の固体燃料の供給量を増やすことで、1種類以上の固体燃料の発火温度を低くする。これにより、安価で発火温度が低い固体燃料の供給量が増えるので、コストダウンを図ることができる。   Therefore, when the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer is measured, if no carbon monoxide or carbon dioxide is detected, an oxidation reaction of fuel, which is a precursor of ignition, has occurred. Therefore, based on the analytical value obtained in advance, the ratio of the oxygen content and / or the hydrogen content and the carbon content in the solid fuel, the ratio of the same kind as the analytical value becomes high, that is, The supply amount of one or more types of solid fuel supplied to the pulverizer is adjusted so that the ignition temperature of the solid fuel is lowered. Specifically, the ignition temperature of one or more types of solid fuel is lowered by increasing the supply amount of the solid fuel having a lower ignition temperature. As a result, the supply amount of the solid fuel that is inexpensive and has a low ignition temperature increases, so that the cost can be reduced.

一方、粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定した結果、一酸化炭素や二酸化炭素が少しでも検知された場合には、発火の予兆である燃料の酸化反応が起こっているので、予め求めておいた分析値に基づいて、固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、分析値と同種の比が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整する。具体的には、発火温度が低い方の固体燃料の供給量を減らすことで、1種類以上の固体燃料の発火温度を高くする。これにより、安価で発火温度が低い固体燃料の供給量は減るが、粉砕機内において、発火の予兆である燃料の酸化反応が起こらなくなり、粉砕機の出口におけるガス中において、一酸化炭素や二酸化炭素が検知されなくなる。よって、発火温度が低い固体燃料を用いても、粉砕機内での発火を防止し、粉砕機の火災や爆発といった災害を防止することができる。   On the other hand, if carbon monoxide and / or carbon dioxide is detected as a result of measuring the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer, the oxidation reaction of fuel, which is a sign of ignition, is detected. Therefore, based on the analytical value obtained in advance, the ratio of oxygen content and / or hydrogen content to carbon content in the solid fuel, the ratio of the same kind as the analytical value becomes low That is, the supply amount of one or more types of solid fuel supplied to the pulverizer is adjusted so that the ignition temperature of the solid fuel becomes high. Specifically, the ignition temperature of one or more kinds of solid fuels is increased by reducing the supply amount of the solid fuel having a lower ignition temperature. This reduces the amount of solid fuel that is cheap and has a low ignition temperature, but the oxidation reaction of fuel, which is a sign of ignition, does not occur in the pulverizer, and carbon monoxide and carbon dioxide in the gas at the outlet of the pulverizer Will not be detected. Therefore, even if solid fuel having a low ignition temperature is used, ignition in the pulverizer can be prevented, and disasters such as fire and explosion of the pulverizer can be prevented.

また、本発明における粉砕機の発火防止方法において、前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であってよい。上記の構成によれば、安価で発火温度が低い石炭やバイオマス燃料を、高価で発火温度が高い瀝青炭等の高品位炭の代わりに用いることで、粉砕機内での発火を防止しながら、コストダウンを図ることができる。   In the method for preventing ignition of a pulverizer according to the present invention, the solid fuel may be at least one of coal and biomass fuel. According to the above configuration, low cost and low ignition temperature coal and biomass fuel can be used in place of high grade coal such as bituminous coal with high ignition temperature and low cost while preventing ignition in the crusher. Can be achieved.

また、本発明における粉砕機の発火防止装置は、固体燃料を粉砕する粉砕機の発火防止装置であって、前記粉砕機に供給される1種類以上の固体燃料の供給量を調整する供給量調整手段と、前記粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定する濃度測定手段と、前記1種類以上の固体燃料中の酸素含有率及び/又は水素含有率と炭素含有率との比を分析値として記憶する記憶手段と、前記濃度測定手段の測定結果と、前記記憶手段が記憶する前記分析値とに基づいて、前記粉砕機に供給される前記1種類以上の固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、前記分析値と同種の比を変化させるように、前記供給量調整手段を制御する制御手段と、を有することを特徴とする。   The ignition preventing device for a pulverizer according to the present invention is an ignition preventing device for a pulverizer that pulverizes solid fuel, and adjusts the supply amount of one or more types of solid fuel supplied to the pulverizer. Means, concentration measuring means for measuring the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer, oxygen content and / or hydrogen content and carbon in the one or more solid fuels One or more types of the one or more kinds supplied to the pulverizer based on the storage means for storing the ratio with the content rate as an analysis value, the measurement result of the concentration measurement means, and the analysis value stored in the storage means A control means for controlling the supply amount adjusting means so as to change the ratio of the oxygen content and / or the hydrogen content and the carbon content in the solid fuel, the same kind of ratio as the analysis value; It is characterized by having .

上記の構成によれば、上述したように、酸素含有率及び/又は水素含有率と炭素含有率との比が低くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整すれば、粉砕機に供給される1種類以上の固体燃料の発火温度が高くなり、粉砕機内において、発火の予兆である燃料の酸化反応が起こりにくくなる。   According to said structure, as above-mentioned, supply_amount | feed_rate of the 1 or more types of solid fuel supplied to a grinder so that the ratio of oxygen content rate and / or hydrogen content rate, and carbon content rate may become low. If adjusted, the ignition temperature of one or more types of solid fuel supplied to the pulverizer becomes high, and the oxidation reaction of fuel, which is a sign of ignition, hardly occurs in the pulverizer.

そこで、粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定した結果、一酸化炭素や二酸化炭素が検知されない場合には、発火の予兆である燃料の酸化反応が起こっていないので、予め求めておいた分析値に基づいて、固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、分析値と同種の比が高くなる、つまり、固体燃料の発火温度が低くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整する。具体的には、発火温度が低い方の固体燃料の供給量を増やすことで、1種類以上の固体燃料の発火温度を低くする。これにより、安価で発火温度が低い固体燃料の供給量が増えるので、コストダウンを図ることができる。   Therefore, when the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer is measured, if no carbon monoxide or carbon dioxide is detected, an oxidation reaction of fuel, which is a precursor of ignition, has occurred. Therefore, based on the analytical value obtained in advance, the ratio of the oxygen content and / or the hydrogen content and the carbon content in the solid fuel, the ratio of the same kind as the analytical value becomes high, that is, The supply amount of one or more types of solid fuel supplied to the pulverizer is adjusted so that the ignition temperature of the solid fuel is lowered. Specifically, the ignition temperature of one or more types of solid fuel is lowered by increasing the supply amount of the solid fuel having a lower ignition temperature. As a result, the supply amount of the solid fuel that is inexpensive and has a low ignition temperature increases, so that the cost can be reduced.

一方、粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定した結果、一酸化炭素や二酸化炭素が少しでも検知された場合には、発火の予兆である燃料の酸化反応が起こっているので、予め求めておいた分析値に基づいて、固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、分析値と同種の比が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整する。具体的には、発火温度が低い方の固体燃料の供給量を減らすことで、1種類以上の固体燃料の発火温度を高くする。これにより、安価で発火温度が低い固体燃料の供給量は減るが、粉砕機内において、発火の予兆である燃料の酸化反応が起こらなくなり、粉砕機の出口におけるガス中において、一酸化炭素や二酸化炭素が検知されなくなる。よって、発火温度が低い固体燃料を用いても、粉砕機内での発火を防止し、粉砕機の火災や爆発といった災害を防止することができる。   On the other hand, if carbon monoxide and / or carbon dioxide is detected as a result of measuring the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer, the oxidation reaction of fuel, which is a sign of ignition, is detected. Therefore, based on the analytical value obtained in advance, the ratio of oxygen content and / or hydrogen content to carbon content in the solid fuel, the ratio of the same kind as the analytical value becomes low That is, the supply amount of one or more types of solid fuel supplied to the pulverizer is adjusted so that the ignition temperature of the solid fuel becomes high. Specifically, the ignition temperature of one or more kinds of solid fuels is increased by reducing the supply amount of the solid fuel having a lower ignition temperature. This reduces the amount of solid fuel that is cheap and has a low ignition temperature, but the oxidation reaction of fuel, which is a sign of ignition, does not occur in the pulverizer, and carbon monoxide and carbon dioxide in the gas at the outlet of the pulverizer Will not be detected. Therefore, even if solid fuel having a low ignition temperature is used, ignition in the pulverizer can be prevented, and disasters such as fire and explosion of the pulverizer can be prevented.

また、本発明における粉砕機の発火防止装置において、前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であってよい。上記の構成によれば、安価で発火温度が低い石炭やバイオマス燃料を、高価で発火温度が高い瀝青炭等の高品位炭の代わりに用いることで、粉砕機内での発火を防止しながら、コストダウンを図ることができる。   In the ignition prevention device for a pulverizer according to the present invention, the solid fuel may be at least one of coal and biomass fuel. According to the above configuration, low cost and low ignition temperature coal and biomass fuel can be used in place of high grade coal such as bituminous coal with high ignition temperature and low cost while preventing ignition in the crusher. Can be achieved.

本発明の粉砕機の発火防止方法及び発火防止装置によると、粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定した結果、一酸化炭素や二酸化炭素が少しでも検知された場合には、分析値に基づいて、固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、分析値と同種の比が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機に供給される1種類以上の固体燃料の供給量を調整する。これにより、粉砕機内において、発火の予兆である燃料の酸化反応が起こらなくなるので、発火温度が低い固体燃料を用いても、粉砕機内での発火を防止し、粉砕機の火災や爆発といった災害を防止することができる。   According to the ignition prevention method and the ignition prevention device of the pulverizer of the present invention, as a result of measuring the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the pulverizer, carbon monoxide and carbon dioxide are detected even a little. In this case, the ratio of the oxygen content and / or the hydrogen content to the carbon content in the solid fuel based on the analysis value, which is the same ratio as the analysis value, that is, the solid fuel The supply amount of one or more types of solid fuel supplied to the pulverizer is adjusted so that the ignition temperature becomes high. As a result, the fuel oxidation reaction, which is a precursor to ignition, does not occur in the pulverizer, so even if solid fuel with a low ignition temperature is used, ignition in the pulverizer is prevented and disasters such as fire and explosion of the pulverizer are prevented. Can be prevented.

粉砕機の発火防止装置を示す概略図である。It is the schematic which shows the ignition prevention apparatus of a grinder. 微粉炭発火試験装置を示す概略図である。It is the schematic which shows a pulverized coal ignition test apparatus. 酸素含有率と炭素含有率とのモル比と発火温度との関係を示す図である。It is a figure which shows the relationship between the molar ratio of oxygen content rate and carbon content rate, and ignition temperature. 水素含有率と炭素含有率とのモル比と発火温度との関係を示す図である。It is a figure which shows the relationship between the molar ratio of hydrogen content rate and carbon content rate, and ignition temperature. 酸素含有率及び水素含有率と炭素含有率とのモル比と発火温度との関係を示す図である。It is a figure which shows the relationship between the molar ratio of oxygen content rate and hydrogen content rate, and carbon content rate, and ignition temperature.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。なお、以下の実施形態では、固体燃料として石炭を用いて説明するが、固体燃料はこれに限定されず、バイオマス燃料や汚泥炭化物等であってもよく、石炭、バイオマス燃料、汚泥炭化物等を2種以上使用してもよい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following embodiment, description will be given using coal as the solid fuel, but the solid fuel is not limited to this, and may be biomass fuel, sludge carbide, or the like, and coal, biomass fuel, sludge carbide, etc. More than one species may be used.

(粉砕機の発火防止装置の構成)
本実施形態による粉砕機の発火防止装置10は、図1に示すように、石炭ホッパ1,2から混合機4に供給される石炭A,Bの供給量を調整する石炭供給量調整装置(供給量調整手段)3a,3bと、粉砕機5の出口におけるガス中の一酸化炭素濃度を測定する濃度測定装置(濃度測定手段)7と、石炭供給量調整装置3a,3bをそれぞれ制御する演算器(記憶手段、制御手段)11と、を有している。なお、濃度測定装置7は、粉砕機5の出口におけるガス中の二酸化炭素濃度を測定するものであってもよく、一酸化炭素及び二酸化炭素の濃度をそれぞれ測定するものであってもよい。
(Configuration of crusher ignition prevention device)
As shown in FIG. 1, the pulverizer ignition prevention device 10 according to this embodiment is a coal supply amount adjustment device (supply) that adjusts the supply amounts of coal A and B supplied from the coal hoppers 1 and 2 to the mixer 4. (Amount adjusting means) 3a, 3b, a concentration measuring device (concentration measuring means) 7 for measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer 5, and a calculator for controlling the coal supply amount adjusting devices 3a, 3b, respectively. (Storage means, control means) 11. The concentration measuring device 7 may measure the concentration of carbon dioxide in the gas at the outlet of the pulverizer 5, or may measure the concentrations of carbon monoxide and carbon dioxide.

石炭ホッパ1,2は、2種類の石炭A,Bをそれぞれ保持している。石炭ホッパ1が保持する石炭Aと、石炭ホッパ2が保持する石炭Bとは、酸素含有率と炭素含有率とのモル比(O/C比)が互いに異なっているとともに、水素含有率と炭素含有率とのモル比(H/C比)、および、酸素含有率及び水素含有率と炭素含有率とのモル比((O+H)/C比)が互いに異なっている。混合機4は、石炭ホッパ1,2から供給された2種類の石炭A,Bを混合する。石炭ホッパ1から混合機4に供給される石炭Aの供給量は、石炭供給量調整装置3aにより調整され、石炭ホッパ2から混合機4に供給される石炭Bの供給量は、石炭供給量調整装置3bにより調整される。   Coal hoppers 1 and 2 hold two types of coals A and B, respectively. The coal A held by the coal hopper 1 and the coal B held by the coal hopper 2 have different molar ratios (O / C ratios) between the oxygen content and the carbon content, as well as the hydrogen content and carbon. The molar ratio (H / C ratio) with the content and the molar ratio ((O + H) / C ratio) between the oxygen content, the hydrogen content, and the carbon content are different from each other. The mixer 4 mixes two types of coal A and B supplied from the coal hoppers 1 and 2. The supply amount of coal A supplied from the coal hopper 1 to the mixer 4 is adjusted by the coal supply amount adjusting device 3a, and the supply amount of coal B supplied from the coal hopper 2 to the mixer 4 is adjusted to the coal supply amount. It is adjusted by the device 3b.

粉砕機5は、混合機4で混合された混合炭を粉砕して微粉炭にする。粉砕機5には、微粉炭を搬送する搬送用空気(熱風)が供給されている。この搬送用空気により、粉砕機5内の微粉炭は乾燥されながら微粉炭バーナ8に搬送される。ここで、後述する微粉炭の発火温度の測定結果から、微粉炭が発火しないようにするには、粉砕機5の入口における搬送用空気(熱風)の温度を200℃以下にすることが好ましい。粉砕機5の出口におけるガス中の一酸化炭素濃度は、濃度測定装置7により測定される。微粉炭バーナ8は、微粉炭を燃焼させる。ボイラ9は、微粉炭を燃焼させて熱を回収する。   The pulverizer 5 pulverizes the mixed charcoal mixed by the mixer 4 into pulverized coal. The crusher 5 is supplied with conveying air (hot air) for conveying pulverized coal. By this conveying air, the pulverized coal in the pulverizer 5 is conveyed to the pulverized coal burner 8 while being dried. Here, from the measurement result of the ignition temperature of the pulverized coal described later, in order to prevent the pulverized coal from igniting, it is preferable that the temperature of the conveying air (hot air) at the inlet of the pulverizer 5 is set to 200 ° C. or less. The concentration of carbon monoxide in the gas at the outlet of the pulverizer 5 is measured by the concentration measuring device 7. The pulverized coal burner 8 burns pulverized coal. The boiler 9 recovers heat by burning pulverized coal.

ここで、粉砕機5に発火温度が低い石炭を使用すれば、粉砕機5内において、加熱された燃料(微粉炭)が発火する危険性がある。そして、粉砕機5内において、発火の予兆である燃料の酸化反応が起これば、一酸化炭素や二酸化炭素が発生し、濃度測定装置7によって、一酸化炭素が検知されることになる。そこで、粉砕機5内での発火を防止するためには、粉砕機5内において、発火の予兆である燃料の酸化反応が起こらないように、即ち、粉砕機5の出口におけるガス中において、一酸化炭素や二酸化炭素が検知されないようにする必要がある。   Here, if coal having a low ignition temperature is used for the pulverizer 5, there is a risk that heated fuel (pulverized coal) may ignite in the pulverizer 5. In the pulverizer 5, if an oxidation reaction of fuel that is a sign of ignition occurs, carbon monoxide and carbon dioxide are generated, and the carbon monoxide is detected by the concentration measuring device 7. Therefore, in order to prevent ignition in the pulverizer 5, it is necessary to prevent the oxidation reaction of fuel, which is a sign of ignition, from occurring in the pulverizer 5, that is, in the gas at the outlet of the pulverizer 5. It is necessary to prevent carbon oxide and carbon dioxide from being detected.

なお、発火温度の高い瀝青炭等の高品位炭を使用していれば、粉砕機5の出口におけるガス中において、一酸化炭素や二酸化炭素は検知されない。これは、粉砕機5に供給される搬送用空気(熱風)の温度よりも、燃料が酸化反応を開始する温度の方がはるかに高いからである。   If high grade coal such as bituminous coal having a high ignition temperature is used, carbon monoxide and carbon dioxide are not detected in the gas at the outlet of the pulverizer 5. This is because the temperature at which the fuel starts the oxidation reaction is much higher than the temperature of the conveying air (hot air) supplied to the pulverizer 5.

演算器11には、予め、石炭Aおよび石炭Bの酸素含有率、水素含有率、炭素含有率などの石炭性状が分析データ(分析値)として記憶されているとともに、混合炭のO/C比が分析データ(分析値)として記憶されている。また、演算器11には、濃度測定装置7が測定した粉砕機5の出口におけるガス中の一酸化炭素濃度の測定データ(測定結果)が入力される。そして、演算器11は、石炭A,Bの混合率をパラメータとして用い、濃度測定装置7からの測定データと、分析データとに基づいて、粉砕機5に供給される混合炭のO/C比を変化させるように、石炭供給量調整装置3a,3bをそれぞれ制御する。これにより、石炭A,Bの混合機4への供給量がそれぞれ変更される。なお、混合炭のH/C比を分析データ(分析値)として演算器11に記憶させておき、演算器11は、石炭A,Bの混合率をパラメータとして用い、濃度測定装置7からの測定データと、分析データとに基づいて、粉砕機5に供給される混合炭のH/C比を変化させるように、石炭供給量調整装置3a,3bをそれぞれ制御してもよい。また、O/C比やH/C比の代わりに、(O+H)/C比を用いてもよい。   The computing unit 11 stores in advance the coal properties such as the oxygen content rate, the hydrogen content rate, and the carbon content rate of coal A and coal B as analysis data (analytical value), and the O / C ratio of the mixed coal. Is stored as analysis data (analysis value). Further, the measurement data (measurement result) of the carbon monoxide concentration in the gas at the outlet of the pulverizer 5 measured by the concentration measuring device 7 is input to the calculator 11. The computing unit 11 uses the mixing ratio of the coals A and B as a parameter, and the O / C ratio of the mixed coal supplied to the pulverizer 5 based on the measurement data from the concentration measuring device 7 and the analysis data. The coal supply amount adjusting devices 3a and 3b are respectively controlled so as to change. Thereby, supply_amount | feed_rate to the mixer 4 of coal A and B is each changed. Note that the H / C ratio of the mixed coal is stored in the computing unit 11 as analysis data (analytical value), and the computing unit 11 uses the mixing ratio of the coals A and B as a parameter to measure from the concentration measuring device 7. Based on the data and the analysis data, the coal supply amount adjusting devices 3a and 3b may be controlled so as to change the H / C ratio of the mixed coal supplied to the pulverizer 5. Moreover, you may use (O + H) / C ratio instead of O / C ratio and H / C ratio.

ここで、混合炭(微粉炭)のO/C比が高くなるほど、混合炭(微粉炭)の発火温度が低下する。これは、O/C比が高くなるほど、低温で可燃性ガスなどの揮発分が放出されやすくなり、発火しやすくなるためであると考えられる。そこで、O/C比が低くなるように、粉砕機5に供給される石炭A,Bの供給量をそれぞれ調整すれば、微粉炭の発火温度が高くなり、粉砕機5内において、発火の予兆である燃料の酸化反応が起こりにくくなるのである。H/C比や(O+H)/C比についても同様である。   Here, the ignition temperature of mixed coal (pulverized coal) falls, so that O / C ratio of mixed coal (pulverized coal) becomes high. This is considered to be because the higher the O / C ratio, the easier it is to release volatile components such as combustible gas at low temperatures, and the easier it is to ignite. Therefore, if the supply amounts of coal A and B supplied to the pulverizer 5 are adjusted so that the O / C ratio is lowered, the ignition temperature of the pulverized coal increases, and the igniter predicts the ignition in the pulverizer 5. This makes it difficult for the oxidation reaction of the fuel to occur. The same applies to the H / C ratio and the (O + H) / C ratio.

ただし、単純にO/C比、H/C比、(O+H)/C比を低くして、粉砕機5に供給される混合炭の発火温度を高くしていたのでは、安価で発火温度が低い石炭の供給量を増やすことができない。コストダウンを図るためには、粉砕機5内で発火が起こらない程度で、安価で発火温度が低い石炭の供給量をできるだけ増やすことが必要である。   However, simply lowering the O / C ratio, H / C ratio, and (O + H) / C ratio to increase the ignition temperature of the mixed coal supplied to the pulverizer 5 is inexpensive and the ignition temperature is low. The supply of low coal cannot be increased. In order to reduce the cost, it is necessary to increase as much as possible the supply amount of low-cost and low-ignition temperature coal to the extent that ignition does not occur in the pulverizer 5.

(粉砕機の発火防止装置の動作)
次に、上記の構成の粉砕機の発火防止装置10の動作、即ち、粉砕機の発火防止方法について説明する。
(Operation of crusher ignition prevention device)
Next, the operation of the pulverizer ignition prevention apparatus 10 having the above-described configuration, that is, the pulverizer ignition prevention method will be described.

石炭ホッパ1,2から供給された2種類の石炭A,Bは、混合機4で混合されて混合炭として粉砕機5に供給される。石炭ホッパ1から混合機4に供給される石炭Aの供給量は、石炭供給量調整装置3aにより調整され、石炭ホッパ2から混合機4に供給される石炭Bの供給量は、石炭供給量調整装置3bにより調整される。   The two types of coal A and B supplied from the coal hoppers 1 and 2 are mixed by the mixer 4 and supplied to the pulverizer 5 as mixed coal. The supply amount of coal A supplied from the coal hopper 1 to the mixer 4 is adjusted by the coal supply amount adjusting device 3a, and the supply amount of coal B supplied from the coal hopper 2 to the mixer 4 is adjusted to the coal supply amount. It is adjusted by the device 3b.

混合炭は粉砕機5で粉砕されて微粉炭にされ、搬送用空気によって、乾燥されながら微粉炭バーナ8に搬送される。微粉炭は微粉炭バーナ8で燃焼され、燃焼により生じた熱はボイラ9に回収される。粉砕機5の出口におけるガス中の一酸化炭素濃度は、濃度測定装置7により測定される。濃度測定装置7が測定した粉砕機5の出口におけるガス中の一酸化炭素濃度の測定データ(測定結果)は、演算器11に入力される。   The mixed coal is pulverized into pulverized coal by the pulverizer 5, and is conveyed to the pulverized coal burner 8 while being dried by the conveying air. The pulverized coal is burned by the pulverized coal burner 8, and the heat generated by the combustion is recovered in the boiler 9. The concentration of carbon monoxide in the gas at the outlet of the pulverizer 5 is measured by the concentration measuring device 7. The measurement data (measurement result) of the carbon monoxide concentration in the gas at the outlet of the pulverizer 5 measured by the concentration measuring device 7 is input to the calculator 11.

演算器11には、予め、石炭Aおよび石炭Bの酸素含有率、水素含有率、炭素含有率などの石炭性状が分析データ(分析値)として記憶されているとともに、O/C比が分析データ(分析値)として記憶されている。演算器11は、石炭A,Bの混合率をパラメータとして用い、濃度測定装置7からの測定データと、分析データとに基づいて、粉砕機5に供給される混合炭のO/C比を変化させるように、石炭供給量調整装置3a,3bをそれぞれ制御する。これにより、石炭A,Bの混合機4への供給量がそれぞれ変更される。   The computing unit 11 stores in advance the coal properties such as the oxygen content rate, the hydrogen content rate, and the carbon content rate of coal A and coal B as analysis data (analysis value), and the O / C ratio is the analysis data. It is stored as (analysis value). The calculator 11 changes the O / C ratio of the mixed coal supplied to the pulverizer 5 based on the measurement data from the concentration measuring device 7 and the analysis data, using the mixing ratio of the coals A and B as a parameter. Thus, the coal supply amount adjusting devices 3a and 3b are respectively controlled. Thereby, supply_amount | feed_rate to the mixer 4 of coal A and B is each changed.

具体的には、粉砕機5の出口におけるガス中の一酸化炭素濃度を測定した結果、一酸化炭素が検知されない場合には、発火の予兆である燃料の酸化反応が起こっていないので、演算器11は、予め求めておいた分析データ(O/C比)に基づいて、石炭供給量調整装置3a,3bをそれぞれ制御して、混合炭のO/C比が高くなる、つまり、混合炭の発火温度が低くなるように、粉砕機5に供給される石炭A,Bの供給量をそれぞれ調整する。具体的には、発火温度が低い方の石炭の供給量を増やすことで、混合炭の発火温度を低くする。これにより、安価で発火温度が低い石炭の供給量が増えるので、コストダウンを図ることができる。なお、一酸化炭素が検知されない場合には、石炭供給量調整装置3a,3bを制御しないことで、混合炭のO/C比が変化しないようにしてもよい。   Specifically, as a result of measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer 5, if no carbon monoxide is detected, the fuel oxidation reaction, which is a precursor of ignition, has not occurred. 11 controls the coal supply amount adjusting devices 3a and 3b based on the analysis data (O / C ratio) obtained in advance, so that the O / C ratio of the mixed coal becomes high, that is, the mixed coal The supply amounts of coal A and B supplied to the pulverizer 5 are adjusted so that the ignition temperature is lowered. Specifically, the ignition temperature of mixed coal is lowered by increasing the supply amount of coal having a lower ignition temperature. Thereby, since the supply amount of coal which is cheap and has a low ignition temperature increases, the cost can be reduced. When carbon monoxide is not detected, the O / C ratio of the mixed coal may not be changed by not controlling the coal supply amount adjusting devices 3a and 3b.

一方、粉砕機5の出口におけるガス中の一酸化炭素濃度を測定した結果、一酸化炭素が少しでも検知された場合には、発火の予兆である燃料の酸化反応が起こっているので、演算器11は、予め求めておいた分析データに基づいて、石炭供給量調整装置3a,3bをそれぞれ制御して、混合炭のO/C比が低くなる、つまり、混合炭の発火温度が高くなるように、粉砕機5に供給される石炭A,Bの供給量をそれぞれ調整する。具体的には、発火温度が低い方の石炭の供給量を減らすことで、混合炭の発火温度を高くする。これにより、安価で発火温度が低い石炭の供給量は減るが、粉砕機5内において、発火の予兆である燃料の酸化反応が起こらなくなり、粉砕機5の出口におけるガス中において、一酸化炭素が検知されなくなる。よって、発火温度が低い石炭を用いても、粉砕機5内での発火を防止し、粉砕機5の火災や爆発といった災害を防止することができる。なお、O/C比の代わりにH/C比や(O+H)/C比を用いてもよい。   On the other hand, as a result of measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer 5, if any carbon monoxide is detected, an oxidation reaction of fuel, which is a sign of ignition, has occurred. 11 controls the coal supply amount adjusting devices 3a and 3b based on the analysis data obtained in advance, so that the O / C ratio of the mixed coal becomes low, that is, the ignition temperature of the mixed coal becomes high. Next, the supply amounts of coal A and B supplied to the pulverizer 5 are adjusted. Specifically, the ignition temperature of the coal mixture is increased by reducing the supply amount of coal having a lower ignition temperature. As a result, the supply amount of coal that is inexpensive and has a low ignition temperature is reduced, but in the pulverizer 5, the oxidation reaction of fuel, which is a sign of ignition, does not occur, and carbon monoxide is contained in the gas at the outlet of the pulverizer 5. It will not be detected. Therefore, even when coal having a low ignition temperature is used, ignition in the pulverizer 5 can be prevented, and disasters such as fire and explosion of the pulverizer 5 can be prevented. An H / C ratio or an (O + H) / C ratio may be used instead of the O / C ratio.

また、上述したように、固体燃料としてバイオマス燃料を使用してもよい。そして、安価で発火温度が低い石炭やバイオマス燃料を、高価で発火温度が高い瀝青炭等の高品位炭の代わりに用いることで、粉砕機5内での発火を防止しながら、コストダウンを図ることができる。   Further, as described above, biomass fuel may be used as the solid fuel. And, by using low-cost coal and biomass fuel with low ignition temperature instead of high-grade coal such as expensive bituminous coal with high ignition temperature, it is possible to reduce costs while preventing ignition in the crusher 5. Can do.

なお、濃度測定装置7が測定する一酸化炭素濃度に閾値を設けてもよい。閾値は、粉砕機5内において燃料(微粉炭)が発火するときの一酸化炭素濃度であり、数十ppmである。そして、濃度測定装置7が測定する一酸化炭素濃度が閾値に十分近くなったときには、混合炭のO/C比が低くなる、つまり、混合炭の発火温度が高くなるように、粉砕機5に供給される石炭A,Bの供給量をそれぞれ調整する。また、一酸化炭素濃度が閾値から十分に離れているときには、混合炭のO/C比が高くなる、つまり、混合炭の発火温度が低くなるように、混合機4を介して粉砕機5に供給される石炭A,Bの供給量をそれぞれ調整する。なお、一酸化炭素濃度が閾値から十分に離れているときには、混合炭のO/C比を変化させなくてもよい。   Note that a threshold value may be provided for the carbon monoxide concentration measured by the concentration measuring device 7. The threshold value is a carbon monoxide concentration when the fuel (pulverized coal) is ignited in the pulverizer 5 and is several tens of ppm. Then, when the carbon monoxide concentration measured by the concentration measuring device 7 is sufficiently close to the threshold value, the pulverizer 5 is set so that the O / C ratio of the mixed coal becomes low, that is, the ignition temperature of the mixed coal becomes high. The supply amount of supplied coals A and B is adjusted. Further, when the carbon monoxide concentration is sufficiently far from the threshold value, the O / C ratio of the mixed coal is increased, that is, the pulverizer 5 is passed through the mixer 4 so that the ignition temperature of the mixed coal is lowered. The supply amount of supplied coals A and B is adjusted. When the carbon monoxide concentration is sufficiently far from the threshold value, the O / C ratio of the mixed coal need not be changed.

このように、一酸化炭素濃度に閾値を設けて、石炭供給量調整装置3a,3bの制御を行うことで、粉砕機5内での発火を防止しながら、安価で発火温度が低い石炭を目一杯使用して、コストダウンを図ることができる。   In this way, by setting the threshold value for the carbon monoxide concentration and controlling the coal supply amount adjusting devices 3a and 3b, while preventing the ignition in the pulverizer 5, the low-cost and low-ignition temperature coal is targeted. You can use it to reduce costs.

(O/C比、H/C比および(O+H)/C比と発火温度との関係)
次に、1種類以上の固体燃料中のO/C比、H/C比および(O+H)/C比と発火温度との関係について説明する。演算器11が、石炭供給量調整装置3a,3bをそれぞれ制御するためには、1種類以上の固体燃料中のO/C比、H/C比および(O+H)/C比と発火温度との関係を予め把握しておく必要がある。そこで、O/C比、H/C比および(O+H)/C比の異なる3種類の石炭A,B,Cを1種もしくは2種以上用いて、これを粉砕した微粉炭の発火温度を調査した。この調査には、図2に示す微粉炭発火試験装置21を用いた。表1に3種類の石炭A,B,Cの石炭性状を示す。
(Relationship between O / C ratio, H / C ratio and (O + H) / C ratio and ignition temperature)
Next, the relationship between the O / C ratio, H / C ratio, (O + H) / C ratio and ignition temperature in one or more types of solid fuel will be described. In order for the computing unit 11 to control the coal supply amount adjusting devices 3a and 3b, respectively, the O / C ratio, the H / C ratio and the (O + H) / C ratio in one or more kinds of solid fuels and the ignition temperature It is necessary to grasp the relationship in advance. Therefore, the ignition temperature of pulverized coal obtained by pulverizing pulverized coal using one or more of three types of coals A, B, and C with different O / C ratio, H / C ratio, and (O + H) / C ratio was investigated. did. For this investigation, a pulverized coal ignition test apparatus 21 shown in FIG. 2 was used. Table 1 shows the coal properties of three types of coals A, B, and C.

Figure 2011240250
Figure 2011240250

微粉炭発火試験装置21は、内径φ25mm×700Lの円筒縦型反応管22と、定量の微粉炭を円筒縦型反応管22内に供給する微粉炭フィーダ23と、円筒縦型反応管22の外周に設けられたヒータ24と、円筒縦型反応管22内に加熱された混合ガスを供給するガス供給ライン25と、円筒縦型反応管22の下方に設けられた受け容器27と、円筒縦型反応管22の下部に設けられた一酸化炭素濃度計26と、円筒縦型反応管22の上方に設けられたラプチャーディスク29と、を有している。   The pulverized coal ignition test apparatus 21 includes a cylindrical vertical reaction tube 22 having an inner diameter of φ25 mm × 700 L, a pulverized coal feeder 23 for supplying a predetermined amount of pulverized coal into the cylindrical vertical reaction tube 22, and an outer periphery of the cylindrical vertical reaction tube 22. , A gas supply line 25 for supplying a mixed gas heated in the cylindrical vertical reaction tube 22, a receiving container 27 provided below the cylindrical vertical reaction tube 22, and a cylindrical vertical type A carbon monoxide concentration meter 26 provided at the lower part of the reaction tube 22 and a rupture disk 29 provided above the cylindrical vertical reaction tube 22 are provided.

円筒縦型反応管22の内部の雰囲気温度は、ヒータ24によって、常温から約400℃まで、円筒縦型反応管22の縦方向に沿ってほぼ均一に昇温可能にされている。ここで、円筒縦型反応管22の内部の雰囲気温度の昇温速度は、約5℃/minになるように調整されている。   The atmospheric temperature inside the cylindrical vertical reaction tube 22 can be raised substantially uniformly along the vertical direction of the cylindrical vertical reaction tube 22 by the heater 24 from room temperature to about 400 ° C. Here, the temperature increase rate of the atmospheric temperature inside the cylindrical vertical reaction tube 22 is adjusted to about 5 ° C./min.

また、円筒縦型反応管22の側面には、長手方向に沿った8ヶ所に熱電対挿入ポートが設置されており、これら熱電対挿入ポートには、外径φ1mmのシースK熱電対28がそれぞれ挿入される。これらシースK熱電対28によって、円筒縦型反応管22の内部の中心軸上の雰囲気温度の測定が可能となっている。   In addition, thermocouple insertion ports are provided at eight locations along the longitudinal direction on the side surface of the cylindrical vertical reaction tube 22, and sheath K thermocouples 28 having an outer diameter of 1 mm are respectively connected to these thermocouple insertion ports. Inserted. These sheath K thermocouples 28 enable measurement of the ambient temperature on the central axis inside the cylindrical vertical reaction tube 22.

ガス供給ライン25は、窒素ガス(空気よりも酸素分圧が低いガス)と空気とを混合して混合ガスとする混合室31と、混合ガス中の酸素濃度を測定する酸素濃度計32と、混合ガスを加熱する加熱ヒータ33と、を有している。ラプチャーディスク29は、通常は閉じており、円筒縦型反応管22内が高圧になると開状態となる。   The gas supply line 25 includes a mixing chamber 31 that mixes nitrogen gas (a gas having a lower oxygen partial pressure than air) and air to form a mixed gas, an oxygen concentration meter 32 that measures the oxygen concentration in the mixed gas, And a heater 33 for heating the mixed gas. The rupture disk 29 is normally closed, and is opened when the inside of the cylindrical vertical reaction tube 22 becomes high pressure.

ここで、粉砕機5と同一条件下で試験を行うために、いくつかの試験条件を設けた。即ち、試験条件として、予め水分含有率が4.0〜5.0%の範囲に調整された微粉炭を使用した。また、試験条件として、粒子径が75μm以下の微粉炭の割合を80%以上とした。また、試験条件として、Air/Coal比(円筒縦型反応管22に供給される加熱された混合ガスの量[L/min]と石炭供給量[g/min]との比)を1.7とした。また、試験条件として、円筒縦型反応管22内に微粉炭が滞留する滞留時間を約6秒とした。また、微粉炭粒子は混合ガスと同じ速度で円筒縦型反応管22内を移動するものと想定した。また、微粉炭が粉砕機5の内部に付着して居付くことがないものと仮定した。   Here, in order to perform the test under the same conditions as the pulverizer 5, several test conditions were provided. That is, pulverized coal whose moisture content was adjusted in the range of 4.0 to 5.0% in advance was used as test conditions. As test conditions, the proportion of pulverized coal having a particle size of 75 μm or less was set to 80% or more. As test conditions, the Air / Coal ratio (ratio of the amount [L / min] of the heated mixed gas supplied to the cylindrical vertical reaction tube 22 and the amount [g / min] of coal supply) is 1.7. It was. Further, as a test condition, a residence time in which the pulverized coal stayed in the cylindrical vertical reaction tube 22 was set to about 6 seconds. Further, it was assumed that the pulverized coal particles move in the cylindrical vertical reaction tube 22 at the same speed as the mixed gas. Further, it was assumed that the pulverized coal did not adhere to the inside of the pulverizer 5 and stayed there.

微粉炭フィーダから供給された定量の微粉炭は、自重で円筒縦型反応管22内に落下投入される。また、円筒縦型反応管22内には、ガス供給ライン25から加熱された混合ガスが供給される。円筒縦型反応管22内において、微粉炭と混合ガスとは、同一の温度まで加熱される。その後、微粉炭は、円筒縦型反応管22の下部のフランジ部22aから系外に落下し、受け容器27に貯留される。   The fixed amount of pulverized coal supplied from the pulverized coal feeder is dropped into the cylindrical vertical reaction tube 22 by its own weight. A heated mixed gas is supplied from the gas supply line 25 into the cylindrical vertical reaction tube 22. In the cylindrical vertical reaction tube 22, the pulverized coal and the mixed gas are heated to the same temperature. Thereafter, the pulverized coal falls out of the system from the lower flange portion 22 a of the cylindrical vertical reaction tube 22 and is stored in the receiving container 27.

微粉炭が円筒縦型反応管22内に滞留している滞留時間内に微粉炭が発火する温度まで上昇すれば、円筒縦型反応管22の下部に設置された一酸化炭素濃度計26が一酸化炭素濃度の上昇を検出する。円筒縦型反応管22内の雰囲気温度をヒータ24で変化させながら、繰り返し試験を行い、円筒縦型反応管22の出口におけるガス中の一酸化炭素濃度が30ppm以上となった時点における、円筒縦型反応管22内の雰囲気温度の平均値を、微粉炭の発火温度として算出した。なお、円筒縦型反応管22の出口におけるガス中の二酸化炭素濃度を測定することで、微粉炭の発火温度を算出してもよい。   If the pulverized coal rises to a temperature at which the pulverized coal ignites within the residence time in which the pulverized coal stays in the cylindrical vertical reaction tube 22, the carbon monoxide concentration meter 26 installed at the lower portion of the cylindrical vertical reaction tube 22 is increased. Detects an increase in carbon oxide concentration. The test was repeated while changing the atmospheric temperature in the cylindrical vertical reaction tube 22 with the heater 24, and the cylinder vertical length at the time when the carbon monoxide concentration in the gas at the outlet of the cylindrical vertical reaction tube 22 became 30 ppm or more was measured. The average value of the atmospheric temperature in the type reaction tube 22 was calculated as the ignition temperature of the pulverized coal. Note that the ignition temperature of the pulverized coal may be calculated by measuring the concentration of carbon dioxide in the gas at the outlet of the cylindrical vertical reaction tube 22.

石炭の酸素含有率と炭素含有率とのモル比(O/C比)をパラメータにした微粉炭の発火温度の測定結果を図3に示す。また、石炭の水素含有率と炭素含有率とのモル比(H/C比)をパラメータにした微粉炭の発火温度の測定結果を図4に示す。さらに、石炭の酸素含有率及び水素含有率と炭素含有率とのモル比((O+H)/C比)をパラメータにした微粉炭の発火温度の測定結果を図5に示す。微粉炭の発火温度の測定結果から、O/C比、H/C比、(O+H)/C比が高くなるほど、微粉炭の発火温度が線形に低下することがわかる。これは、O/C比、H/C比、(O+H)/C比が高くなるほど、低温で可燃性ガスなどの揮発分が放出されやすくなり、発火しやすくなるためであると考えられる。したがって、固体燃料中のO/C比、H/C比、(O+H)/C比を制御することは、粉砕機5内での発火の観点から、粉砕機5を安全に操業する操作条件になると考えられる。また、微粉炭の発火温度の測定結果から、微粉炭の発火を防止するためには、粉砕機5の入口における搬送用空気(熱風)の温度を、200℃以下にすることが好ましいことがわかる。   The measurement result of the ignition temperature of pulverized coal using the molar ratio (O / C ratio) between the oxygen content and the carbon content of coal as a parameter is shown in FIG. Moreover, the measurement result of the ignition temperature of pulverized coal which made the molar ratio (H / C ratio) of the hydrogen content rate and carbon content rate of coal a parameter is shown in FIG. Furthermore, the measurement result of the ignition temperature of pulverized coal which made the molar ratio ((O + H) / C ratio) of the oxygen content rate and hydrogen content rate, and carbon content rate of coal a parameter is shown in FIG. From the measurement results of the ignition temperature of pulverized coal, it can be seen that the ignition temperature of pulverized coal decreases linearly as the O / C ratio, H / C ratio, and (O + H) / C ratio increase. This is presumably because the higher the O / C ratio, H / C ratio, and (O + H) / C ratio, the easier it is to release volatile components such as flammable gas at low temperatures and the easier it is to ignite. Therefore, controlling the O / C ratio, the H / C ratio, and the (O + H) / C ratio in the solid fuel is based on operating conditions for safely operating the pulverizer 5 from the viewpoint of ignition in the pulverizer 5. It is considered to be. Moreover, from the measurement result of the ignition temperature of pulverized coal, in order to prevent the ignition of pulverized coal, it is understood that the temperature of the conveying air (hot air) at the inlet of the pulverizer 5 is preferably 200 ° C. or less. .

(本実施形態の変形例)
以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
(Modification of this embodiment)
The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.

例えば、演算器11による石炭供給量調整装置3a,3bの制御は、上述したものに限定されない。濃度測定装置7が一酸化炭素濃度を検知しなくても、固体燃料中のO/C比が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機5に供給される1種類以上の固体燃料の供給量を調整してもよいし、濃度測定装置7が一酸化炭素濃度を検知しても、その値が閾値未満であれば、固体燃料中のO/C比が高くなる、つまり、固体燃料の発火温度が低くなるように、粉砕機5に供給される1種類以上の固体燃料の供給量を調整してもよい。要するに、粉砕機5内で発火が起こらない範囲内で、粉砕機5に供給される1種類以上の固体燃料の供給量を調整すればよい。H/C比や(O+H)/C比についても同様である。   For example, the control of the coal supply amount adjusting devices 3a and 3b by the computing unit 11 is not limited to the above-described one. Even if the concentration measuring device 7 does not detect the carbon monoxide concentration, one type is supplied to the pulverizer 5 so that the O / C ratio in the solid fuel becomes low, that is, the ignition temperature of the solid fuel becomes high. Even if the supply amount of the above solid fuel may be adjusted or the concentration measuring device 7 detects the carbon monoxide concentration, if the value is less than the threshold value, the O / C ratio in the solid fuel becomes high. That is, the supply amount of one or more types of solid fuel supplied to the pulverizer 5 may be adjusted so that the ignition temperature of the solid fuel becomes low. In short, the supply amount of one or more types of solid fuel supplied to the pulverizer 5 may be adjusted within a range where ignition does not occur in the pulverizer 5. The same applies to the H / C ratio and the (O + H) / C ratio.

1,2 石炭ホッパ
3a,3b 石炭供給量調整装置(供給量調整手段)
4 混合機
5 粉砕機
7 濃度測定装置(濃度測定手段)
8 微粉炭バーナ
9 ボイラ
10 粉砕機の発火防止装置
11 演算器(記憶手段、制御手段)
21 微粉炭発火試験装置
22 円筒縦型反応管
23 微粉炭フィーダ
24 ヒータ
25 ガス供給ライン
26 一酸化炭素濃度計
27 受け容器
28 シースK熱電対
32 酸素濃度計
33 加熱ヒータ

1, 2 Coal hopper 3a, 3b Coal supply amount adjustment device (supply amount adjustment means)
4 Mixer 5 Crusher 7 Concentration measuring device (concentration measuring means)
8 Pulverized coal burner 9 Boiler 10 Ignition prevention device of pulverizer 11 Calculator (storage means, control means)
21 Pulverized Coal Ignition Test Equipment 22 Cylindrical Vertical Reaction Tube 23 Pulverized Coal Feeder 24 Heater 25 Gas Supply Line 26 Carbon Monoxide Concentration Meter 27 Receiving Container 28 Sheath K Thermocouple 32 Oxygen Concentration Meter 33 Heating Heater

Claims (4)

固体燃料を粉砕する粉砕機の発火防止方法であって、
1種類以上の固体燃料中の酸素含有率及び/又は水素含有率と炭素含有率との比を分析値として予め求めておき、
前記粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定し、
前記濃度の測定結果と前記分析値とに基づいて、前記粉砕機に供給される前記1種類以上の固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、前記分析値と同種の比を変化させるように、前記粉砕機に供給される前記1種類以上の固体燃料の供給量を調整することを特徴とする粉砕機の発火防止方法。
A method for preventing ignition of a pulverizer for pulverizing solid fuel,
The oxygen content in one or more kinds of solid fuels and / or the ratio of the hydrogen content and the carbon content are determined in advance as analytical values,
Measuring the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the grinder;
Based on the measurement result of the concentration and the analysis value, a ratio of oxygen content and / or hydrogen content and carbon content in the one or more types of solid fuel supplied to the pulverizer, A method for preventing ignition of a pulverizer, wherein the supply amount of the one or more types of solid fuel supplied to the pulverizer is adjusted so as to change a ratio of the same type as the analysis value.
前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であることを特徴とする請求項1に記載の粉砕機の発火防止方法。   The method for preventing ignition of a pulverizer according to claim 1, wherein the solid fuel is at least one of coal and biomass fuel. 固体燃料を粉砕する粉砕機の発火防止装置であって、
前記粉砕機に供給される1種類以上の固体燃料の供給量を調整する供給量調整手段と、
前記粉砕機の出口におけるガス中の一酸化炭素及び/又は二酸化炭素の濃度を測定する濃度測定手段と、
前記1種類以上の固体燃料中の酸素含有率及び/又は水素含有率と炭素含有率との比を分析値として記憶する記憶手段と、
前記濃度測定手段の測定結果と、前記記憶手段が記憶する前記分析値とに基づいて、前記粉砕機に供給される前記1種類以上の固体燃料中における酸素含有率及び/又は水素含有率と炭素含有率との比であって、前記分析値と同種の比を変化させるように、前記供給量調整手段を制御する制御手段と、
を有することを特徴とする粉砕機の発火防止装置。
An ignition prevention device for a pulverizer for pulverizing solid fuel,
A supply amount adjusting means for adjusting a supply amount of one or more kinds of solid fuel supplied to the pulverizer;
Concentration measuring means for measuring the concentration of carbon monoxide and / or carbon dioxide in the gas at the outlet of the grinder;
Storage means for storing an oxygen content and / or a ratio of a hydrogen content and a carbon content in the one or more solid fuels as an analysis value;
Based on the measurement result of the concentration measuring means and the analysis value stored in the storage means, the oxygen content and / or hydrogen content and carbon in the one or more types of solid fuel supplied to the pulverizer Control means for controlling the supply amount adjusting means so as to change the ratio of the content ratio and the same kind of ratio as the analysis value;
An ignition prevention device for a pulverizer characterized by comprising:
前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であることを特徴とする請求項3に記載の粉砕機の発火防止装置。   The said solid fuel is at least 1 sort (s) of coal and biomass fuel, The ignition prevention apparatus of the grinder of Claim 3 characterized by the above-mentioned.
JP2010114451A 2010-05-18 2010-05-18 Crusher ignition prevention method and ignition prevention device Active JP5385853B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010114451A JP5385853B2 (en) 2010-05-18 2010-05-18 Crusher ignition prevention method and ignition prevention device
CN201180024007.1A CN102893089B (en) 2010-05-18 2011-05-11 The prevention method on fire of pulverizer and anti-locking apparatus on fire
KR1020127030113A KR101369705B1 (en) 2010-05-18 2011-05-11 Method for preventing ignition in mill and device for preventing ignition in mill
PCT/JP2011/060827 WO2011145493A1 (en) 2010-05-18 2011-05-11 Method for preventing ignition in mill and device for preventing ignition in mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114451A JP5385853B2 (en) 2010-05-18 2010-05-18 Crusher ignition prevention method and ignition prevention device

Publications (2)

Publication Number Publication Date
JP2011240250A true JP2011240250A (en) 2011-12-01
JP5385853B2 JP5385853B2 (en) 2014-01-08

Family

ID=44991598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114451A Active JP5385853B2 (en) 2010-05-18 2010-05-18 Crusher ignition prevention method and ignition prevention device

Country Status (4)

Country Link
JP (1) JP5385853B2 (en)
KR (1) KR101369705B1 (en)
CN (1) CN102893089B (en)
WO (1) WO2011145493A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007631A (en) * 2017-06-20 2019-01-17 三菱日立パワーシステムズ株式会社 Solid fuel crushing device and control method of solid fuel crushing device
CN113441268A (en) * 2021-06-04 2021-09-28 华能(浙江)能源开发有限公司玉环分公司 Explosion-proof method for grinding high-volatile coal by coal mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160116205A (en) 2015-03-27 2016-10-07 고등기술연구원연구조합 Syngas Treatment System and Method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121711A (en) * 1994-10-19 1996-05-17 Hitachi Ltd Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
JP2000018569A (en) * 1998-06-30 2000-01-18 Mitsubishi Heavy Ind Ltd Fuel supply quantity controller and cement production equipment utilizing the same
JP2000028129A (en) * 1998-07-08 2000-01-25 Mitsubishi Heavy Ind Ltd Pulverized coal combustor
JP2004347241A (en) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd Coal-organic matter fuel mixture grinding device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2207225Y (en) * 1994-08-01 1995-09-13 林协中 Explosion-proof dustless universal pulverizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121711A (en) * 1994-10-19 1996-05-17 Hitachi Ltd Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
JP2000018569A (en) * 1998-06-30 2000-01-18 Mitsubishi Heavy Ind Ltd Fuel supply quantity controller and cement production equipment utilizing the same
JP2000028129A (en) * 1998-07-08 2000-01-25 Mitsubishi Heavy Ind Ltd Pulverized coal combustor
JP2004347241A (en) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd Coal-organic matter fuel mixture grinding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007631A (en) * 2017-06-20 2019-01-17 三菱日立パワーシステムズ株式会社 Solid fuel crushing device and control method of solid fuel crushing device
JP7086535B2 (en) 2017-06-20 2022-06-20 三菱重工業株式会社 Control method of solid fuel crusher and solid fuel crusher
CN113441268A (en) * 2021-06-04 2021-09-28 华能(浙江)能源开发有限公司玉环分公司 Explosion-proof method for grinding high-volatile coal by coal mill

Also Published As

Publication number Publication date
KR20130018888A (en) 2013-02-25
JP5385853B2 (en) 2014-01-08
WO2011145493A1 (en) 2011-11-24
CN102893089B (en) 2015-09-09
KR101369705B1 (en) 2014-03-03
CN102893089A (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5385849B2 (en) Crusher ignition prevention method and ignition prevention device
Magalhaes et al. Ignition behavior of Turkish biomass and lignite fuels at low and high heating rates
Wu et al. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres
Riaza et al. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor
Man et al. Factors affecting coal particle ignition under oxyfuel combustion atmospheres
Glushkov et al. Experimental study of coal dust ignition characteristics at oil-free start-up of coal-fired boilers
Duan et al. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor
Li et al. Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres
Zhang et al. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion
JP6180218B2 (en) Solid fuel combustion equipment
JP5385853B2 (en) Crusher ignition prevention method and ignition prevention device
EP3389870A1 (en) Grinding and drying plant
JP5385851B2 (en) Crusher ignition prevention method and ignition prevention device
Saeed et al. Flame speed and Kst reactivity data for pulverised corn cobs and peanut shells
Gao et al. An experimental study of the ignition and combustion characteristics of single coal gangue particles under oxy-fuel conditions
Jia et al. Study of coal and coke ignition in fluidized beds
Saeed et al. Raw and steam exploded pine wood: Possible enhanced reactivity with gasification hydrogen
Moroń et al. Explosion of different ranks coal dust in oxy-fuel atmosphere
Moghtaderi A study on the char burnout characteristics of coal and biomass blends
JP7086535B2 (en) Control method of solid fuel crusher and solid fuel crusher
RU2706935C1 (en) Blast furnace operation method
JPS63267814A (en) Combustion method for pulverized coal
Butakov et al. Investigation of combustion and gasification mechanically activated coal fuel of various degrees of metamorphism on the 5-MW heat setup
Kuznetsov et al. Ignition and thermal decomposition of solid organic fuel: The influence of activation, deactivation, and composite formation
AU2014325697B2 (en) Burner and coal upgrading plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150