JP5385849B2 - Crusher ignition prevention method and ignition prevention device - Google Patents

Crusher ignition prevention method and ignition prevention device Download PDF

Info

Publication number
JP5385849B2
JP5385849B2 JP2010112059A JP2010112059A JP5385849B2 JP 5385849 B2 JP5385849 B2 JP 5385849B2 JP 2010112059 A JP2010112059 A JP 2010112059A JP 2010112059 A JP2010112059 A JP 2010112059A JP 5385849 B2 JP5385849 B2 JP 5385849B2
Authority
JP
Japan
Prior art keywords
pulverizer
gas
partial pressure
air
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112059A
Other languages
Japanese (ja)
Other versions
JP2011240216A (en
Inventor
勝哉 秋山
海洋 朴
陽司 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010112059A priority Critical patent/JP5385849B2/en
Priority to KR1020127029632A priority patent/KR20130009843A/en
Priority to PCT/JP2011/060786 priority patent/WO2011142368A1/en
Priority to CN201180022967.4A priority patent/CN102884377B/en
Publication of JP2011240216A publication Critical patent/JP2011240216A/en
Application granted granted Critical
Publication of JP5385849B2 publication Critical patent/JP5385849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/04Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1006Mills adapted for use with furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/102Flashback safety, e.g. inertizing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)

Description

本発明は、ボイラの燃料となる固体燃料を粉砕する粉砕機の発火防止方法及び発火防止装置に関する。   The present invention relates to an ignition prevention method and an ignition prevention apparatus for a pulverizer that pulverizes a solid fuel serving as a boiler fuel.

固体燃料を燃料とするボイラには、粉砕機で粉砕された固体燃料が、搬送用空気とともに供給される。   A solid fuel pulverized by a pulverizer is supplied to a boiler using the solid fuel as fuel together with the air for conveyance.

日本では、発火温度の高い瀝青炭をボイラの燃料に使用しているので、粉砕機での発火についてはあまり注目されていない。むしろ、初期の微粉炭燃焼ボイラには、火災が起こった後の対策として、粉砕機内に、不活性ガス(水蒸気など)を供給するシステムや破裂板(ラプチャーディスク)を設けているものがある。   In Japan, bituminous coal, which has a high ignition temperature, is used as boiler fuel, so much attention has not been paid to ignition in a pulverizer. Rather, some of the early pulverized coal combustion boilers are provided with a system for supplying an inert gas (such as water vapor) and a rupture disk (rupture disk) as a countermeasure after a fire has occurred.

一方、海外、特に米国では、1980年代に、西部産の低品位炭を使うことにより、粉砕機内での火災・爆発を数多く経験している。今後、日本でも低品位炭、つまり発火温度が低い石炭や、亜瀝青炭、改質褐炭(UBC)等を使用する機会が増えてくることから、粉砕機内での発火を事前に検知して、これを防止する必要がある。   On the other hand, in the United States, especially in the United States, many fires and explosions were experienced in the crusher in the 1980s by using low-grade coal produced in the West. In the future, there will be more opportunities to use low-grade coal, that is, low-ignition coal, subbituminous coal, modified brown coal (UBC), etc. in Japan. Need to prevent.

特許文献1には、石炭を粉砕する粉砕ミルに石炭を供給する石炭供給管にバイオマスを定量的に供給することで、粉砕ミルに供給される石炭量とバイオマス燃料量との比率を安定化させ、バイオマスの発火を防ぎ、ひいては粉砕ミルの運転状態を安定化させた石炭・有機物燃料混合粉砕装置が開示されている。   In Patent Document 1, biomass is quantitatively supplied to a coal supply pipe that supplies coal to a pulverizing mill for pulverizing coal, thereby stabilizing the ratio of the amount of coal supplied to the pulverizing mill and the amount of biomass fuel. In addition, a coal / organic fuel mixed pulverization apparatus that prevents the ignition of biomass and thus stabilizes the operation state of the pulverization mill is disclosed.

また、特許文献2には、混合空気のミル入口温度計測値とミル入口温度設定値とを比較して、ミル入口温度計測値がミル入口温度設定値以上になった場合に、ミル出口温度設定値を下げることで、ミル入口温度の過剰上昇による発火事故を防止しながら、ミル出口温度の制御を継続するミル装置ならびにそれを備えた石炭焚ボイラ設備が開示されている。   Further, Patent Document 2 compares the mill inlet temperature measurement value of the mixed air with the mill inlet temperature set value, and if the mill inlet temperature measured value is equal to or higher than the mill inlet temperature set value, the mill outlet temperature setting A mill device that continues to control the mill outlet temperature while reducing the value while preventing ignition accidents due to excessive rise of the mill inlet temperature and a coal-fired boiler facility equipped with the same are disclosed.

また、特許文献3には、被粉砕物の供給量に応じてミルの入口温度を制御することで、ミルの出口温度の変化を小さくして、微粉炭の発火を防止したローラミル装置が開示されている。   Patent Document 3 discloses a roller mill device that controls the mill inlet temperature in accordance with the supply amount of the object to be pulverized, thereby reducing the change in the mill outlet temperature and preventing the pulverized coal from igniting. ing.

また、特許文献4には、加熱空気管および石炭粉砕機内の温度を測定し、石炭粉砕機に供給する空気の温度および供給量を制御することで、発火の虞をなくした石炭粉砕機用空気温度制御装置が開示されている。   In Patent Document 4, the temperature in the heated air pipe and the coal pulverizer is measured, and the temperature and the supply amount of the air supplied to the coal pulverizer are controlled to eliminate the possibility of ignition. A temperature control device is disclosed.

また、特許文献5には、ミル入口温度とミルへの給炭量から原炭水分を求め、この原炭水分に応じて、ミル出口温度を設定することで、ミル出口温度を原炭水分に応じた最適値として、発火を防止したミル出口温度制御方法が開示されている。   In Patent Document 5, the raw coal moisture is obtained from the mill inlet temperature and the amount of coal supplied to the mill, and the mill outlet temperature is set to the raw coal moisture by setting the mill outlet temperature according to the raw coal moisture. As an optimum value according to this, a mill outlet temperature control method that prevents ignition is disclosed.

また、特許文献6には、微粉ビン内で微粉炭のくすぶりやおき火燃焼状態を検知したときに、微粉炭の搬送媒体を空気から不活性ガスに切り替えることで、微粉爆発を防止する微粉炭燃焼方法が開示されている。   Further, Patent Document 6 discloses a pulverized coal that prevents a pulverized explosion by switching a carrier of pulverized coal from air to an inert gas when a smoldering or smoldering combustion state of pulverized coal is detected in a pulverized bottle. A combustion method is disclosed.

特開2004−347241号公報JP 2004-347241 A 特開2006−102666号公報JP 2006-102666 A 特開平4−244246号公報JP-A-4-244246 特開昭56−152750号公報JP-A-56-152750 特開昭63−315158号公報JP-A-63-315158 特開昭63−267814号公報JP-A 63-267814

しかしながら、現状では、これまで想定されていなかった発火温度が低い固体燃料に対する運転指標がない。そのため、どのような運転条件、具体的には、どのような入口・出口温度と燃料供給量で粉砕機を操作すべきかわからない。そこで、粉砕機を安全に運転するための運転条件を得て、粉砕機内での発火を防止することが望まれる。   However, at present, there is no operation index for solid fuel having a low ignition temperature, which has not been assumed so far. For this reason, it is not known what operating conditions, specifically, what inlet / outlet temperatures and fuel supply amount should be used to operate the pulverizer. Therefore, it is desired to obtain operating conditions for safely operating the pulverizer and prevent ignition in the pulverizer.

本発明の目的は、粉砕機内での発火を防止することが可能な粉砕機の発火防止方法及び発火防止装置を提供することである。   The objective of this invention is providing the ignition prevention method and ignition prevention apparatus of a grinder which can prevent the ignition in a grinder.

本発明における粉砕機の発火防止方法は、固体燃料を粉砕する粉砕機の発火防止方法であって、空気と、前記空気よりも酸素分圧が低いガスとを混合ガスとして前記粉砕機に供給し、前記粉砕機の出口におけるガス中の一酸化炭素濃度および酸素濃度をそれぞれ測定し、前記一酸化炭素濃度の測定結果と、測定した前記酸素濃度から算出した酸素分圧と、に基づいて、前記粉砕機に供給される前記混合ガス中の前記酸素分圧を変化させるように、前記粉砕機に供給される前記空気よりも酸素分圧が低いガスの供給量を調整することを特徴とする。   The method for preventing ignition of a pulverizer according to the present invention is a method for preventing ignition of a pulverizer that pulverizes solid fuel, and supplies air and a gas having a lower oxygen partial pressure than the air as a mixed gas to the pulverizer. , Measuring the carbon monoxide concentration and the oxygen concentration in the gas at the outlet of the pulverizer, respectively, based on the measurement result of the carbon monoxide concentration and the oxygen partial pressure calculated from the measured oxygen concentration, A supply amount of a gas having a lower oxygen partial pressure than that of the air supplied to the pulverizer is adjusted so as to change the oxygen partial pressure in the mixed gas supplied to the pulverizer.

上記の構成によれば、熱風(搬送用空気)が供給されながら固体燃料を粉砕する粉砕機に発火温度が低い固体燃料を使用すれば、粉砕機内において、加熱された燃料が発火する危険性がある。そして、粉砕機内において、発火の予兆である燃料の酸化反応が起これば、粉砕機の出口におけるガス中において、一酸化炭素濃度が検知されることになる。そこで、粉砕内での発火を防止するためには、粉砕機内において、発火の予兆である燃料の酸化反応が起こらないように、即ち、粉砕機の出口におけるガス中において、一酸化炭素濃度が検知されないようにする必要がある。   According to the above configuration, if a solid fuel having a low ignition temperature is used in a pulverizer that pulverizes the solid fuel while hot air (conveying air) is supplied, there is a risk that the heated fuel may ignite in the pulverizer. is there. And if the oxidation reaction of the fuel which is a precursor of ignition occurs in the pulverizer, the carbon monoxide concentration is detected in the gas at the outlet of the pulverizer. Therefore, in order to prevent ignition in the pulverization, the carbon monoxide concentration is detected in the gas at the outlet of the pulverizer so that the oxidation reaction of fuel, which is a sign of ignition, does not occur in the pulverizer. It is necessary not to be done.

ここで、粉砕機に供給される混合ガス中の酸素分圧が低くなるほど、1種類以上の固体燃料の発火温度が高くなる。これは、粉砕機に供給される混合ガス中の酸素分圧が低くなるほど、固体燃料が酸化しにくくなって、発火しにくくなるためであると考えられる。そこで、粉砕機に供給される混合ガス中の酸素分圧が低くなるように、粉砕機に供給される空気よりも酸素分圧が低いガスの供給量を調整すれば、粉砕機に供給された1種類以上の固体燃料の発火温度が高くなり、粉砕機内において、発火の予兆である燃料の酸化反応が起こりにくくなるのである。   Here, the lower the oxygen partial pressure in the mixed gas supplied to the pulverizer, the higher the ignition temperature of one or more types of solid fuel. This is considered to be because as the oxygen partial pressure in the mixed gas supplied to the pulverizer is lower, the solid fuel is less likely to be oxidized and less likely to ignite. Therefore, if the supply amount of the gas having a lower oxygen partial pressure than the air supplied to the pulverizer is adjusted so that the oxygen partial pressure in the mixed gas supplied to the pulverizer becomes lower, the gas was supplied to the pulverizer. The ignition temperature of one or more kinds of solid fuels becomes high, and the oxidation reaction of the fuel, which is a sign of ignition, hardly occurs in the pulverizer.

即ち、粉砕機の出口におけるガス中の一酸化炭素濃度を測定した結果、一酸化炭素濃度が少しでも検知された場合には、発火の予兆である燃料の酸化反応が起こっているので、測定した酸素濃度から算出した酸素分圧に基づいて、粉砕機に供給される混合ガス中の酸素分圧が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機に供給される空気よりも酸素分圧が低いガスの供給量を調整する。具体的には、空気よりも酸素分圧が低いガスの供給量を増やすことで、固体燃料の発火温度を高くする。これにより、粉砕機内において、発火の予兆である燃料の酸化反応が起こらなくなり、粉砕機の出口におけるガス中において、一酸化炭素濃度が検知されなくなる。よって、発火温度が低い固体燃料を用いても、粉砕機内での発火を防止し、粉砕機の火災や爆発といった災害を防止することができる。   That is, as a result of measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer, if any carbon monoxide concentration is detected, the fuel oxidation reaction, which is a precursor of ignition, is taking place. Based on the oxygen partial pressure calculated from the oxygen concentration, the oxygen partial pressure in the mixed gas supplied to the pulverizer is lower, that is, the ignition temperature of the solid fuel is higher than the air supplied to the pulverizer. Also adjust the supply amount of gas with low oxygen partial pressure. Specifically, the ignition temperature of the solid fuel is increased by increasing the supply amount of the gas whose oxygen partial pressure is lower than that of air. Thereby, the oxidation reaction of fuel, which is a sign of ignition, does not occur in the pulverizer, and the concentration of carbon monoxide is not detected in the gas at the outlet of the pulverizer. Therefore, even if solid fuel having a low ignition temperature is used, ignition in the pulverizer can be prevented, and disasters such as fire and explosion of the pulverizer can be prevented.

また、本発明における粉砕機の発火防止方法において、前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であってよい。上記の構成によれば、安価で発火温度が低い石炭やバイオマス燃料を、高価で発火温度が高い瀝青炭等の高品位炭の代わりに用いることで、粉砕機内での発火を防止しながら、コストダウンを図ることができる。   In the method for preventing ignition of a pulverizer according to the present invention, the solid fuel may be at least one of coal and biomass fuel. According to the above configuration, low cost and low ignition temperature coal and biomass fuel can be used in place of high grade coal such as bituminous coal with high ignition temperature and low cost while preventing ignition in the crusher. Can be achieved.

また、本発明における粉砕機の発火防止方法において、前記空気よりも酸素分圧が低いガスは、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種であってよい。上記の構成によれば、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種を粉砕機に供給することで、粉砕機に供給される混合ガス中の酸素分圧を好適に変化させることができる。   In the method for preventing ignition of a pulverizer according to the present invention, the gas having a lower oxygen partial pressure than air may be at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas. According to the above configuration, the oxygen partial pressure in the mixed gas supplied to the pulverizer is suitably changed by supplying at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas to the pulverizer. Can be made.

また、本発明における粉砕機の発火防止装置は、固体燃料を粉砕する粉砕機の発火防止装置であって、前記粉砕機に空気を供給する空気供給手段と、前記空気と混合した混合ガスとして前記粉砕機に供給されるように、前記空気よりも酸素分圧が低いガスを前記粉砕機に供給するガス供給手段と、前記粉砕機に供給される前記空気よりも酸素分圧が低いガスの供給量を調整するガス供給量調整手段と、前記粉砕機の出口におけるガス中の一酸化炭素濃度を測定する一酸化炭素濃度測定手段と、前記粉砕機の出口におけるガス中の酸素濃度を測定する酸素濃度測定手段と、前記一酸化炭素濃度測定手段の測定結果と、前記酸素濃度測定手段が測定した前記酸素濃度から算出された酸素分圧と、に基づいて、前記粉砕機に供給される前記混合ガス中の前記酸素分圧を変化させるように、前記ガス供給量調整手段を制御する制御手段と、を有することを特徴とする。   Further, the ignition preventing device for a pulverizer according to the present invention is an ignition preventing device for a pulverizer for pulverizing solid fuel, the air supply means for supplying air to the pulverizer, and the mixed gas mixed with the air. Gas supply means for supplying a gas having a lower oxygen partial pressure than the air to the pulverizer so as to be supplied to the pulverizer, and a gas supply having a lower oxygen partial pressure than the air supplied to the pulverizer Gas supply amount adjusting means for adjusting the amount, carbon monoxide concentration measuring means for measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer, and oxygen for measuring the oxygen concentration in the gas at the outlet of the pulverizer The mixture supplied to the pulverizer based on the concentration measurement means, the measurement result of the carbon monoxide concentration measurement means, and the oxygen partial pressure calculated from the oxygen concentration measured by the oxygen concentration measurement means gas So as to change the oxygen partial pressure, and having a control means for controlling the gas supply amount adjusting means.

上記の構成によれば、上述したように、粉砕機に供給される混合ガス中の酸素分圧が低くなるように、粉砕機に供給される空気よりも酸素分圧が低いガスの供給量を調整すれば、粉砕機に供給された1種類以上の固体燃料の発火温度が高くなり、粉砕機内において、発火の予兆である燃料の酸化反応が起こりにくくなる。   According to the above configuration, as described above, the supply amount of the gas having a lower oxygen partial pressure than the air supplied to the pulverizer is set so that the oxygen partial pressure in the mixed gas supplied to the pulverizer becomes lower. If adjusted, the ignition temperature of one or more kinds of solid fuel supplied to the pulverizer becomes high, and the oxidation reaction of the fuel, which is a sign of ignition, hardly occurs in the pulverizer.

そこで、粉砕機の出口におけるガス中の一酸化炭素濃度を測定した結果、一酸化炭素濃度が少しでも検知された場合には、発火の予兆である燃料の酸化反応が起こっているので、測定した酸素濃度から算出した酸素分圧に基づいて、粉砕機に供給される混合ガス中の酸素分圧が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機に供給される空気よりも酸素分圧が低いガスの供給量を調整する。具体的には、空気よりも酸素分圧が低いガスの供給量を増やすことで、固体燃料の発火温度を高くする。これにより、粉砕機内において、発火の予兆である燃料の酸化反応が起こらなくなり、粉砕機の出口におけるガス中において、一酸化炭素濃度が検知されなくなる。よって、発火温度が低い固体燃料を用いても、粉砕機内での発火を防止し、粉砕機の火災や爆発といった災害を防止することができる。   Therefore, as a result of measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer, if any carbon monoxide concentration was detected, the fuel oxidation reaction, which is a precursor of ignition, was taking place. Based on the oxygen partial pressure calculated from the oxygen concentration, the oxygen partial pressure in the mixed gas supplied to the pulverizer is lower, that is, the ignition temperature of the solid fuel is higher than the air supplied to the pulverizer. Also adjust the supply amount of gas with low oxygen partial pressure. Specifically, the ignition temperature of the solid fuel is increased by increasing the supply amount of the gas whose oxygen partial pressure is lower than that of air. Thereby, the oxidation reaction of fuel, which is a sign of ignition, does not occur in the pulverizer, and the concentration of carbon monoxide is not detected in the gas at the outlet of the pulverizer. Therefore, even if solid fuel having a low ignition temperature is used, ignition in the pulverizer can be prevented, and disasters such as fire and explosion of the pulverizer can be prevented.

また、本発明における粉砕機の発火防止装置において、前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であってよい。上記の構成によれば、安価で発火温度が低い石炭やバイオマス燃料を、高価で発火温度が高い瀝青炭等の高品位炭の代わりに用いることで、粉砕機内での発火を防止しながら、コストダウンを図ることができる。   In the ignition prevention device for a pulverizer according to the present invention, the solid fuel may be at least one of coal and biomass fuel. According to the above configuration, low cost and low ignition temperature coal and biomass fuel can be used in place of high grade coal such as bituminous coal with high ignition temperature and low cost while preventing ignition in the crusher. Can be achieved.

また、本発明における粉砕機の発火防止装置において、前記空気よりも酸素分圧が低いガスは、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種であってよい。上記の構成によれば、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種を粉砕機に供給することで、粉砕機に供給される混合ガス中の酸素分圧を好適に変化させることができる。   In the ignition preventive device for a pulverizer according to the present invention, the gas having a lower oxygen partial pressure than air may be at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas. According to the above configuration, the oxygen partial pressure in the mixed gas supplied to the pulverizer is suitably changed by supplying at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas to the pulverizer. Can be made.

本発明の粉砕機の発火防止方法及び発火防止装置によると、粉砕機の出口におけるガス中の一酸化炭素濃度を測定した結果、一酸化炭素濃度が少しでも検知された場合には、測定した酸素濃度から算出した酸素分圧に基づいて、粉砕機に供給される混合ガス中の酸素分圧が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機に供給される空気よりも酸素分圧が低いガスの供給量を調整する。これにより、粉砕機内において、発火の予兆である燃料の酸化反応が起こらなくなるので、発火温度が低い固体燃料を用いても、粉砕機内での発火を防止し、粉砕機の火災や爆発といった災害を防止することができる。   According to the ignition prevention method and the ignition prevention device of the pulverizer of the present invention, as a result of measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer, if the carbon monoxide concentration is detected even a little, the measured oxygen Based on the oxygen partial pressure calculated from the concentration, the oxygen partial pressure in the mixed gas supplied to the pulverizer becomes lower, that is, the ignition temperature of the solid fuel becomes higher than the air supplied to the pulverizer. Adjust the gas supply amount with low oxygen partial pressure. As a result, the fuel oxidation reaction, which is a precursor to ignition, does not occur in the pulverizer, so even if solid fuel with a low ignition temperature is used, ignition in the pulverizer is prevented and disasters such as fire and explosion of the pulverizer are prevented. Can be prevented.

粉砕機の発火防止装置を示す概略図である。It is the schematic which shows the ignition prevention apparatus of a grinder. 微粉炭発火試験装置を示す概略図である。It is the schematic which shows a pulverized coal ignition test apparatus. 酸素分圧と発火温度との関係を示す図である。It is a figure which shows the relationship between oxygen partial pressure and ignition temperature.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。なお、以下の実施形態では、固体燃料として石炭を用いて説明するが、固体燃料はこれに限定されず、バイオマス燃料や汚泥炭化物等であってもよく、石炭、バイオマス燃料、汚泥炭化物等を2種以上使用してもよい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following embodiment, description will be given using coal as the solid fuel, but the solid fuel is not limited to this, and may be biomass fuel, sludge carbide, or the like, and coal, biomass fuel, sludge carbide, etc. More than one species may be used.

(粉砕機の発火防止装置の構成)
本実施形態による粉砕機の発火防止装置10は、図1に示すように、粉砕機5に搬送用空気(空気)を供給する空気供給装置(空気供給手段)12と、空気よりも酸素分圧が低いガスを粉砕機5に供給するガス供給装置(ガス供給手段)13と、粉砕機5に供給される空気の供給量を調整する空気供給量調整装置14と、粉砕機5に供給される空気よりも酸素分圧が低いガスの供給量を調整するガス供給量調整装置(ガス供給量調整手段)15と、粉砕機5の出口におけるガス中の一酸化炭素濃度を測定する一酸化炭素濃度測定装置(一酸化炭素濃度測定手段)7と、粉砕機5の出口におけるガス中の酸素濃度を測定する酸素濃度測定装置(酸素濃度測定手段)6と、空気供給量調整装置14およびガス供給量調整装置15をそれぞれ制御する演算器(制御手段)11と、を有している。
(Configuration of crusher ignition prevention device)
As shown in FIG. 1, the pulverizer ignition prevention device 10 according to this embodiment includes an air supply device (air supply means) 12 that supplies air for conveyance (air) to the pulverizer 5, and an oxygen partial pressure higher than that of air. Gas supply device (gas supply means) 13 for supplying a low gas to the pulverizer 5, an air supply amount adjusting device 14 for adjusting the supply amount of air supplied to the pulverizer 5, and the pulverizer 5 A gas supply amount adjusting device (gas supply amount adjusting means) 15 for adjusting a supply amount of a gas having a lower oxygen partial pressure than air, and a carbon monoxide concentration for measuring a carbon monoxide concentration in the gas at the outlet of the pulverizer 5 Measuring device (carbon monoxide concentration measuring means) 7, oxygen concentration measuring device (oxygen concentration measuring means) 6 for measuring the oxygen concentration in the gas at the outlet of the pulverizer 5, air supply amount adjusting device 14 and gas supply amount Control each adjustment device 15 Calculator has a (control means) 11, a.

石炭ホッパ1,2は、2種類の石炭A,Bをそれぞれ保持している。混合機4は、石炭ホッパ1,2から供給された2種類の石炭A,Bを混合する。石炭ホッパ1から混合機4に供給される石炭Aの供給量は、石炭供給量調整装置3aにより調整され、石炭ホッパ2から混合機4に供給される石炭Bの供給量は、石炭供給量調整装置3bにより調整される。   Coal hoppers 1 and 2 hold two types of coals A and B, respectively. The mixer 4 mixes two types of coal A and B supplied from the coal hoppers 1 and 2. The supply amount of coal A supplied from the coal hopper 1 to the mixer 4 is adjusted by the coal supply amount adjusting device 3a, and the supply amount of coal B supplied from the coal hopper 2 to the mixer 4 is adjusted to the coal supply amount. It is adjusted by the device 3b.

粉砕機5は、混合機4で混合された混合炭を粉砕して微粉炭にする。粉砕機5には、空気供給装置12から微粉炭を搬送する搬送用空気(熱風)が供給されている。この搬送用空気により、粉砕機5内の微粉炭は乾燥されながら微粉炭バーナ8に搬送される。ここで、後述する微粉炭の発火温度の測定結果から、微粉炭が発火しないようにするには、粉砕機5の入口における搬送用空気(熱風)の温度を200℃以下にすることが好ましい。   The pulverizer 5 pulverizes the mixed charcoal mixed by the mixer 4 into pulverized coal. The pulverizer 5 is supplied with transfer air (hot air) for transferring pulverized coal from the air supply device 12. By this conveying air, the pulverized coal in the pulverizer 5 is conveyed to the pulverized coal burner 8 while being dried. Here, from the measurement result of the ignition temperature of the pulverized coal described later, in order to prevent the pulverized coal from igniting, it is preferable that the temperature of the conveying air (hot air) at the inlet of the pulverizer 5 is set to 200 ° C. or less.

また、粉砕機5には、ガス供給装置13から空気よりも酸素分圧が低いガスが供給されている。空気よりも酸素分圧が低いガスは、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種である。空気供給装置12からの搬送用空気と、ガス供給装置13からの空気よりも酸素分圧が低いガスとは、両者が混合された混合ガスとして、粉砕機5に供給される。   A gas having a lower oxygen partial pressure than air is supplied from the gas supply device 13 to the pulverizer 5. The gas having a lower oxygen partial pressure than air is at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas. The conveying air from the air supply device 12 and the gas having a lower oxygen partial pressure than the air from the gas supply device 13 are supplied to the pulverizer 5 as a mixed gas in which both are mixed.

粉砕機5の出口におけるガス中の一酸化炭素濃度は、一酸化炭素濃度測定装置7により測定される。また、粉砕機5の出口におけるガス中の酸素濃度は、酸素濃度測定装置6により測定される。微粉炭バーナ8は、微粉炭を燃焼させる。ボイラ9は、微粉炭を燃焼させて熱を回収する。   The carbon monoxide concentration in the gas at the outlet of the pulverizer 5 is measured by the carbon monoxide concentration measuring device 7. The oxygen concentration in the gas at the outlet of the pulverizer 5 is measured by the oxygen concentration measuring device 6. The pulverized coal burner 8 burns pulverized coal. The boiler 9 recovers heat by burning pulverized coal.

ここで、粉砕機5に発火温度が低い石炭を使用すれば、粉砕機5内において、加熱された燃料(微粉炭)が発火する危険性がある。そして、粉砕機5内において、発火の予兆である燃料の酸化反応が起これば、一酸化炭素濃度測定装置7によって、一酸化炭素濃度が検知されることになる。そこで、粉砕機5内での発火を防止するためには、粉砕機5内において、発火の予兆である燃料の酸化反応が起こらないように、即ち、粉砕機5の出口におけるガス中において、一酸化炭素濃度が検知されないようにする必要がある。   Here, if coal having a low ignition temperature is used for the pulverizer 5, there is a risk that heated fuel (pulverized coal) may ignite in the pulverizer 5. And if the oxidation reaction of the fuel which is a precursor of ignition occurs in the pulverizer 5, the carbon monoxide concentration measuring device 7 detects the carbon monoxide concentration. Therefore, in order to prevent ignition in the pulverizer 5, it is necessary to prevent the oxidation reaction of fuel, which is a sign of ignition, from occurring in the pulverizer 5, that is, in the gas at the outlet of the pulverizer 5. It is necessary to prevent the carbon oxide concentration from being detected.

なお、発火温度の高い瀝青炭等の高品位炭を使用していれば、粉砕機5の出口におけるガス中において、一酸化炭素濃度は検知されない。これは、粉砕機5に供給される搬送用空気(熱風)の温度よりも、燃料が酸化反応を開始する温度の方がはるかに高いからである。   If high grade coal such as bituminous coal having a high ignition temperature is used, the concentration of carbon monoxide is not detected in the gas at the outlet of the pulverizer 5. This is because the temperature at which the fuel starts the oxidation reaction is much higher than the temperature of the conveying air (hot air) supplied to the pulverizer 5.

演算器11には、一酸化炭素濃度測定装置7が測定した粉砕機5の出口におけるガス中の一酸化炭素濃度の測定データ(測定結果)と、酸素濃度測定装置6が測定した粉砕機5の出口におけるガス中の酸素濃度の測定データ(測定結果)と、が入力される。演算器11は、酸素濃度の測定データから酸素分圧を算出する。そして、演算器11は、酸素分圧をパラメータとして用い、一酸化炭素濃度測定装置7からの測定データと、酸素濃度測定装置6が測定した酸素濃度から算出した酸素分圧と、に基づいて、粉砕機5に供給される混合ガス中の酸素分圧を変化させるように、空気供給量調整装置14およびガス供給量調整装置15をそれぞれ制御する。これにより、粉砕機5に供給される混合ガス中の酸素分圧が変更される。   The calculator 11 includes the measurement data (measurement result) of the carbon monoxide concentration in the gas at the outlet of the pulverizer 5 measured by the carbon monoxide concentration measuring device 7 and the pulverizer 5 measured by the oxygen concentration measuring device 6. Measurement data (measurement result) of the oxygen concentration in the gas at the outlet is input. The calculator 11 calculates the oxygen partial pressure from the measurement data of the oxygen concentration. The computing unit 11 uses the oxygen partial pressure as a parameter, and based on the measurement data from the carbon monoxide concentration measuring device 7 and the oxygen partial pressure calculated from the oxygen concentration measured by the oxygen concentration measuring device 6, The air supply amount adjusting device 14 and the gas supply amount adjusting device 15 are respectively controlled so as to change the oxygen partial pressure in the mixed gas supplied to the pulverizer 5. Thereby, the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is changed.

ここで、粉砕機5に供給される混合ガス中の酸素分圧が低くなるほど、微粉炭の発火温度が高くなる。これは、粉砕機5に供給される混合ガス中の酸素分圧が低くなるほど、微粉炭が酸化しにくくなって、発火しにくくなるためであると考えられる。そこで、粉砕機5に供給される混合ガス中の酸素分圧が低くなるように、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整すれば、粉砕機5に供給された混合炭(粉砕機5で粉砕された微粉炭)の発火温度が高くなり、粉砕機5内において、発火の予兆である燃料の酸化反応が起こりにくくなるのである。   Here, the ignition temperature of the pulverized coal increases as the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 decreases. This is considered to be because the pulverized coal is less likely to be oxidized and less likely to ignite as the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is lower. Therefore, if the supply amounts of the carrier air supplied to the pulverizer 5 and the gas having a lower oxygen partial pressure than the air are adjusted so that the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is lowered, respectively. The ignition temperature of the mixed coal (pulverized coal pulverized by the pulverizer 5) supplied to the pulverizer 5 becomes high, and the oxidation reaction of fuel, which is a sign of ignition, hardly occurs in the pulverizer 5.

(粉砕機の発火防止装置の動作)
次に、上記の構成の粉砕機の発火防止装置10の動作、即ち、粉砕機の発火防止方法について説明する。
(Operation of crusher ignition prevention device)
Next, the operation of the pulverizer ignition prevention apparatus 10 having the above-described configuration, that is, the pulverizer ignition prevention method will be described.

石炭ホッパ1,2から供給された2種類の石炭A,Bは、混合機4で混合されて混合炭として粉砕機5に供給される。石炭ホッパ1から混合機4に供給される石炭Aの供給量は、石炭供給量調整装置3aにより調整され、石炭ホッパ2から混合機4に供給される石炭Bの供給量は、石炭供給量調整装置3bにより調整される。   The two types of coal A and B supplied from the coal hoppers 1 and 2 are mixed by the mixer 4 and supplied to the pulverizer 5 as mixed coal. The supply amount of coal A supplied from the coal hopper 1 to the mixer 4 is adjusted by the coal supply amount adjusting device 3a, and the supply amount of coal B supplied from the coal hopper 2 to the mixer 4 is adjusted to the coal supply amount. It is adjusted by the device 3b.

混合炭は粉砕機5で粉砕されて微粉炭にされ、搬送用空気によって、乾燥されながら微粉炭バーナ8に搬送される。微粉炭は微粉炭バーナ8で燃焼され、燃焼により生じた熱はボイラ9に回収される。粉砕機5の出口におけるガス中の一酸化炭素濃度は、一酸化炭素濃度測定装置7により測定される。また、粉砕機5の出口におけるガス中の酸素濃度は、酸素濃度測定装置6により測定される。一酸化炭素濃度測定装置7が測定した粉砕機5の出口におけるガス中の一酸化炭素濃度の測定データ(測定結果)と、酸素濃度測定装置6が測定した粉砕機5の出口におけるガス中の酸素濃度の測定データ(測定結果)とは、それぞれ演算器11に入力される。   The mixed coal is pulverized into pulverized coal by the pulverizer 5, and is conveyed to the pulverized coal burner 8 while being dried by the conveying air. The pulverized coal is burned by the pulverized coal burner 8, and the heat generated by the combustion is recovered in the boiler 9. The carbon monoxide concentration in the gas at the outlet of the pulverizer 5 is measured by the carbon monoxide concentration measuring device 7. The oxygen concentration in the gas at the outlet of the pulverizer 5 is measured by the oxygen concentration measuring device 6. Measurement data (measurement result) of the carbon monoxide concentration in the gas at the outlet of the pulverizer 5 measured by the carbon monoxide concentration measuring device 7 and oxygen in the gas at the outlet of the pulverizer 5 measured by the oxygen concentration measuring device 6. The concentration measurement data (measurement result) is input to the calculator 11.

演算器11は、酸素濃度の測定データから酸素分圧を算出する。そして、演算器11は、酸素分圧をパラメータとして用い、一酸化炭素濃度測定装置7からの測定データと、算出した酸素分圧とに基づいて、粉砕機5に供給される混合ガス中の酸素分圧を変化させるように、空気供給量調整装置14およびガス供給量調整装置15をそれぞれ制御する。これにより、粉砕機5に供給される混合ガス中の酸素分圧が変更される。   The calculator 11 calculates the oxygen partial pressure from the measurement data of the oxygen concentration. The computing unit 11 uses oxygen partial pressure as a parameter, and oxygen in the mixed gas supplied to the pulverizer 5 based on the measurement data from the carbon monoxide concentration measuring device 7 and the calculated oxygen partial pressure. The air supply amount adjusting device 14 and the gas supply amount adjusting device 15 are controlled so as to change the partial pressure. Thereby, the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is changed.

具体的には、粉砕機5の出口におけるガス中の一酸化炭素濃度を測定した結果、一酸化炭素濃度が少しでも検知された場合には、発火の予兆である燃料の酸化反応が起こっているので、演算器11は、算出した酸素分圧に基づいて、粉砕機5に供給される混合ガス中の酸素分圧が低くなる、つまり、微粉炭の発火温度が高くなるように、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整する。具体的には、空気よりも酸素分圧が低いガスの供給量を相対的に増やすことで、微粉炭の発火温度を高くする。これにより、粉砕機5内において、発火の予兆である燃料の酸化反応が起こらなくなり、粉砕機5の出口におけるガス中において、一酸化炭素濃度が検知されなくなる。よって、発火温度が低い石炭を用いても、粉砕機5内での発火を防止し、粉砕機5の火災や爆発といった災害を防止することができる。   Specifically, as a result of measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer 5, if any carbon monoxide concentration is detected, an oxidation reaction of fuel, which is a sign of ignition, is occurring. Therefore, the computing unit 11 is configured so that the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is reduced based on the calculated oxygen partial pressure, that is, the ignition temperature of the pulverized coal is increased. The supply amount of the carrier air supplied to the gas and the supply amount of the gas having a lower oxygen partial pressure than the air are adjusted. Specifically, the ignition temperature of pulverized coal is raised by relatively increasing the supply amount of gas having a lower oxygen partial pressure than air. As a result, the oxidation reaction of fuel, which is a sign of ignition, does not occur in the pulverizer 5, and the carbon monoxide concentration is not detected in the gas at the outlet of the pulverizer 5. Therefore, even when coal having a low ignition temperature is used, ignition in the pulverizer 5 can be prevented, and disasters such as fire and explosion of the pulverizer 5 can be prevented.

また、上述したように、固体燃料としてバイオマス燃料を使用してもよい。そして、安価で発火温度が低い石炭やバイオマス燃料を、高価で発火温度が高い瀝青炭等の高品位炭の代わりに用いることで、粉砕機5内での発火を防止しながら、コストダウンを図ることができる。   Further, as described above, biomass fuel may be used as the solid fuel. And, by using low-cost coal and biomass fuel with low ignition temperature instead of high-grade coal such as expensive bituminous coal with high ignition temperature, it is possible to reduce costs while preventing ignition in the crusher 5. Can do.

また、空気よりも酸素分圧が低いガスとして、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種を粉砕機5に供給することで、粉砕機5に供給される混合ガス中の酸素分圧を好適に変化させることができる。なお、空気よりも酸素分圧が低いガスとして、ボイラ9の排ガスの一部を用いてもよい。   Further, by supplying at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas to the pulverizer 5 as a gas having a lower oxygen partial pressure than air, the mixed gas supplied to the pulverizer 5 The oxygen partial pressure of can be suitably changed. A part of the exhaust gas from the boiler 9 may be used as the gas having a lower oxygen partial pressure than air.

なお、一酸化炭素濃度測定装置7が測定する一酸化炭素濃度に閾値を設けてもよい。閾値は、粉砕機5内において燃料(微粉炭)が発火するときの一酸化炭素濃度であり、数十ppmである。そして、一酸化炭素濃度測定装置7が測定する一酸化炭素濃度が閾値に十分近くなったときには、粉砕機5に供給される混合ガス中の酸素分圧が低くなる、つまり、微粉炭の発火温度が高くなるように、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整する。一方、一酸化炭素濃度が閾値から十分に離れているときには、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量を変化させない。なお、一酸化炭素濃度が閾値から十分に離れているときには、粉砕機5に供給される混合ガス中の酸素分圧が高くなる、つまり、微粉炭の発火温度が低くなるように、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整してもよい。   In addition, you may provide a threshold value in the carbon monoxide density | concentration which the carbon monoxide density | concentration measuring apparatus 7 measures. The threshold value is a carbon monoxide concentration when the fuel (pulverized coal) is ignited in the pulverizer 5 and is several tens of ppm. When the carbon monoxide concentration measured by the carbon monoxide concentration measuring device 7 is sufficiently close to the threshold value, the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is lowered, that is, the ignition temperature of pulverized coal. Is adjusted so that the supply air supplied to the pulverizer 5 and the supply amount of gas having a lower oxygen partial pressure than air are adjusted. On the other hand, when the carbon monoxide concentration is sufficiently far from the threshold value, the supply air supplied to the pulverizer 5 and the supply amount of the gas having a lower oxygen partial pressure than the air are not changed. When the carbon monoxide concentration is sufficiently away from the threshold value, the pulverizer 5 is set so that the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 increases, that is, the ignition temperature of the pulverized coal decreases. The supply amount of the carrier air supplied to the gas and the supply amount of the gas having a lower oxygen partial pressure than the air may be adjusted.

このように、一酸化炭素濃度に閾値を設けて、空気供給量調整装置14およびガス供給量調整装置15の制御を行っても、粉砕機5内での発火を防止することができる。   Thus, even if the threshold value is provided for the carbon monoxide concentration and the air supply amount adjusting device 14 and the gas supply amount adjusting device 15 are controlled, ignition in the pulverizer 5 can be prevented.

(酸素分圧と発火温度との関係)
次に、粉砕機5に供給される混合ガス中の酸素分圧と発火温度との関係について説明する。演算器11が、空気供給量調整装置14およびガス供給量調整装置15をそれぞれ制御するためには、粉砕機5に供給される混合ガス中の酸素分圧と発火温度との関係を予め把握しておく必要がある。そこで、性状の異なる3種類の石炭A,B,Cを1種もしくは2種以上用いて、これを粉砕した微粉炭の発火温度を調査した。この調査には、図2に示す微粉炭発火試験装置21を用いた。表1に3種類の石炭A,B,Cの石炭性状を示す。
(Relationship between oxygen partial pressure and ignition temperature)
Next, the relationship between the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 and the ignition temperature will be described. In order for the computing unit 11 to control the air supply amount adjusting device 14 and the gas supply amount adjusting device 15, the relationship between the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 and the ignition temperature is grasped in advance. It is necessary to keep. Then, the ignition temperature of the pulverized coal which grind | pulverized this using 1 type (s) or 2 or more types of 3 types of coal A, B, C from which a property differs was investigated. For this investigation, a pulverized coal ignition test apparatus 21 shown in FIG. 2 was used. Table 1 shows the coal properties of three types of coals A, B, and C.

Figure 0005385849
Figure 0005385849

微粉炭発火試験装置21は、内径φ25mm×700Lの円筒縦型反応管22と、定量の微粉炭を円筒縦型反応管22内に供給する微粉炭フィーダ23と、円筒縦型反応管22の外周に設けられたヒータ24と、円筒縦型反応管22内に加熱された混合ガスを供給するガス供給ライン25と、円筒縦型反応管22の下方に設けられた受け容器27と、円筒縦型反応管22の下部に設けられた一酸化炭素濃度計26と、円筒縦型反応管22の上方に設けられたラプチャーディスク29と、を有している。   The pulverized coal ignition test apparatus 21 includes a cylindrical vertical reaction tube 22 having an inner diameter of φ25 mm × 700 L, a pulverized coal feeder 23 for supplying a predetermined amount of pulverized coal into the cylindrical vertical reaction tube 22, and an outer periphery of the cylindrical vertical reaction tube 22. , A gas supply line 25 for supplying a mixed gas heated in the cylindrical vertical reaction tube 22, a receiving container 27 provided below the cylindrical vertical reaction tube 22, and a cylindrical vertical type A carbon monoxide concentration meter 26 provided at the lower part of the reaction tube 22 and a rupture disk 29 provided above the cylindrical vertical reaction tube 22 are provided.

円筒縦型反応管22の内部の雰囲気温度は、ヒータ24によって、常温から約400℃まで、円筒縦型反応管22の縦方向に沿ってほぼ均一に昇温可能にされている。ここで、円筒縦型反応管22の内部の雰囲気温度の昇温速度は、約5℃/minになるように調整されている。   The atmospheric temperature inside the cylindrical vertical reaction tube 22 can be raised substantially uniformly along the vertical direction of the cylindrical vertical reaction tube 22 by the heater 24 from room temperature to about 400 ° C. Here, the temperature increase rate of the atmospheric temperature inside the cylindrical vertical reaction tube 22 is adjusted to about 5 ° C./min.

また、円筒縦型反応管22の側面には、長手方向に沿った8ヶ所に熱電対挿入ポートが設置されており、これら熱電対挿入ポートには、外径φ1mmのシースK熱電対28がそれぞれ挿入される。これらシースK熱電対28によって、円筒縦型反応管22の内部の中心軸上の雰囲気温度の測定が可能となっている。   In addition, thermocouple insertion ports are provided at eight locations along the longitudinal direction on the side surface of the cylindrical vertical reaction tube 22, and sheath K thermocouples 28 having an outer diameter of 1 mm are respectively connected to these thermocouple insertion ports. Inserted. These sheath K thermocouples 28 enable measurement of the ambient temperature on the central axis inside the cylindrical vertical reaction tube 22.

ガス供給ライン25は、窒素ガス(空気よりも酸素分圧が低いガス)と空気とを混合して混合ガスとする混合室31と、混合ガス中の酸素濃度を測定する酸素濃度計32と、混合ガスを加熱する加熱ヒータ33と、を有している。ラプチャーディスク29は、通常は閉じており、円筒縦型反応管22内が高圧になると開状態となる。   The gas supply line 25 includes a mixing chamber 31 that mixes nitrogen gas (a gas having a lower oxygen partial pressure than air) and air to form a mixed gas, an oxygen concentration meter 32 that measures the oxygen concentration in the mixed gas, And a heater 33 for heating the mixed gas. The rupture disk 29 is normally closed, and is opened when the inside of the cylindrical vertical reaction tube 22 becomes high pressure.

ここで、粉砕機5と同一条件下で試験を行うために、いくつかの試験条件を設けた。即ち、試験条件として、予め水分含有率が4.0〜5.0%の範囲に調整された微粉炭を使用した。また、試験条件として、粒子径が75μm以下の微粉炭の割合を80%以上とした。また、試験条件として、Air/Coal比(円筒縦型反応管22に供給される加熱された混合ガスの量[L/min]と石炭供給量[g/min]との比)を1.7とした。また、試験条件として、円筒縦型反応管22内に微粉炭が滞留する滞留時間を約6秒とした。また、微粉炭粒子は混合ガスと同じ速度で円筒縦型反応管22内を移動するものと想定した。また、微粉炭が粉砕機5の内部に付着して居付くことがないものと仮定した。   Here, in order to perform the test under the same conditions as the pulverizer 5, several test conditions were provided. That is, pulverized coal whose moisture content was adjusted in the range of 4.0 to 5.0% in advance was used as test conditions. As test conditions, the proportion of pulverized coal having a particle size of 75 μm or less was set to 80% or more. As test conditions, the Air / Coal ratio (ratio of the amount [L / min] of the heated mixed gas supplied to the cylindrical vertical reaction tube 22 and the amount [g / min] of coal supply) is 1.7. It was. Further, as a test condition, a residence time in which the pulverized coal stayed in the cylindrical vertical reaction tube 22 was set to about 6 seconds. Further, it was assumed that the pulverized coal particles move in the cylindrical vertical reaction tube 22 at the same speed as the mixed gas. Further, it was assumed that the pulverized coal did not adhere to the inside of the pulverizer 5 and stayed there.

微粉炭フィーダから供給された定量の微粉炭は、自重で円筒縦型反応管22内に落下投入される。また、円筒縦型反応管22内には、ガス供給ライン25から加熱された混合ガスが供給される。円筒縦型反応管22内において、微粉炭と混合ガスとは、同一の温度まで加熱される。その後、微粉炭は、円筒縦型反応管22の下部のフランジ部22aから系外に落下し、受け容器27に貯留される。   The fixed amount of pulverized coal supplied from the pulverized coal feeder is dropped into the cylindrical vertical reaction tube 22 by its own weight. A heated mixed gas is supplied from the gas supply line 25 into the cylindrical vertical reaction tube 22. In the cylindrical vertical reaction tube 22, the pulverized coal and the mixed gas are heated to the same temperature. Thereafter, the pulverized coal falls out of the system from the lower flange portion 22 a of the cylindrical vertical reaction tube 22 and is stored in the receiving container 27.

微粉炭が円筒縦型反応管22内に滞留している滞留時間内に微粉炭が発火する温度まで上昇すれば、円筒縦型反応管22の下部に設置された一酸化炭素濃度計26が一酸化炭素濃度の上昇を検出する。円筒縦型反応管22内に供給される混合ガスの酸素分圧を変化させるとともに、円筒縦型反応管22内の雰囲気温度をヒータ24で変化させながら、繰り返し試験を行い、円筒縦型反応管22の出口におけるガス中の一酸化炭素濃度が30ppm以上となった時点における、円筒縦型反応管22内の雰囲気温度の平均値を、微粉炭の発火温度として算出した。   If the pulverized coal rises to a temperature at which the pulverized coal ignites within the residence time in which the pulverized coal stays in the cylindrical vertical reaction tube 22, the carbon monoxide concentration meter 26 installed at the lower portion of the cylindrical vertical reaction tube 22 is increased. Detects an increase in carbon oxide concentration. While changing the oxygen partial pressure of the mixed gas supplied into the cylindrical vertical reaction tube 22 and changing the atmospheric temperature in the cylindrical vertical reaction tube 22 with the heater 24, repeated tests were performed to obtain a cylindrical vertical reaction tube. The average value of the atmospheric temperature in the cylindrical vertical reaction tube 22 at the time when the carbon monoxide concentration in the gas at the outlet of 22 became 30 ppm or more was calculated as the ignition temperature of the pulverized coal.

粉砕機5に供給される混合ガス中の酸素分圧をパラメータにした微粉炭の発火温度の測定結果を図3に示す。微粉炭の発火温度の測定結果から、粉砕機5に供給される混合ガス中の酸素分圧が低くなるほど、微粉炭の発火温度が線形に上昇することがわかる。これは、粉砕機5に供給される混合ガス中の酸素分圧が低くなるほど、微粉炭が酸化しにくくなって、発火しにくくなるためであると考えられる。したがって、粉砕機5に供給される混合ガス中の酸素分圧を制御することは、粉砕機5内での発火の観点から、粉砕機5を安全に操業する操作条件になると考えられる。また、微粉炭の発火温度の測定結果から、微粉炭の発火を防止するためには、粉砕機5の入口における搬送用空気(熱風)の温度を、200℃以下にすることが好ましいことがわかる。   The measurement result of the ignition temperature of pulverized coal using the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 as a parameter is shown in FIG. From the measurement result of the ignition temperature of the pulverized coal, it can be seen that the ignition temperature of the pulverized coal increases linearly as the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 decreases. This is considered to be because the pulverized coal is less likely to be oxidized and less likely to ignite as the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is lower. Therefore, controlling the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is considered to be an operating condition for safely operating the pulverizer 5 from the viewpoint of ignition in the pulverizer 5. Moreover, from the measurement result of the ignition temperature of pulverized coal, in order to prevent the ignition of pulverized coal, it is understood that the temperature of the conveying air (hot air) at the inlet of the pulverizer 5 is preferably 200 ° C. or less. .

(本実施形態の変形例)
以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
(Modification of this embodiment)
The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.

例えば、演算器11による空気供給量調整装置14およびガス供給量調整装置15の制御は、上述したものに限定されない。一酸化炭素濃度測定装置7が一酸化炭素濃度を検知しなくても、粉砕機5に供給される混合ガス中の酸素分圧が低くなる、つまり、固体燃料の発火温度が高くなるように、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整してもよいし、一酸化炭素濃度測定装置7が一酸化炭素濃度を検知しても、その値が閾値未満であれば、粉砕機5に供給される混合ガス中の酸素分圧が高くなる、つまり、固体燃料の発火温度が低くなるように、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整してもよい。要するに、粉砕機5内で発火が起こらない範囲内で、粉砕機5に供給される搬送用空気および空気よりも酸素分圧が低いガスの供給量をそれぞれ調整すればよい。   For example, the control of the air supply amount adjusting device 14 and the gas supply amount adjusting device 15 by the computing unit 11 is not limited to the above-described one. Even if the carbon monoxide concentration measuring device 7 does not detect the carbon monoxide concentration, the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is reduced, that is, the ignition temperature of the solid fuel is increased. The carrier air supplied to the pulverizer 5 and the supply amount of the gas having a lower oxygen partial pressure than the air may be adjusted, respectively, or even if the carbon monoxide concentration measuring device 7 detects the carbon monoxide concentration, If the value is less than the threshold value, the conveying air supplied to the pulverizer 5 so that the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 is increased, that is, the ignition temperature of the solid fuel is lowered. The supply amount of the gas having a lower oxygen partial pressure than air may be adjusted. In short, as long as ignition does not occur in the pulverizer 5, the supply air supplied to the pulverizer 5 and the supply amount of gas having a lower oxygen partial pressure than air may be adjusted.

また、演算器11が、空気供給装置12から粉砕機5に供給される搬送用空気の供給量を調整する空気供給量調整装置14を制御する構成としたが、演算器11が、空気供給量調整装置14を制御しない構成であってもよい。空気供給装置12から粉砕機5に供給される搬送用空気の供給量を一定とし、ガス供給装置13から粉砕機5に供給される空気よりも酸素分圧が低いガスの供給量を調整するガス供給量調整装置15のみを演算器11が制御する構成であっても、粉砕機5に供給される混合ガス中の酸素分圧を変化させることができる。この場合、空気供給量調整装置14は不要である。   In addition, the calculator 11 controls the air supply amount adjusting device 14 that adjusts the supply amount of the conveying air supplied from the air supply device 12 to the pulverizer 5, but the calculator 11 is configured to control the air supply amount. The structure which does not control the adjustment apparatus 14 may be sufficient. A gas that adjusts the supply amount of gas having a lower oxygen partial pressure than the air supplied from the gas supply device 13 to the pulverizer 5 while keeping the supply air supply amount supplied from the air supply device 12 to the pulverizer 5 constant. Even if the calculator 11 controls only the supply amount adjusting device 15, the oxygen partial pressure in the mixed gas supplied to the pulverizer 5 can be changed. In this case, the air supply amount adjusting device 14 is unnecessary.

1,2 石炭ホッパ
3a,3b 石炭供給量調整装置
4 混合機
5 粉砕機
6 酸素濃度測定装置(酸素濃度測定手段)
7 一酸化炭素濃度測定装置(一酸化炭素濃度測定手段)
8 微粉炭バーナ
9 ボイラ
10 粉砕機の発火防止装置
11 演算器(制御手段)
12 空気供給装置(空気供給手段)
13 ガス供給装置(ガス供給手段)
14 空気供給量調整装置
15 ガス供給量調整装置(ガス供給量調整手段)
21 微粉炭発火試験装置
22 円筒縦型反応管
23 微粉炭フィーダ
24 ヒータ
25 ガス供給ライン
26 一酸化炭素濃度計
27 受け容器
28 シースK熱電対
32 酸素濃度計
33 加熱ヒータ
1, 2 Coal hopper 3a, 3b Coal supply amount adjustment device 4 Mixer 5 Crusher 6 Oxygen concentration measuring device (oxygen concentration measuring means)
7 Carbon monoxide concentration measuring device (carbon monoxide concentration measuring means)
8 Pulverized coal burner 9 Boiler 10 Ignition prevention device of crusher 11 Calculator (control means)
12 Air supply device (air supply means)
13 Gas supply device (gas supply means)
14 Air supply amount adjusting device 15 Gas supply amount adjusting device (gas supply amount adjusting means)
21 Pulverized Coal Ignition Test Equipment 22 Cylindrical Vertical Reaction Tube 23 Pulverized Coal Feeder 24 Heater 25 Gas Supply Line 26 Carbon Monoxide Concentration Meter 27 Receiving Container 28 Sheath K Thermocouple 32 Oxygen Concentration Meter 33 Heating Heater

Claims (6)

固体燃料を粉砕する粉砕機の発火防止方法であって、
空気と、前記空気よりも酸素分圧が低いガスとを混合ガスとして前記粉砕機に供給し、
前記粉砕機の出口におけるガス中の一酸化炭素濃度および酸素濃度をそれぞれ測定し、
前記一酸化炭素濃度の測定結果と、測定した前記酸素濃度から算出した酸素分圧と、に基づいて、前記粉砕機に供給される前記混合ガス中の前記酸素分圧を変化させるように、前記粉砕機に供給される前記空気よりも酸素分圧が低いガスの供給量を調整することを特徴とする粉砕機の発火防止方法。
A method for preventing ignition of a pulverizer for pulverizing solid fuel,
Supplying air and a gas having a lower oxygen partial pressure than the air to the pulverizer as a mixed gas;
Measure the carbon monoxide concentration and oxygen concentration in the gas at the outlet of the pulverizer,
Based on the measurement result of the carbon monoxide concentration and the oxygen partial pressure calculated from the measured oxygen concentration, the oxygen partial pressure in the mixed gas supplied to the pulverizer is changed. A method for preventing ignition of a pulverizer, comprising adjusting a supply amount of a gas having a lower oxygen partial pressure than the air supplied to the pulverizer.
前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であることを特徴とする請求項1に記載の粉砕機の発火防止方法。   The method for preventing ignition of a pulverizer according to claim 1, wherein the solid fuel is at least one of coal and biomass fuel. 前記空気よりも酸素分圧が低いガスは、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種であることを特徴とする請求項1又は2に記載の粉砕機の発火防止方法。   The method for preventing ignition of a pulverizer according to claim 1 or 2, wherein the gas having a lower oxygen partial pressure than air is at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas. . 固体燃料を粉砕する粉砕機の発火防止装置であって、
前記粉砕機に空気を供給する空気供給手段と、
前記空気と混合した混合ガスとして前記粉砕機に供給されるように、前記空気よりも酸素分圧が低いガスを前記粉砕機に供給するガス供給手段と、
前記粉砕機に供給される前記空気よりも酸素分圧が低いガスの供給量を調整するガス供給量調整手段と、
前記粉砕機の出口におけるガス中の一酸化炭素濃度を測定する一酸化炭素濃度測定手段と、
前記粉砕機の出口におけるガス中の酸素濃度を測定する酸素濃度測定手段と、
前記一酸化炭素濃度測定手段の測定結果と、前記酸素濃度測定手段が測定した前記酸素濃度から算出された酸素分圧と、に基づいて、前記粉砕機に供給される前記混合ガス中の前記酸素分圧を変化させるように、前記ガス供給量調整手段を制御する制御手段と、
を有することを特徴とする粉砕機の発火防止装置。
An ignition prevention device for a pulverizer for pulverizing solid fuel,
Air supply means for supplying air to the pulverizer;
Gas supply means for supplying the pulverizer with a gas having a lower oxygen partial pressure than the air so as to be supplied to the pulverizer as a mixed gas mixed with the air;
A gas supply amount adjusting means for adjusting a supply amount of a gas having a lower oxygen partial pressure than the air supplied to the pulverizer;
Carbon monoxide concentration measuring means for measuring the carbon monoxide concentration in the gas at the outlet of the pulverizer;
Oxygen concentration measuring means for measuring the oxygen concentration in the gas at the outlet of the pulverizer;
The oxygen in the mixed gas supplied to the pulverizer based on the measurement result of the carbon monoxide concentration measuring means and the oxygen partial pressure calculated from the oxygen concentration measured by the oxygen concentration measuring means. Control means for controlling the gas supply amount adjusting means so as to change the partial pressure;
An ignition prevention device for a pulverizer characterized by comprising:
前記固体燃料は、石炭およびバイオマス燃料の少なくとも1種であることを特徴とする請求項4に記載の粉砕機の発火防止装置。   The said solid fuel is at least 1 sort (s) of coal and biomass fuel, The ignition prevention apparatus of the grinder of Claim 4 characterized by the above-mentioned. 前記空気よりも酸素分圧が低いガスは、窒素ガス、二酸化炭素ガス、水蒸気、および、燃焼排ガスの少なくとも1種であることを特徴とする請求項4又は5に記載の粉砕機の発火防止装置。   The ignition prevention device for a pulverizer according to claim 4 or 5, wherein the gas having a lower oxygen partial pressure than air is at least one of nitrogen gas, carbon dioxide gas, water vapor, and combustion exhaust gas. .
JP2010112059A 2010-05-14 2010-05-14 Crusher ignition prevention method and ignition prevention device Active JP5385849B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010112059A JP5385849B2 (en) 2010-05-14 2010-05-14 Crusher ignition prevention method and ignition prevention device
KR1020127029632A KR20130009843A (en) 2010-05-14 2011-05-10 Method for preventing ignition and device for preventing ignition in pulverizer
PCT/JP2011/060786 WO2011142368A1 (en) 2010-05-14 2011-05-10 Method for preventing ignition and device for preventing ignition in pulverizer
CN201180022967.4A CN102884377B (en) 2010-05-14 2011-05-10 The prevention method on fire of pulverizer and anti-locking apparatus on fire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112059A JP5385849B2 (en) 2010-05-14 2010-05-14 Crusher ignition prevention method and ignition prevention device

Publications (2)

Publication Number Publication Date
JP2011240216A JP2011240216A (en) 2011-12-01
JP5385849B2 true JP5385849B2 (en) 2014-01-08

Family

ID=44914422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112059A Active JP5385849B2 (en) 2010-05-14 2010-05-14 Crusher ignition prevention method and ignition prevention device

Country Status (4)

Country Link
JP (1) JP5385849B2 (en)
KR (1) KR20130009843A (en)
CN (1) CN102884377B (en)
WO (1) WO2011142368A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166179A1 (en) 2012-05-01 2013-11-07 Innovative Combustion Technologies, Inc. Pulverizer mill protection system
US9604226B2 (en) 2012-05-01 2017-03-28 Innovative Combustion Technologies, Inc. Pulverizer mill protection system
JP5949414B2 (en) * 2012-10-05 2016-07-06 新日鐵住金株式会社 Grinding plant exhaust gas control device, grinding plant exhaust gas control method, and computer program
JP6011933B2 (en) * 2012-11-26 2016-10-25 株式会社日向製錬所 Coal dust ignition prevention system and coal dust ignition prevention method for pulverized coal mill system
US9494319B2 (en) * 2013-03-15 2016-11-15 General Electric Technology Gmbh Pulverizer monitoring
JP2014231049A (en) * 2013-05-30 2014-12-11 中国電力株式会社 Mill temperature control method
CN104324797B (en) * 2014-10-22 2016-06-08 中国神华能源股份有限公司 The air channel explosion venting device of coal pulverizer
CN105629848B (en) * 2015-12-19 2018-05-25 山河智能装备股份有限公司 A kind of monitoring method and controller of equipment of speedily carrying out rescue work
JP6827894B2 (en) * 2017-08-25 2021-02-10 三菱パワー株式会社 Crusher and its operation method
IT201900018128A1 (en) 2019-10-07 2020-01-07 Renzi Mario De Roadside assistance device and its method
KR102540592B1 (en) 2020-11-25 2023-06-12 한국지질자원연구원 Appatus for breakage capable of controlling atmosphere and sieving and method of fragmenting using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653698A (en) * 1983-08-01 1987-03-31 The Babcock & Wilcox Company Safety system for coal pulverizers
JPS6052714A (en) * 1983-08-31 1985-03-26 Tokyo Optical Co Ltd Incremental encoder
JPH0487741U (en) * 1990-12-14 1992-07-30
DE4124842A1 (en) * 1991-07-26 1993-01-28 Evt Energie & Verfahrenstech Steam boiler fired with pulverised brown coal - uses combustion gases to dry coal and reduce nitrous oxide content of gases discharged to atmosphere
JP3806250B2 (en) * 1998-07-08 2006-08-09 三菱重工業株式会社 Pulverized coal combustion equipment
JP2004347241A (en) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd Coal-organic matter fuel mixture grinding device
JP5174618B2 (en) * 2008-10-31 2013-04-03 株式会社日立製作所 Oxyfuel combustion boiler system and control method for oxygen combustion boiler system

Also Published As

Publication number Publication date
CN102884377A (en) 2013-01-16
JP2011240216A (en) 2011-12-01
CN102884377B (en) 2016-04-27
KR20130009843A (en) 2013-01-23
WO2011142368A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5385849B2 (en) Crusher ignition prevention method and ignition prevention device
JP6180218B2 (en) Solid fuel combustion equipment
US10449548B2 (en) Grinding and drying plant
JP2010242999A (en) Method and device for directly pulverizing and burning woody biomass and boiler system
JP2008145007A (en) Coal burning boiler
JP2015001347A (en) Vertical grinding classifier
JP5385853B2 (en) Crusher ignition prevention method and ignition prevention device
JPWO2010024333A1 (en) Coal processing method and processing system
JP5385851B2 (en) Crusher ignition prevention method and ignition prevention device
JPS6259162B2 (en)
JP2007322123A (en) Grinding drier, and fine powder fuel combustor
JP7086535B2 (en) Control method of solid fuel crusher and solid fuel crusher
Moghtaderi A study on the char burnout characteristics of coal and biomass blends
CN111558433A (en) Solid fuel pulverizing device and method, and power generation facility provided with same
CN108253447A (en) Biomass couples pulverized coal combustion system and its control method
JPS63267814A (en) Combustion method for pulverized coal
JP5848983B2 (en) Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace
WO2022045345A1 (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
KR101453604B1 (en) Air heater in pci and temperature control method using the same
JP2022041973A (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
JP3555011B2 (en) Waste gasification and melting apparatus and its control method
JP4892947B2 (en) Waste treatment plant, waste treatment plant operation method and control device therefor
JPS5823300B2 (en) Safety devices in flammable powder transportation equipment
JP2011252701A (en) Waste disposal plant, and operating method for waste disposal plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150