JP5848983B2 - Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace - Google Patents

Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace Download PDF

Info

Publication number
JP5848983B2
JP5848983B2 JP2012034054A JP2012034054A JP5848983B2 JP 5848983 B2 JP5848983 B2 JP 5848983B2 JP 2012034054 A JP2012034054 A JP 2012034054A JP 2012034054 A JP2012034054 A JP 2012034054A JP 5848983 B2 JP5848983 B2 JP 5848983B2
Authority
JP
Japan
Prior art keywords
pulverized coal
biomass fuel
boiler furnace
burner
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012034054A
Other languages
Japanese (ja)
Other versions
JP2013170733A (en
Inventor
稔 束岡
稔 束岡
朗太 三村
朗太 三村
隆政 伊藤
隆政 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Nippon Steel Corp
Original Assignee
IHI Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Nippon Steel Corp filed Critical IHI Corp
Priority to JP2012034054A priority Critical patent/JP5848983B2/en
Publication of JP2013170733A publication Critical patent/JP2013170733A/en
Application granted granted Critical
Publication of JP5848983B2 publication Critical patent/JP5848983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微粉炭焚きボイラ火炉において、水分を多く含むバイオマス燃料を微粉炭とともに混焼する方法、および当該方法に使用するバイオマス燃料混焼用の微粉炭焚きボイラ火炉に関するものである。   The present invention relates to a method of co-firing biomass fuel containing a large amount of water together with pulverized coal in a pulverized coal-fired boiler furnace, and a pulverized coal-fired boiler furnace for biomass fuel co-firing used in the method.

二酸化炭素による地球の温暖化を抑制する方法の一つとして、化石燃料の一部をバイオマス燃料によって代替することが注目されている。微粉炭焚きボイラ火炉においても、微粉炭の一部をバイオマス燃料によって代替する技術が提案されている。   As one of the methods for suppressing global warming caused by carbon dioxide, it has been noticed that a part of fossil fuel is replaced with biomass fuel. In a pulverized coal fired boiler furnace, a technique for replacing part of the pulverized coal with biomass fuel has been proposed.

例えば特許文献1には、木材を粉砕したものを微粉炭と混合してボイラ火炉において燃焼する場合に、最下部のバーナ以外のバーナにバイオマス燃料を供給することを特徴とする微粉炭とバイオマス燃料の混焼方法が提案されている。   For example, Patent Document 1 discloses that when pulverized wood is mixed with pulverized coal and burned in a boiler furnace, biomass fuel is supplied to a burner other than the lowermost burner. A mixed firing method has been proposed.

この特許文献1の方法によれば、粉砕した木粉の燃え残りや灰がボイラ火炉内の伝熱面に付着するいわゆるスラッギング現象により、ボイラの稼動が不安定化することを緩和できるので、木粉の未燃率を1.5質量%程度に低減できることが記載されている。   According to the method of Patent Document 1, since the so-called slagging phenomenon in which the unburned residue and ash of pulverized wood powder adhere to the heat transfer surface in the boiler furnace can be mitigated, the operation of the boiler becomes unstable. It is described that the unburned ratio of the powder can be reduced to about 1.5% by mass.

ところで、特許文献1に記載された実施例において使用されたバイオマス燃料は、水分が2.1質量%、平均粒径が0.7mmの木粉である。これは混焼した微粉炭の水分2質量%と同程度の水分であって、大気中で乾燥された状態、またはそれと同程度の水分である。粒径についても微粉炭よりは大きいが、バイオマス燃料としては粉砕等の事前処理を前提としたものである。   By the way, the biomass fuel used in the Example described in Patent Document 1 is wood flour having a moisture content of 2.1 mass% and an average particle size of 0.7 mm. This is equivalent to 2% by mass of the moisture of the pulverized coal that has been co-fired, and is in a state of being dried in the atmosphere or equivalent to that. Although the particle size is larger than that of pulverized coal, the biomass fuel is premised on pretreatment such as pulverization.

しかしながら、現在使用が求められているバイオマス燃料の中には、水分を多く含むもの、例えば厨芥(コーヒー粕やお茶がら等)がある。これらは、数10質量%の水分を含むものであるのと同時に、ミリメータオーダーの粒径を有している。   However, among the biomass fuels that are currently required to be used, there are those that contain a lot of water, such as coffee (such as coffee coffee and tea chaff). These contain water of several tens of mass%, and at the same time have a particle size of millimeter order.

従って、これら数10質量%の水分を含み、ミリメータオーダーの粒径を有するバイオマス燃料を、特許文献1で提案された方法で燃焼を完結するためには、ボイラ火炉に投入する前にバイオマス燃料を乾燥粉砕するための乾燥設備や粉砕設備等の付帯設備が必要であった。   Therefore, in order to complete the combustion of the biomass fuel containing several tens of mass% of water and having a particle size of millimeter order by the method proposed in Patent Document 1, the biomass fuel is added before being put into the boiler furnace. Ancillary equipment such as drying equipment and grinding equipment for drying and grinding was necessary.

特開2007‐101135号公報JP 2007-101135 A

本発明が解決しようとする問題点は、水分を多く含みミリメータオーダーの粒径を有するバイオマス燃料を、特許文献1で提案された方法で燃焼を完結するには、バイオマス燃料を乾燥粉砕するための乾燥設備や粉砕設備等の付帯設備が必要であるという点である。   The problem to be solved by the present invention is to dry and pulverize the biomass fuel in order to complete the combustion of the biomass fuel containing a large amount of water and having a particle size of millimeter order by the method proposed in Patent Document 1. An additional facility such as a drying facility or a grinding facility is necessary.

本発明の微粉炭とバイオマス燃料の混焼方法は、
水分を多く含みミリメータオーダーの粒径を有するバイオマス燃料を微粉炭とともに混焼する際に、乾燥設備や粉砕設備等の付帯設備を必要とすることなく微粉炭焚きボイラ火炉内において燃焼させるために、
高さ方向に多段のバーナが設けられた微粉炭焚きボイラ火炉に、前記多段のバーナから微粉炭とバイオマス燃料を空気と共に供給して混焼させるに際し、
粒子径が3mm以下であって、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料については、最下段のバーナから鉛直方向で5m以上高い位置に配置されるバーナから供給することを最も主要な特徴としている。
The method of co-firing pulverized coal and biomass fuel of the present invention,
In order to combust in a pulverized coal fired boiler furnace without requiring additional equipment such as drying equipment and pulverization equipment when co-firing biomass fuel with a lot of moisture and having a particle size of millimeter order with pulverized coal,
When supplying pulverized coal and biomass fuel together with air from the multistage burner to the pulverized coal fired boiler furnace provided with multistage burners in the height direction,
For large-sized biomass fuel with a particle size of 3 mm or less, containing water of more than 40% by mass and within 80% by mass, and an integrated particle size distribution of 80% or more, the vertical direction from the bottom burner The main feature is that it is supplied from a burner placed at a position higher than 5 m.

上記本発明の微粉炭とバイオマス燃料の混焼方法は、
高さ方向に設けられた多段のバーナから微粉炭とバイオマス燃料を空気と共に供給して混焼させる微粉炭焚きボイラ火炉に、
粒子径が3mm以下であって、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料については、最下段のバーナから鉛直方向で5m以上高い位置に配置されるバーナへ供給する系統を設けた本発明のバイオマス燃料混焼用の微粉炭焚きボイラ火炉を用いて実施することができる。
The method for co-firing pulverized coal and biomass fuel of the present invention is as follows.
In a pulverized coal fired boiler furnace that supplies pulverized coal and biomass fuel together with air from a multistage burner provided in the height direction,
For large-sized biomass fuel with a particle size of 3 mm or less, containing water of more than 40% by mass and within 80% by mass, and an integrated particle size distribution of 80% or more, the vertical direction from the bottom burner This can be carried out using the pulverized coal fired boiler furnace for biomass fuel co-firing of the present invention provided with a system for supplying to a burner arranged at a position 5 m or higher.

本発明では、粒子径が3mm以下で、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料は、最下段のバーナから鉛直方向で5m以上高い位置に配置されるバーナから供給するので、乾燥設備や粉砕設備等の付帯設備を必要としなくても、ボイラ火炉内で燃焼させることができる。   In the present invention, a large-sized biomass fuel having a particle size of 3 mm or less, containing water of more than 40% by mass and not more than 80% by mass, and an accumulated particle size distribution of 80% or more is perpendicular to the bottom burner. Therefore, it can be burned in the boiler furnace without requiring additional equipment such as drying equipment or grinding equipment.

本発明によれば、水分を多く含みミリメータオーダーの粒径を有するバイオマス燃料であっても、乾燥設備や粉砕設備等の付帯設備を必要とせずに、微粉炭とともに混焼してボイラ火炉内において燃焼させることができる。従って、二酸化炭素の発生を抑制するために、化石燃料に代替するバイオマス燃料の選択肢を大きく広げることが可能となる。   According to the present invention, even a biomass fuel containing a large amount of water and having a particle size on the order of millimeters does not require ancillary equipment such as drying equipment or grinding equipment, and is mixed with pulverized coal and burned in a boiler furnace Can be made. Therefore, in order to suppress the generation of carbon dioxide, it is possible to greatly expand the options of biomass fuel that substitutes for fossil fuel.

燃焼特性の調査に使用した一次元層流炉(試験装置)の概略構成図である。It is a schematic block diagram of the one-dimensional laminar flow furnace (test apparatus) used for the investigation of a combustion characteristic. 乾式燃料試験と湿式燃料試験から得られたバイオマス燃料の燃焼率の比較を示した図で、(a)は燃焼率に対する粒子径の影響を示した図、(b)は燃焼率に対する炉内温度の影響を示した図である。The figure which showed the comparison of the combustion rate of the biomass fuel obtained from the dry fuel test and the wet fuel test, (a) is the figure which showed the influence of the particle diameter with respect to a combustion rate, (b) is the furnace temperature with respect to a combustion rate FIG. 炉内温度が1200℃の場合におけるコーヒー粕の粒子径と必要滞留時間の関係を示した図である。It is the figure which showed the relationship between the particle diameter of a coffee grinder in case a furnace temperature is 1200 degreeC, and required residence time. 標準的な操業状態の際のボイラ火炉内の空塔速度と各バーナ間等の距離を示した図である。It is the figure which showed the distance between the superficial velocity in a boiler furnace in the case of a standard operating state, and each burner. 粒子径が2mmのコーヒー粕の落下挙動を示した図である。It is the figure which showed the fall behavior of the coffee bowl with a particle diameter of 2 mm. 粒子の浮遊、落下挙動を示した図で、(a)はガス流速が2m/secの場合、(b)はガス流速が5m/secの場合、(c)はガス流速が8m/secの場合である。The figure shows the floating and falling behavior of particles, (a) when the gas flow rate is 2 m / sec, (b) when the gas flow rate is 5 m / sec, (c) when the gas flow rate is 8 m / sec. It is.

本発明は、水分を多く含みミリメータオーダーの粒径を有するバイオマス燃料を微粉炭とともに混焼する際に、乾燥設備や粉砕設備等の付帯設備を必要とすることなくボイラ火炉内において燃焼させるという目的を、当該バイオマス燃料を最下段のバーナから鉛直方向で5m以上高い位置のバーナから供給することで実現した。   The present invention aims to burn biomass fuel in a boiler furnace without requiring additional equipment such as drying equipment and crushing equipment when co-firing biomass fuel with a large amount of water and having a particle size on the order of millimeters with pulverized coal. The biomass fuel was supplied from the burner at a position 5 m or higher in the vertical direction from the lowest burner.

発明者らは、水分を多く含むバイオマス燃料の燃焼特性を調査して、微粉炭焚きボイラ火炉において、水分を多く含むバイオマス燃料を微粉炭とともに混焼するための指針を得ることとした。   The inventors investigated the combustion characteristics of biomass fuel containing a large amount of moisture, and obtained guidelines for co-firing biomass fuel containing a lot of moisture with pulverized coal in a pulverized coal-fired boiler furnace.

燃焼特性の調査に使用した試験装置を図1に示す。
1は反応管であるアルミナチューブで、このアルミナチューブ1の高さ方向の上端から、燃料フィーダ2に接続された燃料ノズル3がアルミナチューブ1と同心状に挿入されている。この燃料ノズル3の先端開口の上部外周にはメッシュ材4が設置され、このメッシュ材4の上方に配管5が導入され、この配管5を介してガスボンベ6a〜6c内のO2ガス、N2ガス、空気を適宜混合し、ヒータ7で予熱した後、燃料ノズル3の外周部に供給するようになっている。
FIG. 1 shows a test apparatus used for investigating the combustion characteristics.
An alumina tube 1 is a reaction tube. A fuel nozzle 3 connected to the fuel feeder 2 is inserted concentrically with the alumina tube 1 from the upper end of the alumina tube 1 in the height direction. A mesh material 4 is installed on the outer periphery of the upper end opening of the fuel nozzle 3, and a pipe 5 is introduced above the mesh material 4, and O 2 gas and N 2 in the gas cylinders 6 a to 6 c are passed through the pipe 5. Gas and air are mixed as appropriate, preheated by the heater 7, and then supplied to the outer peripheral portion of the fuel nozzle 3.

また、アルミナチューブ1の外周部には電気炉8が設けられ、この電気炉8で加熱されたアルミナチューブ1内の所要高さ位置の温度を熱電対9で検出し、この検出温度に基づき、温度コントローラ10によりアルミナチューブ1内の加熱温度を制御する。   Further, an electric furnace 8 is provided on the outer peripheral portion of the alumina tube 1, and a temperature at a required height position in the alumina tube 1 heated by the electric furnace 8 is detected by a thermocouple 9, and based on the detected temperature, The heating temperature in the alumina tube 1 is controlled by the temperature controller 10.

一方、アルミナチューブ1の高さ方向の下端からは、水冷プローブ11が同心状に挿入されており、この水冷プローブ11の昇降により、その先端位置を任意に変更できるようになっている。この水冷プローブ11の基端には固形粒子を回収するフィルター12を先端に、吸引ファン13を基端に備えた吸引管14が設置されており、この吸引管14の途中に設置されたガス分析装置15で吸引ガスの成分を分析するようになっている。   On the other hand, a water-cooled probe 11 is inserted concentrically from the lower end in the height direction of the alumina tube 1, and its tip position can be arbitrarily changed by raising and lowering the water-cooled probe 11. At the base end of the water-cooled probe 11, a suction pipe 14 having a filter 12 for collecting solid particles at the front end and a suction fan 13 at the base end is installed, and gas analysis installed in the middle of the suction pipe 14. The apparatus 15 analyzes the components of the suction gas.

そして、試験は、熱電対9で検出し、PC16に取り込んだ温度データに基づき、温度コントローラ10を使用して、電気炉8によりアルミナチューブ1の内部を試験条件の温度まで上昇させた。   And the test detected with the thermocouple 9, and based on the temperature data taken in to PC16, the temperature controller 10 was used and the inside of the alumina tube 1 was raised to the temperature of test conditions with the electric furnace 8. FIG.

その後、燃料ノズル3を介してバイオマス燃料を上部より投入し、上部より落下してくるバイオマス燃料の燃焼粒子を水冷プローブ11によりサンプリングする。その際、粒子のサンプリング位置を変えることで、炉内滞留時間毎のバイオマス燃料の燃焼率を把握する。   Thereafter, biomass fuel is introduced from above through the fuel nozzle 3, and combustion particles of biomass fuel falling from the top are sampled by the water-cooled probe 11. At that time, the burning rate of the biomass fuel for each residence time in the furnace is grasped by changing the sampling position of the particles.

試験には、バイオマス燃料としてコーヒー粕を使用した。乾式燃料試験に使用したコーヒー粕の水分は6質量%、湿式燃料試験に使用したコーヒー粕の水分は60質量%であった。   For the test, coffee mash was used as biomass fuel. The water content of the coffee grounds used in the dry fuel test was 6% by mass, and the water content of the coffee grounds used in the wet fuel test was 60% by weight.

図2は図1に示した試験装置を用いて行った乾式燃料試験と湿式燃料試験から得られたバイオマス燃料の燃焼率を比較して示した図である。   FIG. 2 is a diagram comparing the combustion rates of biomass fuels obtained from the dry fuel test and the wet fuel test conducted using the test apparatus shown in FIG.

図2より、湿式燃料試験の場合はバイオマス燃料に含まれる水分の蒸発時間が長くなるため、乾式燃料試験と同程度の燃焼率を得るためには、乾式燃料試験よりも長い滞留時間を必要とすることが分かった。この水分の蒸発に必要な時間は、粒子径と炉内温度に依存すると考えられる。   As shown in FIG. 2, in the case of the wet fuel test, the evaporation time of water contained in the biomass fuel becomes longer. Therefore, in order to obtain a combustion rate comparable to that of the dry fuel test, a longer residence time is required than in the dry fuel test. I found out that The time required for the evaporation of moisture is considered to depend on the particle size and the furnace temperature.

すなわち、炉内温度が1000℃の場合における試験結果を示した図2(a)より、バイオマス燃料であるコーヒー粕の粒子径が74μmの場合は、乾式燃料試験も湿式燃料試験も滞留時間と燃焼率の関係はほぼ同様であり、ほとんど蒸発時間を考慮する必要がないことが分かった(○印と●印)。一方、コーヒー粕の粒子径が428μmの場合は、滞留時間を0.5秒程度考慮する必要があることが分かった(□印と■印)。   That is, from FIG. 2 (a) showing the test results when the furnace temperature is 1000 ° C., when the particle size of the coffee grounds, which is biomass fuel, is 74 μm, both the dry fuel test and the wet fuel test have residence time and combustion. The relationship between the rates was almost the same, and it was found that there was almost no need to consider the evaporation time (circles and circles). On the other hand, it was found that when the particle size of the coffee koji is 428 μm, it is necessary to consider the residence time of about 0.5 seconds (□ mark and ■ mark).

また、炉内温度が1000℃と1200℃の場合における試験結果を示した図2(b)より、炉内温度が1200℃の場合は、湿式燃料試験でもより短い蒸発時間で乾式と同程度の燃焼率が得られることが分かった(□印と■印)。   Also, from FIG. 2 (b) showing the test results when the furnace temperature is 1000 ° C. and 1200 ° C., when the furnace temperature is 1200 ° C., the wet fuel test is similar to the dry type in a shorter evaporation time. It was found that the combustion rate can be obtained (□ and ■).

以上より、バイオマス燃料の粒子径が減少するにつれて、また炉内温度が上昇するにつれて粒子中の水分が蒸発するのに要する時間が減少する傾向があり、少なくとも1200℃の炉内温度を有するボイラ火炉内であれば、より短い蒸発時間で乾式と同程度の燃焼率を得られることが分かった。   From the above, as the particle size of the biomass fuel decreases and as the furnace temperature increases, the time required for the water in the particles to evaporate tends to decrease, and the boiler furnace having a furnace temperature of at least 1200 ° C. It was found that a combustion rate comparable to that of the dry type can be obtained with a shorter evaporation time.

次に、炉内温度が1200℃の場合に、バイオマス燃料であるコーヒー粕が燃焼を完了するのに要する滞留時間を図3に示した。   Next, when the in-furnace temperature is 1200 ° C., the residence time required for the coffee mash, which is biomass fuel, to complete combustion is shown in FIG.

乾燥状態のコーヒー粕の場合は、図3中に細線で示す曲線に沿って粒子径が大きくなるにつれて、燃焼完了に要する滞留時間は長くなり、粒子径が2mm程度の場合は0.6秒程度の滞留時間が必要となることが分かった。   In the case of dry coffee grounds, the residence time required for completion of combustion increases as the particle size increases along the curve indicated by the thin line in FIG. 3, and about 0.6 seconds when the particle size is about 2 mm. It was found that the residence time of

一方、未乾燥(湿式)状態のコーヒー粕の場合は、前述したように約0.5秒程度の着火遅れがあるので、図3中に実線で示す曲線に沿って粒子径が大きくなるにつれて、燃焼完了に要する滞留時間は長くなり、粒子径が2mm程度の場合は1.2秒程度の滞留時間が必要となることが分かった。   On the other hand, in the case of an undried (wet) coffee mash, there is an ignition delay of about 0.5 seconds as described above, so as the particle diameter increases along the curve shown by the solid line in FIG. It has been found that the residence time required for completion of combustion is long, and when the particle size is about 2 mm, a residence time of about 1.2 seconds is required.

以上の結果を踏まえて、発明者らは、粒子径が2mmのバイオマス燃料であるコーヒー粕を前提として、1.2秒程度の滞留時間を得るために、どのような条件が必要であるかについて検討した。検討対象とした微粉炭焚きボイラ火炉を図4に示す。   Based on the above results, the inventors have determined what conditions are necessary to obtain a residence time of about 1.2 seconds on the premise of coffee mash, which is a biomass fuel with a particle size of 2 mm. investigated. Fig. 4 shows the pulverized coal fired boiler furnace to be studied.

この図4に示した微粉炭焚きボイラ火炉21へのコーヒー粕の吹き込み位置は、ボイラ耐圧部を改造することなく吹き込むことができる二次燃焼空気ポート(OAP)22、上段バーナ23、中段バーナ24、下段バーナ25の、高さ方向に異なる4箇所とした。なお、図4中の23a,24a,25aは、上段バーナ23、中段バーナ24、下段バーナ25への微粉炭と空気の吹き込み経路を示す。   The brewing position of the coffee slag into the pulverized coal fired boiler furnace 21 shown in FIG. The lower burner 25 has four different locations in the height direction. In addition, 23a, 24a, 25a in FIG. 4 shows the blowing path | routes of the pulverized coal and air to the upper stage burner 23, the middle stage burner 24, and the lower stage burner 25.

図4には、標準的な操業状態の際のボイラ火炉内の空塔速度を示した。図4に示したように、ボイラ火炉の底部側から上部になるにつれて、通過ガス量が多くなってガス温度が上昇することなどから、空塔速度が大きくなることが分かる。   FIG. 4 shows the superficial velocity in the boiler furnace in a standard operating state. As shown in FIG. 4, it can be seen that the superficial velocity increases as the passing gas amount increases and the gas temperature rises from the bottom side to the top side of the boiler furnace.

図4の結果より、微粉炭焚きボイラ火炉内に吹き込んだコーヒー粕は、ボイラ火炉内を落下しながら燃焼するため、コーヒー粕の吹き込み位置をボイラ火炉の上部とすれば燃焼を完了させることができることが分かる。   From the results of FIG. 4, the coffee mash blown into the pulverized coal-fired boiler furnace burns while dropping in the boiler furnace, so that the combustion can be completed if the blowing position of the coffee mash is at the upper part of the boiler furnace. I understand.

水分が60質量%、粒子径が2mmのコーヒー粕を前記の各吹き込み位置から吹き込んだ場合の落下挙動を図5に、前記4つの位置から粒子径が2mmのコーヒー粕を吹き込んだ場合の評価を下記表1に示す。   Fig. 5 shows the dropping behavior when a coffee mash having a moisture content of 60% by mass and a particle diameter of 2mm is blown from each of the above blowing positions, and the evaluation when the coffee mash having a particle diameter of 2mm is blown from the four positions. Shown in Table 1 below.

Figure 0005848983
Figure 0005848983

次に、下段バーナ〜中段バーナ、中段バーナ〜OAP、OAPより上部の各領域におけるガス流速が図4に示した空塔速度と同程度の2m/sec、5m/sec、8m/secの場合における粒子の浮遊、落下挙動を、水分が60質量%で、粒子径が1mm、2mm、3mmの場合について調査した。その結果を図6に示す。   Next, the gas flow velocity in each region above the lower burner to middle burner, middle burner to OAP, and OAP is 2 m / sec, 5 m / sec, and 8 m / sec, which are the same as the superficial velocity shown in FIG. The floating and falling behavior of the particles was investigated when the water content was 60% by mass and the particle diameters were 1 mm, 2 mm, and 3 mm. The result is shown in FIG.

下段バーナよりボイラ火炉の底部までの領域におけるガス流速は、図4より2m/sec以下であると考えられるので、先の調査結果より判明している、水分が60質量%、粒子径が2mmのバイオマス燃料の場合、燃焼が完了する1.2秒程度の滞留時間で5m以上の落下距離になることは図6より明らかである。まして、粒子径が3mmの場合は更に落下距離は大きくなる。   Since the gas flow rate in the region from the lower burner to the bottom of the boiler furnace is considered to be 2 m / sec or less from FIG. 4, the moisture content is 60% by mass and the particle diameter is 2 mm, which is known from the previous survey results. In the case of biomass fuel, it is clear from FIG. 6 that a falling distance of 5 m or more is obtained with a residence time of about 1.2 seconds when combustion is completed. Furthermore, when the particle diameter is 3 mm, the drop distance is further increased.

従って、ボイラ火炉の底部から4m(図4参照)の位置に設置された下段バーナから、水分が60質量%で粒子径が3mmのバイオマス燃料を吹き込んだ場合や、粒子径が2mmより小さくても、水分の含有量が60質量%より多い場合は、ボイラ火炉内で燃焼が完了しないことになる。   Therefore, when a biomass fuel having a water content of 60% by mass and a particle size of 3 mm is blown from a lower burner installed at a position 4 m (see FIG. 4) from the bottom of the boiler furnace, or even when the particle size is smaller than 2 mm, When the water content is more than 60% by mass, combustion is not completed in the boiler furnace.

一方、下段バーナ〜ボイラ火炉の底部までの領域におけるガス流速は、図4より2m/sec以下であると考えられるものの、その値は測定できない。   On the other hand, although the gas flow velocity in the region from the lower burner to the bottom of the boiler furnace is considered to be 2 m / sec or less from FIG. 4, the value cannot be measured.

そこで、発明者らは、前記図2〜図6の結果から、以下のように考えた。
水分が60質量%で粒子径が3mmのバイオマス燃料を吹き込む場合は、その吹き込み位置から下段バーナまでの移動距離である鉛直方向の高さが5m以上あれば、下段バーナよりボイラ火炉の底部までの間におけるガス流速がどのような値であっても、バイオマスの粒子の滞留時間を1.2秒程度は確保することができる。
Therefore, the inventors considered as follows from the results of FIGS.
When a biomass fuel having a moisture content of 60% by mass and a particle size of 3 mm is blown, if the height in the vertical direction, which is the moving distance from the blowing position to the lower burner, is 5 m or more, the lower burner reaches the bottom of the boiler furnace. Whatever the gas flow rate between them, the residence time of the biomass particles can be secured for about 1.2 seconds.

仮に水分が80質量%と増加しても、水分含有量が60質量%のときに確保すべき滞留時間(1.2秒程度)の80/60であり、1.6秒程度である。   Even if the water content increases to 80% by mass, the residence time (about 1.2 seconds) to be secured when the water content is 60% by mass is 80/60, which is about 1.6 seconds.

従って、空塔速度が4.1m/secの下段バーナから鉛直方向に5m高い位置から吹き込んだ場合は、下段バーナに至った際には約1.2secが経過しているので(図6(b)参照)、下段バーナからボイラ火炉の底部に至るまでの時間が0.4sec以上であれば燃焼は完了することになる。   Therefore, when the superficial velocity is blown from a position 5 m higher in the vertical direction from the lower burner of 4.1 m / sec, about 1.2 seconds have elapsed when the lower burner is reached (FIG. 6 (b ))), Combustion is completed if the time from the lower burner to the bottom of the boiler furnace is 0.4 sec or more.

ガス流速が2m/secの場合の0.4sec間における移動距離は、図6(a)を見れば1mにも満たないので、下段バーナからボイラ火炉の底部までの距離が4mであるボイラ火炉の場合、水分が80質量%で、粒子径が3mmのバイオマス燃料であっても、下段バーナからボイラ火炉の底部に落下するまでに燃焼が完了すると考えられる。   When the gas flow rate is 2 m / sec, the moving distance in 0.4 sec is less than 1 m as seen in FIG. 6A. Therefore, the distance from the lower burner to the bottom of the boiler furnace is 4 m. In this case, even if it is a biomass fuel having a water content of 80% by mass and a particle size of 3 mm, it is considered that the combustion is completed before it falls from the lower burner to the bottom of the boiler furnace.

なお、本発明では水分含有量の多いミリメータオーダーの粒径を有するバイオマス燃料の混焼を対象としているので、水分の含有量は40質量%を超え、3mm以下の粒子の積算粒度分布が80%以上のものを対象とすることとした。   Since the present invention is intended for co-firing of biomass fuel having a particle size of millimeter order with a large water content, the water content exceeds 40 mass% and the cumulative particle size distribution of particles of 3 mm or less is 80% or more. It was decided to target.

本発明は、発明者らの上記知見に基づいてなされたものであり、
高さ方向に多段のバーナが設けられた微粉炭焚きボイラ火炉に、前記多段のバーナから微粉炭とバイオマス燃料を空気と共に供給して混焼させるに際し、
粒子径が3mm以下であって、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料については、最下段のバーナから鉛直方向で5m以上高い位置に配置されるバーナから供給することを特徴とする微粉炭とバイオマス燃料の混焼方法である。
The present invention has been made based on the above findings of the inventors,
When supplying pulverized coal and biomass fuel together with air from the multistage burner to the pulverized coal fired boiler furnace provided with multistage burners in the height direction,
For large-sized biomass fuel with a particle size of 3 mm or less, containing water of more than 40% by mass and within 80% by mass, and an integrated particle size distribution of 80% or more, the vertical direction from the bottom burner It is a co-firing method of pulverized coal and biomass fuel, characterized in that it is supplied from a burner arranged at a position 5 m or higher.

そして、上記の本発明方法は、
図4に示すように、高さ方向に設けられた、例えば3段のバーナ23〜25から微粉炭とバイオマス燃料を空気と共に供給して混焼させる微粉炭焚きボイラ火炉21に、
粒子径が3mm以下であって、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料については、下段バーナ25から鉛直方向で5m以上高い位置に配置される上段バーナ23へ供給する系統26を設けた本発明のバイオマス燃料混焼用の微粉炭焚きボイラ火炉を用いて実施することができる。
And the above-mentioned method of the present invention comprises:
As shown in FIG. 4, in a pulverized coal fired boiler furnace 21 that is provided in the height direction, for example, pulverized coal and biomass fuel are supplied together with air from three stages of burners 23 to 25 and co-fired,
For large-sized biomass fuel having a particle size of 3 mm or less, containing water of more than 40% by mass and not more than 80% by mass, and an accumulated particle size distribution of 80% or more, 5 m in the vertical direction from the lower burner 25 It can implement using the pulverized-coal-fired boiler furnace for biomass fuel co-firing of this invention provided with the system | strain 26 supplied to the upper stage burner 23 arrange | positioned above at the high position.

1 アルミチューブ
2 燃料フィーダ
3 燃料ノズル
4 メッシュ材
5 配管
6a〜6c ガスボンベ
7 ヒータ
8 電気炉
9 熱電対
10 温度コントローラ
11 水冷プローブ
12 フィルター
13 吸引ファン
14 吸引管
15 ガス分析装置
16 PC
21 微粉炭焚きボイラ火炉
23 上段バーナ
24 中段バーナ
25 下段バーナ
26 バイオマス燃料と空気の供給系統
DESCRIPTION OF SYMBOLS 1 Aluminum tube 2 Fuel feeder 3 Fuel nozzle 4 Mesh material 5 Piping 6a-6c Gas cylinder 7 Heater 8 Electric furnace 9 Thermocouple 10 Temperature controller 11 Water cooling probe 12 Filter 13 Suction fan 14 Suction pipe 15 Gas analyzer 16 PC
21 Pulverized coal fired boiler furnace 23 Upper burner 24 Middle burner 25 Lower burner 26 Biomass fuel and air supply system

Claims (2)

高さ方向に多段のバーナが設けられた微粉炭焚きボイラ火炉に、前記多段のバーナから微粉炭とバイオマス燃料を空気と共に供給して混焼させるに際し、
粒子径が3mm以下であって、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料については、最下段のバーナから鉛直方向で5m以上高い位置に配置されるバーナから供給することを特徴とする微粉炭とバイオマス燃料の混焼方法。
When supplying pulverized coal and biomass fuel together with air from the multistage burner to the pulverized coal fired boiler furnace provided with multistage burners in the height direction,
For large-sized biomass fuel with a particle size of 3 mm or less, containing water of more than 40% by mass and within 80% by mass, and an integrated particle size distribution of 80% or more, the vertical direction from the bottom burner A co-firing method of pulverized coal and biomass fuel, characterized in that it is supplied from a burner arranged at a position 5 m or higher.
高さ方向に設けられた多段のバーナから微粉炭とバイオマス燃料を空気と共に供給して混焼させる微粉炭焚きボイラ火炉に、
粒子径が3mm以下であって、かつ、40質量%を超え、80質量%以内の水分を含み、積算粒度分布が80%以上の大粒子のバイオマス燃料については、最下段のバーナから鉛直方向で5m以上高い位置に配置されるバーナへ供給する系統を設けたことを特徴とするバイオマス燃料混焼用の微粉炭焚きボイラ火炉。
In a pulverized coal fired boiler furnace that supplies pulverized coal and biomass fuel together with air from a multistage burner provided in the height direction,
For large-sized biomass fuel with a particle size of 3 mm or less, containing water of more than 40% by mass and within 80% by mass, and an integrated particle size distribution of 80% or more, the vertical direction from the bottom burner A pulverized coal fired boiler furnace for biomass fuel co-firing, which is provided with a system for supplying to a burner placed at a position 5 m or higher.
JP2012034054A 2012-02-20 2012-02-20 Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace Active JP5848983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034054A JP5848983B2 (en) 2012-02-20 2012-02-20 Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034054A JP5848983B2 (en) 2012-02-20 2012-02-20 Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace

Publications (2)

Publication Number Publication Date
JP2013170733A JP2013170733A (en) 2013-09-02
JP5848983B2 true JP5848983B2 (en) 2016-01-27

Family

ID=49264796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034054A Active JP5848983B2 (en) 2012-02-20 2012-02-20 Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace

Country Status (1)

Country Link
JP (1) JP5848983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800107A (en) * 2018-07-31 2018-11-13 梧州学院 A kind of biomass particle burning machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791701B2 (en) * 2004-03-31 2011-10-12 バブコック日立株式会社 Biomass fuel combustion apparatus and method
JP2007101135A (en) * 2005-10-07 2007-04-19 Ube Ind Ltd Mixed combustion method of pulverized coal and biomass
US8015932B2 (en) * 2007-09-24 2011-09-13 General Electric Company Method and apparatus for operating a fuel flexible furnace to reduce pollutants in emissions

Also Published As

Publication number Publication date
JP2013170733A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
Wang et al. Oxy-fuel combustion characteristics of pulverized-coal in a drop tube furnace
Steer et al. Biomass co-firing trials on a down-fired utility boiler
JP6592304B2 (en) Biomass utilization method and apparatus
JP5385849B2 (en) Crusher ignition prevention method and ignition prevention device
Moroń et al. Ignition behaviour and flame stability of different ranks coals in oxy fuel atmosphere
RU86277U1 (en) Vortex furnace
JP5848983B2 (en) Co-firing method of pulverized coal and biomass fuel and pulverized coal fired boiler furnace
CN201322439Y (en) Pulverized-coal burnt horizontal-type hot fume generating furnace
RU2294483C1 (en) Method and device for burning solid fuel
CN102927582A (en) Bin storage type hot air powder-feeding tertiary-air-free combustion system
US20170347836A1 (en) Solid-fuel combustion device having a fuel reservoir
CN203848665U (en) Biomass smelting furnace
Tao et al. Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed
Fang et al. Flexibility of a 300 MW arch firing boiler burning low quality coals
JP6937061B2 (en) Burner device and combustion device
Chi et al. Achievement of high CO2 concentration in the flue gas at slightly positive pressure during oxy-coal combustion in a 300 kWth furnace
JP6870426B2 (en) How to operate the blast furnace
JP2004347271A (en) Combustion device and method
JP5385851B2 (en) Crusher ignition prevention method and ignition prevention device
CN204329310U (en) Be applicable to the atmospheric heating hot-water boiler of biomass burning particle
CN106352315B (en) Method for operating boiler and boiler plant
CN206320783U (en) A kind of new furnace arch structure of biomass chain-grate boiler
CN201331057Y (en) Vertical hot flue gas producer burning coal dust
RU69613U1 (en) FIRE OF A BOILING LAYER WITH A FIRE MASS
CN102809148B (en) Re-combustion hot gas generating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5848983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250