JPH03244915A - Combustion of gas containing nox - Google Patents

Combustion of gas containing nox

Info

Publication number
JPH03244915A
JPH03244915A JP2038482A JP3848290A JPH03244915A JP H03244915 A JPH03244915 A JP H03244915A JP 2038482 A JP2038482 A JP 2038482A JP 3848290 A JP3848290 A JP 3848290A JP H03244915 A JPH03244915 A JP H03244915A
Authority
JP
Japan
Prior art keywords
combustion
fuel
gas
nox
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2038482A
Other languages
Japanese (ja)
Other versions
JP2634279B2 (en
Inventor
Kimiyo Tokuda
君代 徳田
Masaharu Oguri
正治 大栗
Akiyasu Okamoto
章泰 岡元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2038482A priority Critical patent/JP2634279B2/en
Publication of JPH03244915A publication Critical patent/JPH03244915A/en
Application granted granted Critical
Publication of JP2634279B2 publication Critical patent/JP2634279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To facilitate to get a low NOx and a combustion of a low not-yet burned component by a method wherein fuel is blown into gas containing NOx to ignite the fuel, the generated incomplete combustion gas is contacted with a catalyst of Ni system and thereafter the fuel and air are added to perform a complete combustion. CONSTITUTION:Nox contained in the exhaust gas discharged from a Diesel engine or a gas turbine or the like is reduced within a reducing atmosphere. In compensation for it, intermediate products such as NH3 and HCN or the like is produced. Reducing combustion gas 114 having the intermediate product such as NH3, HCN or the like generated in this way is fed to a catalyst chamber 117. Catalyst 118 is a metal of Ni system such as a stainless steel. Reducing combustion gas 114 passes in the catalyst 118, and when the combustion gas contacts the catalyst, NH3 and HCN contained in it are decomposed and cut down. A temperature within a catalyst chamber 117 is kept at 900 to 1150 deg.C. Decomposed combustion gas 123 fed while containing the not-yet burned fuel is blown into a hot combustion gas generated under a combustion of the fuel 124 for a boiler, oxygen in an additional air 111 is consumed and its combustion is completed together with the fuel 124 for the boiler.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、ディーゼルエンジンやガスタービンの排ガス
のように高濃度の窒素酸化物(以下NOxと称する)を
含有するガスを大気放出するにあたり、ガスが保存する
熱量の回収と含有未燃分の焼却を目的として、ガスをボ
イラその他の燃焼器へ送り込み燃焼に供する方法、特に
事前に含をNOxを除去する方法に関するもので、ディ
ーゼル複合発電システム、事業用ボイラ、産業用ボイラ
、各種工業炉、化学工業炉等に適用できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for discharging gas containing a high concentration of nitrogen oxides (hereinafter referred to as NOx) into the atmosphere, such as exhaust gas from a diesel engine or gas turbine. This method relates to a method of feeding gas into a boiler or other combustor for combustion, in particular a method of removing NOx in advance, for the purpose of recovering the heat stored in the gas and incinerating the unburned content. It can be applied to commercial boilers, industrial boilers, various industrial furnaces, chemical industrial furnaces, etc.

〔従来の技術〕[Conventional technology]

本発明の前提となる従来のNOx含有ガス燃焼設備の一
例を第7図に示す。第7図において、(01)は還元炉
本体、(02)は還元室、(03)はボイラ本体、(0
4)はボイラ火炉、 (05)は水管、(06)はバー
ナ風箱、(07)はアディショナルエア風箱、(08)
はアディショナルエア噴孔、(09)は燃料噴射器、(
10)はディーゼルエンジン、ガスタービン等のわ1ガ
ス、(11)はアディショナルエア、(12)は液体ま
たはガス体の燃料、(I3)は燃料スプレィジェット、
(14)は還元燃焼ガス、(15)はボイラ排ガス、(
16)は耐火断熱材をそれぞれ示す。
An example of conventional NOx-containing gas combustion equipment, which is the premise of the present invention, is shown in FIG. In Figure 7, (01) is the reduction furnace main body, (02) is the reduction chamber, (03) is the boiler main body, (0
4) is the boiler furnace, (05) is the water pipe, (06) is the burner wind box, (07) is the additional air wind box, (08)
is the additional air nozzle hole, (09) is the fuel injector, (
10) is gas for diesel engines, gas turbines, etc., (11) is additional air, (12) is liquid or gaseous fuel, (I3) is fuel spray jet,
(14) is reduced combustion gas, (15) is boiler exhaust gas, (
16) respectively indicate fireproof insulation materials.

このような装置において、図示されていないディーゼル
エンジン、ガスタービン等から送り込まれて来た排ガス
(lO)は、還元炉本体(01)の入口部に設けられた
バーナ風箱(06)を通して還元室(02)内へ吹込ま
れる。ディーゼルエンジンやガスタービン等の排ガス(
10)中には、通常10%以上の酸素と11000pp
近くのNOxが含有されている。
In such a device, exhaust gas (lO) sent from a diesel engine, gas turbine, etc. (not shown) is sent to the reduction chamber through a burner wind box (06) provided at the inlet of the reduction furnace main body (01). (02) Blown into the interior. Exhaust gas from diesel engines, gas turbines, etc.
10) Inside is usually 10% or more oxygen and 11000pp
Contains nearby NOx.

バーナ風箱(06)には、その中央部に燃料噴射器(0
9)が設けられ、図示されてない燃料供給設備から送り
込まれて来た燃料(12)を還元室(02)内へ噴射す
る。還元室(02)は、室内温度を高く維持するために
、耐火断熱材(16)によって内張すされている。還元
室(02)へ噴射された燃料(12)は、燃料スプレイ
ジェント(13)を形成し、別途設けられた図示されて
ない着火源によって着火し、燃焼する。
The burner wind box (06) has a fuel injector (0
9) is provided to inject fuel (12) sent from a fuel supply facility (not shown) into the reduction chamber (02). The reduction chamber (02) is lined with a refractory heat insulating material (16) in order to maintain a high indoor temperature. The fuel (12) injected into the reduction chamber (02) forms a fuel spray agent (13), which is ignited and combusted by a separately provided ignition source (not shown).

還元室(02)内においては、燃料(12)が排ガス(
10)中に含まれる酸素によって燃焼するが、これは噴
射された燃料(12)の燃焼に必要な理論酸素量以下の
酸素による還元燃焼である。したがって、還元室(02
)内で発生する還元燃焼ガス(14)中には、燃焼が完
結してない未f!!!、燃料を含む。そしてまた、還元
室(02)内は空気比1.0未満の還元雰囲気であるか
ら、排ガス(10)中のNOxと、燃料(12)の燃焼
によって発生したNOxが、ともに分解されて減少し、
代ってアンモニア(NIL)、シアン(HCN)等の中
間生成物が発生する。
In the reduction chamber (02), the fuel (12) is mixed with the exhaust gas (
10) Burns with the oxygen contained in the injected fuel (12), but this is reductive combustion with less than the theoretical amount of oxygen required for combustion of the injected fuel (12). Therefore, the reduction chamber (02
) The reduced combustion gas (14) generated in ) contains unfinished gas that has not completed combustion! ! ! , including fuel. Furthermore, since the inside of the reduction chamber (02) is a reducing atmosphere with an air ratio of less than 1.0, both the NOx in the exhaust gas (10) and the NOx generated by combustion of the fuel (12) are decomposed and reduced. ,
Instead, intermediate products such as ammonia (NIL) and cyanide (HCN) are generated.

次に上記還元燃焼ガス(14)は、還元室(02)から
ボイラ本体(03)の水管(05)で囲まれたボイラ火
炉(04)内へ吹込まれる。そして、ボイラ火炉(04
)内入口部に設けられた複数個のアディショナルエア噴
孔(08)から吹込まれるアディショナルエア(11)
によって、燃焼を継続し、遂には完了する。このボイラ
火炉(04)内における燃焼により、還元燃焼ガス(1
4)に含有されて送り込まれたNH3,HCN等の何割
かは、再度NOxへ転換され、ボイラ火炉(04)出口
から図示されてない煙道および煙突を通して大気に放出
される。すなわち、還元P、焼ガス(14)は高温(約
1500’C)のままでボイラ火炉(04)へ送り込ま
れ、アディショナルエア(11)によって燃焼を完結す
るが、高温かつ酸化雰囲気であるため、NHz、 )I
CN等中間生成物のNOxへの再転換が活発になるので
ある。
Next, the reduced combustion gas (14) is blown from the reduction chamber (02) into the boiler furnace (04) surrounded by the water pipes (05) of the boiler body (03). And boiler furnace (04
) Additional air (11) blown from a plurality of additional air nozzles (08) provided at the inner inlet
As a result, combustion continues until it is finally completed. By the combustion in this boiler furnace (04), the reduced combustion gas (1
4) Some of the NH3, HCN, etc. contained in the boiler and sent in are converted into NOx again and released into the atmosphere from the outlet of the boiler furnace (04) through a flue and a chimney (not shown). That is, the reduced P and sintering gas (14) are sent to the boiler furnace (04) while still at high temperature (approximately 1500'C), and combustion is completed by additional air (11), but since the temperature is high and the atmosphere is oxidizing, NHz, )I
Reconversion of intermediate products such as CN to NOx becomes active.

上記のような過程をたどる従来のものの燃焼において、
排ガス(10)が持込むNOxと燃料(12)の燃焼に
より発生するNOxとを効果的に低減するためには、ま
ず還元室(02)内の温度を1500℃以上の高温に維
持することが必要である。これは、ボイラ火炉出口NO
x ilと還元室(02)内温度の関係について実験し
た結果の一例を示す第8図から明らかである。また、N
H,、HCN等の中間生成物がNOxへ再転換するのを
高温かつ酸化性の雰囲気において抑制するためには、還
元燃焼ガス(14)に対するアディショナルエア(11
)の拡散混合を緩やかに行なう必要がある。
In conventional combustion, which follows the process described above,
In order to effectively reduce the NOx brought in by the exhaust gas (10) and the NOx generated by combustion of the fuel (12), it is first necessary to maintain the temperature inside the reduction chamber (02) at a high temperature of 1500°C or higher. is necessary. This is the boiler furnace outlet NO.
This is clear from FIG. 8, which shows an example of the results of an experiment regarding the relationship between x il and the temperature inside the reduction chamber (02). Also, N
In order to suppress reconversion of intermediate products such as H, HCN, etc. to NOx in a high temperature and oxidizing atmosphere, it is necessary to use additional air (11) for the reducing combustion gas (14).
) must be diffused and mixed slowly.

このため従来の還元室(02)内は、高温の還元雰囲気
にさらされるので、還元室(02)の耐火断熱材(16
)の寿命が短い、また従来は、ボイラ火炉(04)内で
の還元燃焼ガス(14)とアディショナルエア(11)
の拡散混合を、NOx抑制のため緩慢に行なわせるので
、ボイラ火炉(04)内における燃焼性が良くないこと
があった。
For this reason, the inside of the conventional reduction chamber (02) is exposed to a high-temperature reducing atmosphere, so the fireproof insulation material (16) of the reduction chamber (02)
) has a short lifespan, and conventionally, reduced combustion gas (14) and additional air (11) in the boiler furnace (04)
Since the diffusion mixing of the boiler is carried out slowly in order to suppress NOx, the combustibility in the boiler furnace (04) may not be good.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ディーゼルエンジンやガスタービン等の高温でNOx含
有率が高い排ガス(lO)が含有する酸素と保有熱量を
ボイラで有効利用したあと大気放出するためには、ボイ
ラ排ガス(15)中のNOx値を環境規制値以下まで低
下させる必要がある。そのためにはもとの排ガス(10
)の含有NOxを除去することが肝要で、従来はボイラ
火炉(04)の上流の還元室(02)でNOx還元を行
なっていたが、還元反応温度を約1500℃以上の高温
に保持する必要があったので、還元室(02)の耐火断
熱材(16)の寿命が短かった。その上、還元燃焼ガス
(14)を高温のままボイラ火炉(04)へ送り込み、
アディショナルエア(11)を投入して燃焼を完結させ
ていたので、ボイラ排ガス(15)中のNOxを抑制す
るには還元燃焼ガス(14)とアディショナルエア(1
1)の拡散混合を緩慢に行なう必要があり、その結果、
燃焼不良の思れがあった。
In order to effectively use the oxygen and retained heat contained in the high-temperature, high-NOx-containing exhaust gas (lO) of diesel engines and gas turbines, etc. in the boiler and then release it into the atmosphere, the NOx value in the boiler exhaust gas (15) must be adjusted to the environment. It is necessary to reduce it to below the regulation value. For this purpose, the original exhaust gas (10
) is important. Conventionally, NOx reduction was carried out in the reduction chamber (02) upstream of the boiler furnace (04), but it is necessary to maintain the reduction reaction temperature at a high temperature of approximately 1500°C or higher. As a result, the life of the fireproof insulation material (16) in the reduction chamber (02) was short. In addition, the reduced combustion gas (14) is sent to the boiler furnace (04) at high temperature,
Since combustion was completed by introducing additional air (11), reducing combustion gas (14) and additional air (1) are required to suppress NOx in boiler exhaust gas (15).
1) Diffusion mixing must be performed slowly, and as a result,
I thought it was due to poor combustion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記従来の課題を解決するために、NOxを
含むガスに燃料を吹込んで温度1100℃ないし140
0℃2空気比1未満で燃焼させ、生成した不完全燃焼ガ
スを温度900℃ないし1150℃でNi系触媒に接触
させた後、更に燃料および空気を加えて完全燃焼させる
ことを特徴とするNOx含有ガスの燃焼方法を提案する
ものである。
In order to solve the above-mentioned conventional problems, the present invention injects fuel into gas containing NOx at a temperature of 1100°C to 140°C.
NOx characterized by combustion at a 2-air ratio of less than 1, contacting the generated incompletely combusted gas with a Ni-based catalyst at a temperature of 900°C to 1150°C, and then adding fuel and air for complete combustion. This proposal proposes a method for burning the contained gas.

〔作用〕[Effect]

ディーゼルエンジンやガスタービン等の排ガス中に含ま
れていたNOxは、還元雰囲気内で還元されて減少し、
代ってNHz、 HCN等の中間生成物が発生するが、
本発明ではNi触媒に接触する際に分解され、窒素(N
2)に転換する。その結果、酸化雰囲気へ送り込まれて
来る分解燃焼ガスはNOxやN)lffHCN等を殆ん
ど含有しておらず、酸化雰囲気で完全燃焼する際のNO
x発生は、はぼここで供給される燃料の燃焼によるもの
のみとなる。
NOx contained in exhaust gas from diesel engines, gas turbines, etc. is reduced and reduced in a reducing atmosphere.
Instead, intermediate products such as NHz and HCN are generated, but
In the present invention, nitrogen (N
Convert to 2). As a result, the decomposed combustion gas sent into the oxidizing atmosphere contains almost no NOx, N)lffHCN, etc., and NO during complete combustion in the oxidizing atmosphere.
The x generation is only due to the combustion of the fuel supplied in the habo.

本発明ではまた、触媒を用いることにより、その前の還
元温度を低く設定できる。
Also, in the present invention, by using a catalyst, the reduction temperature before the reduction can be set low.

〔実施例] 第10は本発明の一実施例を示す概略継断面図、第2図
は第1図の■−■横断面図である。これらの回において
、(101)は還元炉本体、(102)は還元室、(1
03)はボイラ本体、(104)はボイラ火炉、(10
5)は水管、(106)はバーナ風箱、(107)はア
ディショナルエア風箱、(108)はアディショナルエ
ア噴孔、(109)は燃料噴射器、(110)はディー
ゼルエンジン、ガスタービン等の排ガス、(1,11)
はアディンヨナルエア、(112)は液体またはガス体
の燃料、(113)は燃料スプレィジェット、(114
)は還元燃焼ガス、(115)はボイラ排ガス、(11
6)は還元室の耐火断熱材、(117)は触媒室、(1
18)は二、ケル(N])系の触媒、(119)は触媒
室の耐火断熱材、(120)は触媒室出口煙道、(12
1)はボイラ風箱、(122)はボイラ用燃料噴射器、
(123)は分解燃焼ガス、(124)はボイラ用燃料
をそれぞれ示す。
[Example] No. 10 is a schematic cross-sectional view showing an example of the present invention, and FIG. 2 is a cross-sectional view taken along the line -■ in FIG. 1. In these times, (101) is the reduction furnace main body, (102) is the reduction chamber, and (1
03) is the boiler body, (104) is the boiler furnace, (10
5) is a water pipe, (106) is a burner wind box, (107) is an additional air wind box, (108) is an additional air nozzle, (109) is a fuel injector, (110) is a diesel engine, gas turbine, etc. Exhaust gas, (1,11)
is additional air, (112) is liquid or gaseous fuel, (113) is fuel spray jet, (114) is
) is reduced combustion gas, (115) is boiler exhaust gas, (11
6) is the fireproof insulation material of the reduction chamber, (117) is the catalyst chamber, (1
18) is a Kel (N]) based catalyst, (119) is a fireproof insulation material for the catalyst chamber, (120) is a catalyst chamber outlet flue, (12)
1) is the boiler wind box, (122) is the boiler fuel injector,
(123) indicates decomposed combustion gas, and (124) indicates boiler fuel.

さて、図示されてないディーゼルエンジン、ガスタービ
ン等から還元室(102)へ送り込まれて来る排ガス(
110)は、通常10%以上の酸素と101000pp
実ガスヘース)近くのNOxを含有している。
Now, the exhaust gas (
110) is usually 10% or more oxygen and 101000pp
Contains NOx near the actual gas heath).

方、図示されてない燃料供給設備から送られて来る液体
またはガス体の燃料(112)が、この還元室(102
)内に吹込まれ、上記排ガス(110)中の酸素を消費
して燃焼する。
On the other hand, liquid or gaseous fuel (112) sent from a fuel supply facility (not shown) enters this reduction chamber (102).
) and burns by consuming the oxygen in the exhaust gas (110).

燃料(112)を還元室(102)内へ供給する量は、
その必要理論酸素量が排ガス(110)中の酸素量より
も過大となるようにする。その結果、還元室(+02)
内は還元雰囲気となり、排ガス(110)中のNOxは
還元されて消滅または戚少し、代ってMl(:1. t
(CM等の中間生成物が発生する。この場合、還元室(
102)内における滞留時間を十分にとることによりN
Oxはほとんど消滅する。
The amount of fuel (112) supplied into the reduction chamber (102) is
The required theoretical amount of oxygen is made to be larger than the amount of oxygen in the exhaust gas (110). As a result, the reduction room (+02)
The interior becomes a reducing atmosphere, and the NOx in the exhaust gas (110) is reduced and disappears or is replaced by Ml (:1.t
(Intermediate products such as CM are generated. In this case, the reduction chamber (
102) by taking sufficient residence time in
Ox almost disappears.

こうして生成されたNi+3.8CN等の中間生成物を
含有する還元燃焼ガス(114)は、触媒室(117)
へ送り込まれる。触媒室(117)は、第2図に示され
るような断面形状の触媒(118)を内蔵しており、そ
の外周は耐火断熱材(119)で囲われている。触媒(
118)はステンレス鋼等のNi系金属である。触媒室
(117)へ送り込まれて来た還元燃焼p゛ス(114
)は、触媒(118)の間をli1遇してこれと接触す
る際に、含有しているNH,およびHCNが分解され消
滅する。
The reduced combustion gas (114) containing intermediate products such as Ni+3.8CN generated in this way is transferred to the catalyst chamber (117).
sent to. The catalyst chamber (117) contains a catalyst (118) having a cross-sectional shape as shown in FIG. 2, and its outer periphery is surrounded by a fireproof heat insulating material (119). catalyst(
118) is a Ni-based metal such as stainless steel. Reductive combustion gas (114) sent to the catalyst chamber (117)
) passes through the catalyst (118) and comes into contact with it, the NH and HCN contained therein are decomposed and disappear.

NHlおよびH(AJの分解率を高めるためには、触媒
室(117)内の温度を900〜1150℃に保持する
ことと、触媒(118)における還元燃焼ガス(114
)の滞留時間を長くし、触媒(11B)表面積を大きく
することが必要である。
In order to increase the decomposition rate of NHL and H (AJ), the temperature in the catalyst chamber (117) must be maintained at 900 to 1150°C, and the reduced combustion gas (114
) It is necessary to increase the residence time of the catalyst (11B) and increase the surface area of the catalyst (11B).

含をしているNH,およびHCNを触媒室(117)で
分解消滅した還元燃焼ガス(114)は、分解燃焼ガス
<123)として、触媒室出口煙道(120)からボイ
ラ風箱(121)へ送り込まれ、ボイラ火炉(104)
内へ吹込まれる。
The reduced combustion gas (114) in which the containing NH and HCN have been decomposed and disappeared in the catalyst chamber (117) is transferred from the catalyst chamber outlet flue (120) to the boiler wind box (121) as decomposed combustion gas <123). Boiler furnace (104)
It is blown inside.

ボイラ本体(103)には、ボイラ風箱(121)と同
心上にアディショナルエア風箱(107)と、ボイラ用
燃料噴射器(122)が設けられている。図示されてい
ないボイラ用燃料供給設備から送られて来たボイラ用燃
料(124)は、ボイラ用燃料噴射器(X22)によっ
てボイラ火炉(104)内へ噴射され、図示されてない
着火源によって着火する。そして、図示されてない21
1風設備から送られて来るアディショナルエア(111
)によって燃焼する。
The boiler main body (103) is provided with an additional air wind box (107) and a boiler fuel injector (122) concentrically with the boiler wind box (121). Boiler fuel (124) sent from a boiler fuel supply facility (not shown) is injected into the boiler furnace (104) by a boiler fuel injector (X22), and by an ignition source (not shown). ignite. And 21 not shown
Additional air sent from the 1-wind equipment (111
) to burn.

未燃燃料を含有したまま送られて来た分解燃焼ガス(1
23)は、ボイラ用燃料(124)の燃焼によって生し
る高温燃焼ガス中へ吹込まれ、アディショナルエア(1
11)中の酸素を消費して、ボイラ用燃料(124)と
ともに燃焼を完結する。そのために、アディンヨナルエ
ア(111)の供給量は、上記ボイラ用燃料(124)
と分解燃焼ガス(123)中の未燃燃料の、燃焼に必要
な理論酸素量よりも、過剰な酸素が供給できる空気量と
する。
Decomposed combustion gas (1
23) is blown into the high temperature combustion gas produced by the combustion of the boiler fuel (124), and the additional air (1
11) The oxygen inside is consumed and combustion is completed together with the boiler fuel (124). Therefore, the amount of additional air (111) supplied is equal to the amount of boiler fuel (124).
and the amount of air that can supply excess oxygen than the theoretical amount of oxygen required for combustion of the unburned fuel in the decomposed combustion gas (123).

ボイラ火炉(104)内へ吹込まれる分解燃焼ガス(1
23)は、NH3および)ICNを全く含有してないか
、または含有していても極く少量であるから、ボイラ火
炉(104)内における酸化燃焼でNOx発生の原因と
なるのは、ボイラ用燃料(124)だけである、したが
って、ボイラ火炉(104)内でNOxが発生するのを
抑制しながら安定した良好な燃焼状態を確保するのは容
易である。
Decomposed combustion gas (1) blown into the boiler furnace (104)
23) does not contain NH3 and) ICN at all, or even if it does contain it, it is only in a very small amount. Therefore, it is easy to ensure stable and good combustion conditions while suppressing the generation of NOx in the boiler furnace (104).

第3図、第4図および第5図は、本発明の発明者らが実
施した実験の結果であって、5第3図はNOxの減少率
と反応温度との関係、第4図は生成したNH3,HCH
の濃度と反応温度との関係、第5図はNH’5HCHの
減少率と反応温度との関係をそれぞれ示す。
Figures 3, 4, and 5 show the results of experiments conducted by the inventors of the present invention. Figure 3 shows the relationship between the NOx reduction rate and reaction temperature, and Figure 4 shows the relationship between the NOx reduction rate and the reaction temperature. NH3, HCH
Figure 5 shows the relationship between the concentration of NH'5HCH and the reaction temperature, and Figure 5 shows the relationship between the reduction rate of NH'5HCH and the reaction temperature.

これらの図から次のことが言える。The following can be said from these figures.

■ NOxの減少率は、反応温度が上昇するにつれて高
くなる傾向にあるが、約1200℃以上ではほぼ一定に
なる。(第3図) ■ NH3の生成量は、反応温度1300℃〜1500
’Cにおいて、反応温度の上昇とともに漸増する傾向に
あるが、1500’Cをピークとしてそれを越えると激
減する。また1(CNの生成量は反応温度1300℃〜
1500℃においては、反応温度が高くなると減少し、
1500℃を越えるとNil、同様激減する。
(2) The reduction rate of NOx tends to increase as the reaction temperature rises, but becomes almost constant above about 1200°C. (Figure 3) ■ The amount of NH3 produced depends on the reaction temperature of 1300°C to 1500°C.
At 'C, it tends to increase gradually as the reaction temperature rises, but it peaks at 1500'C and decreases sharply beyond that. In addition, 1 (the amount of CN produced is from a reaction temperature of 1300°C)
At 1500°C, it decreases as the reaction temperature increases,
When the temperature exceeds 1500°C, Nil also decreases drastically.

(第4図) ■ N)13とIIcHの減少率は、反応温度が上昇す
るに従って高くなる傾向にあるが、900℃付近からそ
の傾向が若干鈍化気味となる。
(Fig. 4) ■ The rate of decrease of N)13 and IIcH tends to increase as the reaction temperature rises, but this tendency starts to slow down slightly from around 900°C.

前記第7図により説明した従来のものにおいて、ボイラ
火炉(04)出口のNOx量を低く抑制するために、還
元室(02)内の温度を1500℃以上としていたのは
、NOxの還元率が高いことと、NH3とHCNの生成
量を低くできるからである。
In the conventional system explained with reference to FIG. 7, the temperature inside the reduction chamber (02) was set to 1500°C or higher in order to suppress the amount of NOx at the outlet of the boiler furnace (04) to a low level because the reduction rate of NOx was This is because it is expensive and the amount of NH3 and HCN produced can be reduced.

これらのことから、 (a)  M元室(102>内はNOx還元率と11)
1.と)lcliの生成量を高めることを目的として、
温度を1100℃〜1400℃に、空気比を1.0未満
にする必要がある。
From these, (a) M source chamber (102> is the NOx reduction rate and 11)
1. and) with the aim of increasing the amount of lcli produced.
It is necessary to keep the temperature between 1100°C and 1400°C and the air ratio below 1.0.

(bl  触媒室(117)内は、NH:lとHCNの
分解率を最高に保持することを目的として、温度を90
0℃〜1150℃に、空気比を1.0未満にする必要が
ある。
(bl) The temperature inside the catalyst chamber (117) is kept at 90°C in order to maintain the highest decomposition rate of NH:l and HCN.
It is necessary to make the air ratio less than 1.0 between 0°C and 1150°C.

(C)  触媒(118)はNi系金属とする。(C) The catalyst (118) is a Ni-based metal.

これによりNOxを低減することができ、また還元室(
102)内の温度が低く設定されるので設備の耐久性が
高まることになる。
This makes it possible to reduce NOx and also reduces the reduction chamber (
Since the temperature inside 102) is set low, the durability of the equipment increases.

第6図は本発明の第2の実施例を示す図である。FIG. 6 is a diagram showing a second embodiment of the present invention.

前記第1の実施例(第1図)は、還元室(102)内に
排ガス(110)と燃料(112)とを別々に吹き込ん
で燃焼させる拡散燃焼方式の実施例であったが、本実施
例は予混合燃焼方式の実施例を示している。
The first embodiment (Fig. 1) was an embodiment of a diffusion combustion method in which exhaust gas (110) and fuel (112) were separately blown into the reduction chamber (102) and burned. The example shows an embodiment of the premix combustion method.

すなわち、図示省略のディーゼルエイシン、ガスタービ
ン等から送られて来た排ガス(110)は、バーナ風箱
(106)内で、液体またはガス体の燃料(112)と
混合され、予混合気(213)となって還元室(102
)内へ吹き込まれるようになっている。他の構造および
作用・効果は前記第1の実施例と同しであり、説明は省
略する。
That is, exhaust gas (110) sent from a diesel engine, gas turbine, etc. (not shown) is mixed with liquid or gaseous fuel (112) in a burner wind box (106), and a premixture (213) is generated. ) and the reduction room (102
) so that it is blown into the body. The other structures, functions, and effects are the same as those of the first embodiment, and their explanations will be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、NOxを含む排ガスが保有する高熱量
の回収のみならず、NOx低減ができ、酸化雰囲気中で
完全燃焼させる際の低NOx・低未燃分燃焼が容易とな
った。また、還元雰囲気的温度のの設定が従来に比べ低
いため、耐火断熱材の耐久性が高まった。
According to the present invention, it is possible to not only recover the high calorific value possessed by the exhaust gas containing NOx, but also to reduce NOx, and it has become easy to achieve low NOx and low unburned matter combustion during complete combustion in an oxidizing atmosphere. Additionally, since the reducing atmosphere temperature is set lower than before, the durability of the fireproof insulation material has increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係るNOx含有ガス燃焼
設備を示す概略縦断面図、第2図は第1図の■−■横断
面図である。第3図はNOxの減少率と反応温度との関
係を示す図、第4図は生成したNH3,)IcN1度と
反応温度との関係を示す図、第5図はNHs、 HCN
の減少率と反応温度との関係を示す図である。第6図は
本発明の第2実施例を示す概略縦断面図である。第7図
は従来のNOx含有ガス燃焼設備の一例を示す概略縦断
面図、第8図は上記従来の燃焼設備を使用した場合のボ
イラ火炉出口NOx量と還元室内温度との関係を示す図
である。 (Of)、 (101)・・・還元炉本体、(02) 
、 (102)・・・還元室、(03) 、 (103
)・・・ボイラ本体、(04) 、 (104)・・・
ボイラ火炉、(05) 、 (105)・・・水管、(
06) (106)・・・バーナ風箱、(07) 、 
(107)・・・アディショナルエア風箱、(08) 
、 (108)・・・アディショナルエア噴孔、(09
) 、 (109)・・・燃料噴射器、(10) 、 
(110)・・・ディーゼルエンジン、ガスタービン等
の排ガス、 (11) 、 (111)・・・アディショナルエア、
(12)、(112)・・・液体またはガス体の燃料、
。 (13) 、 (113)・・・燃料スプレィジェット
、(14) 、 (114)・・・還元燃焼ガス、(1
5) 、 (115)・・・ボイラ排ガス、(16) 
、 (116)・・・還元室の耐火断熱材、(117)
・・・触媒室、 (118)・・・ニッケル(Ni)系の触媒、(119
)・・・触媒室の耐火断熱材、(120)・・・触媒室
出口煙道、 (121)・・・ボイラ風箱、 (122)・・・ボイラ用燃料噴射器、(123)・・
・分解燃焼ガス、(124)・・・ボイラ用燃料、(2
13)・・・予混合気。 第2図 第3図 反J心温痕 (”C) 第5図 反 厄・ 度 (’C) 第4図 反応盆度(’C) 第8図 還元室内温度 (0C)
FIG. 1 is a schematic vertical cross-sectional view showing a NOx-containing gas combustion equipment according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line -■ in FIG. Figure 3 is a diagram showing the relationship between NOx reduction rate and reaction temperature, Figure 4 is a diagram showing the relationship between generated NH3,)IcN 1 degree and reaction temperature, and Figure 5 is NHs, HCN
FIG. 3 is a diagram showing the relationship between the rate of decrease in and reaction temperature. FIG. 6 is a schematic vertical sectional view showing a second embodiment of the present invention. Fig. 7 is a schematic vertical cross-sectional view showing an example of conventional NOx-containing gas combustion equipment, and Fig. 8 is a diagram showing the relationship between the NOx amount at the boiler furnace outlet and the reduction chamber temperature when the above-mentioned conventional combustion equipment is used. be. (Of), (101)... Reduction furnace main body, (02)
, (102)... reduction chamber, (03) , (103
)...boiler body, (04), (104)...
Boiler furnace, (05), (105)... water pipe, (
06) (106)... Burner style box, (07) ,
(107)...Additional air wind box, (08)
, (108)...Additional air nozzle hole, (09
), (109)...fuel injector, (10),
(110)...Exhaust gas from diesel engines, gas turbines, etc., (11), (111)...Additional air,
(12), (112)...liquid or gaseous fuel,
. (13), (113)...fuel spray jet, (14), (114)...reduced combustion gas, (1
5) , (115)...Boiler exhaust gas, (16)
, (116)...Fireproof insulation material for the reduction chamber, (117)
...Catalyst chamber, (118) ...Nickel (Ni)-based catalyst, (119)
)...Fireproof insulation material for catalyst chamber, (120)...Catalyst chamber outlet flue, (121)...Boiler wind box, (122)...Fuel injector for boiler, (123)...
・Decomposed combustion gas, (124)...Boiler fuel, (2
13)...Preliminary mixture. Fig. 2 Fig. 3 Anti-J heart temperature trace (''C) Fig. 5 Anti-Yakuza temperature ('C) Fig. 4 Reaction temperature ('C) Fig. 8 Reduction room temperature (0C)

Claims (1)

【特許請求の範囲】[Claims] NOxを含むガスに燃料を吹込んで温度1100℃ない
し1400℃、空気比1未満で燃焼させ、生成した不完
全燃焼ガスを温度900℃ないし1150℃でNi系触
媒に接触させた後、更に燃料および空気を加えて完全燃
焼させることを特徴とするNOx含有ガスの燃焼方法。
Fuel is injected into the gas containing NOx and combusted at a temperature of 1100°C to 1400°C and an air ratio of less than 1, and the resulting incompletely combusted gas is brought into contact with a Ni-based catalyst at a temperature of 900°C to 1150°C. A method of combustion of NOx-containing gas characterized by complete combustion by adding air.
JP2038482A 1990-02-21 1990-02-21 Method for burning NOx-containing gas Expired - Fee Related JP2634279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038482A JP2634279B2 (en) 1990-02-21 1990-02-21 Method for burning NOx-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038482A JP2634279B2 (en) 1990-02-21 1990-02-21 Method for burning NOx-containing gas

Publications (2)

Publication Number Publication Date
JPH03244915A true JPH03244915A (en) 1991-10-31
JP2634279B2 JP2634279B2 (en) 1997-07-23

Family

ID=12526475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038482A Expired - Fee Related JP2634279B2 (en) 1990-02-21 1990-02-21 Method for burning NOx-containing gas

Country Status (1)

Country Link
JP (1) JP2634279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017532A1 (en) * 1995-11-09 1997-05-15 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
JP2008032383A (en) * 2006-06-28 2008-02-14 Mitsuo Kaneko Burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017532A1 (en) * 1995-11-09 1997-05-15 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
AU696257B2 (en) * 1995-11-09 1998-09-03 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
JP2008032383A (en) * 2006-06-28 2008-02-14 Mitsuo Kaneko Burner

Also Published As

Publication number Publication date
JP2634279B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
JPH04227416A (en) Gas-turbine catalyst combustion apparatus with pre-burner reducing quantity of nox generated
JPS59107119A (en) Combustion of gas turbine
CN110848667A (en) Low-calorific-value nitrogen-containing gas combustion system and method
JPH03244915A (en) Combustion of gas containing nox
JPS6138961B2 (en)
JPH0252930A (en) Gas turbine burner
CN114811616A (en) Burner, device and process for thermal oxidation incineration treatment of HCN-containing waste gas
JPS5977208A (en) Combustion method
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPH10213308A (en) Hydrogen/oxygen burner
JPS59191809A (en) Method for reducing production of nox in steam-gas composite cycle and device thereof
JPS6260606B2 (en)
JPH1073254A (en) Low nox combustion device
JPS59108829A (en) Gas turbine combustor
JPS5454340A (en) Self-circulation burner for improved low nox
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion
JPS6234090Y2 (en)
JPH08128603A (en) Low nox gas burner
JPH02230916A (en) Combustor system, exhaust gas furnace, burner, and exhaust gas burning method
JPS5888506A (en) Double combustion type burner
JPS60186622A (en) Catalytic burner
JPH0419449B2 (en)
JPS58102006A (en) Low nox pulverized coal burner
RU2293254C2 (en) Method of removing toxic agents from combustion products of gas fuel
JPS58120004A (en) Two-staged combustion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees