JPS59108829A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPS59108829A
JPS59108829A JP21709682A JP21709682A JPS59108829A JP S59108829 A JPS59108829 A JP S59108829A JP 21709682 A JP21709682 A JP 21709682A JP 21709682 A JP21709682 A JP 21709682A JP S59108829 A JPS59108829 A JP S59108829A
Authority
JP
Japan
Prior art keywords
temperature
fuel
catalyst
combustion
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21709682A
Other languages
Japanese (ja)
Other versions
JPH0472984B2 (en
Inventor
Chikau Yamanaka
矢 山中
Tomiaki Furuya
富明 古屋
Terunobu Hayata
早田 輝信
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21709682A priority Critical patent/JPS59108829A/en
Publication of JPS59108829A publication Critical patent/JPS59108829A/en
Publication of JPH0472984B2 publication Critical patent/JPH0472984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To reduce NOx and improve efficiency of combustion by detecting outflow temperature at a medium outlet to control air fuel ratio according to said temperature while regulating fuel supply downstream of the medium according to the air fuel ratio. CONSTITUTION:Outflow temperature at a medium outlet is detected by a thermometer 9. When said temperature is lower than fire point of thin fuel, an electromagnetic 10 for supplying fuel to a portion downstream of the medium is closed to reduce fuel supply from said portion and increase and air fuel raio in mixture supplied from a portion upstream of the medium. And when the temperature detected by the thermometer 19 exceeds the heat resisting temperature of the medium, said operation is reversely carried out. Thus, nitrogen oxide is reduced to improve the efficiency of combustion.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ガスタービン発電システムに使用するガスタ
ービン燃焼器に関し、更に詳しくは、燃焼時に発生する
窒素酸化物(以下、NOxと称す)の量が少なく、且つ
、良好な燃焼効率を有する触媒燃焼方式のガスタービン
燃焼器に関する。
Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a gas turbine combustor used in a gas turbine power generation system, and more specifically, to a gas turbine combustor used in a gas turbine power generation system, and more specifically, to a gas turbine combustor for reducing nitrogen oxides (hereinafter referred to as NOx) generated during combustion. The present invention relates to a catalytic combustion type gas turbine combustor that has a small amount of combustion and has good combustion efficiency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油費源等の枯濁化に伴ない、棹々の代替エネル
ギーが要求されており、一方では、エネルギー資諒の効
率的使用が要求されている。これらの要求に答えるもの
の中には、例えば、燃料として天然ガスを使用するガス
タービン拳スチームタービン複合すイクル発電システム
或いは石炭ガス化ガスタービン番スチームタービン複合
サイクル発電システム等が挙げられ、検討されつつある
In recent years, with the depletion of petroleum and other sources of energy, there has been a growing demand for alternative energy sources, and on the other hand, there has also been a demand for efficient use of energy resources. Examples of systems that meet these demands include gas turbine steam turbine combined cycle power generation systems that use natural gas as fuel, coal gasification gas turbine steam turbine combined cycle power generation systems, etc., which are currently being studied. be.

コレラのガスタービンΦスチームタービン複合すイクル
発′畦システムは、化石燃料を使用した従来のスチーム
タービンによる発電システムに比較して、発電効率が高
いために、将来、その生産量の増加が予想される天然ガ
スや石炭ガス化ガス等の燃料を、有効に電力に変換でき
る発電システムとして期待されている。
Because Cholera's gas turbine Φ steam turbine complex cycle generation system has higher power generation efficiency than conventional steam turbine power generation systems that use fossil fuels, its production volume is expected to increase in the future. It is expected to be a power generation system that can effectively convert fuels such as natural gas and coal gasified gas into electricity.

ガスタービン発電システムにおいて使用されているガス
タービン燃焼器は、従来よハ燃料と空気の混合物を、ス
パークプラグ#を用いて着火して均−系の燃焼を行なっ
ている。このような燃焼器の一例を第1図に示す。第1
図の燃焼器は、燃料ノズル1から噴射された燃料が、燃
焼用空気3と混合され、スパークプラグ2により着火さ
れて燃焼するものである。そして、燃焼した気体は、冷
却空気4及び希釈空気5を加えられて、所定のタービン
入口温度まで冷却・希釈された後、タービンノズル6か
らガスタービン内に噴射される。
Conventionally, a gas turbine combustor used in a gas turbine power generation system performs homogeneous combustion by igniting a mixture of fuel and air using a spark plug. An example of such a combustor is shown in FIG. 1st
In the illustrated combustor, fuel injected from a fuel nozzle 1 is mixed with combustion air 3, ignited by a spark plug 2, and combusted. Then, the combusted gas is cooled and diluted to a predetermined turbine inlet temperature by adding cooling air 4 and dilution air 5, and then injected into the gas turbine from a turbine nozzle 6.

このような従来の燃焼器における重大な問題点の一つは
、燃料の燃焼時において、 NOxガスの生成量が多い
ことである。
One of the serious problems with such conventional combustors is that a large amount of NOx gas is produced when the fuel is combusted.

上記したNOxが生成する理由は、燃料の燃焼時におい
て、筒温部が存在することによるものである。NOxは
、通常、燃料中に屋素成分が存在していない場合には、
燃焼用空気中の窒素が以下に示す式tCより反応して生
成する。
The reason why the above-mentioned NOx is generated is due to the existence of a cylinder hot section during combustion of fuel. Normally, when no nitrogen components are present in the fuel, NOx is
Nitrogen in the combustion air reacts and is generated according to the formula tC shown below.

N2 + 02 : 2NO 上記反応は、高温になる程、右側に移行して一酸化屋素
(NO)の生成量が増加する。Noの一部は更に酸化さ
れて二酸化窒素(NO2)を生成する。
N2 + 02: 2NO The above reaction shifts to the right side as the temperature increases, and the amount of nitrogen monoxide (NO) produced increases. A portion of the No is further oxidized to produce nitrogen dioxide (NO2).

第2図は、従来のガスタービン燃焼器における流体の流
れ方向の温度分布を示すものである。図に示した如く、
燃焼器内の温度分布は極大値を持っており、最高温度に
達した後は、冷却及び希釈辛気により所定のタービン入
口温度まで冷却され′ている。燃焼器内の最高温度は、
2000’Oにも達する場合があるために、この近辺(
第2図の斜線で示す部分)においてはNOxの生成量が
急減に増加する。このように、従来のガスタービン燃焼
器には、部分的に高温部が存在するために、NOxの生
成量が多いという問題点がある。従って、排煙脱硝装置
等を設けねばならず、装置が複雑になる等の問題点をも
有している。
FIG. 2 shows the temperature distribution in the fluid flow direction in a conventional gas turbine combustor. As shown in the figure,
The temperature distribution within the combustor has a maximum value, and after reaching the maximum temperature, it is cooled down to a predetermined turbine inlet temperature by cooling and dilution. The maximum temperature inside the combustor is
Because the temperature can reach as high as 2000'O, the area around here (
In the shaded area in FIG. 2), the amount of NOx produced rapidly decreases and increases. As described above, the conventional gas turbine combustor has a problem in that a large amount of NOx is produced due to the presence of a partially high-temperature section. Therefore, a flue gas denitrification device or the like must be provided, which poses problems such as the device becoming complicated.

このようなガスタービン燃焼器の問題点を解決するため
に、種々の燃焼方式が検討されている。
In order to solve these problems with gas turbine combustors, various combustion systems are being studied.

生成するNOx iiを低減することができれば、排煙
脱硝装置を省略或いは簡略化することができるが、かか
る低NOx化を目的とした燃焼方式としては、次のもの
が挙げられる。即ち、 (1)水蒸気或いは水噴射を行なう方式、(2)燃焼空
気を二段に分けて導入し、燃料を燃焼させる二段燃焼方
式、及び (3)排ガス再循環方式 しかしながら、これらの方式は、必ずしも満足のいくも
のではなく、(00方式は、水蒸気或いは水を噴射する
ために熱効率が悪<、(2)の方式は、二段階で空気を
導入するために、それぞれ導入する空気量の調節を充分
注意しなければならず、又、燃焼器内の最高温度が未だ
元分低くはないために、NOx祉の低減効果も充分では
ない。更に、(3)の方式は、大気圧下での燃焼には適
用可能でろるが、ガスタービン燃焼器の様に、高圧中で
燃焼させる場合には不適である等の問題点を肩している
If the generated NOx ii can be reduced, the flue gas denitrification device can be omitted or simplified, and examples of combustion methods aimed at such a reduction in NOx include the following. Namely, (1) a method that uses steam or water injection, (2) a two-stage combustion method that introduces combustion air in two stages and combusts the fuel, and (3) an exhaust gas recirculation method. However, these methods However, it is not necessarily satisfactory (the 00 method has poor thermal efficiency because it injects steam or water). The adjustment must be made with great care, and the maximum temperature within the combustor is not yet low enough to reduce NOx emissions.Furthermore, method (3) does not work well under atmospheric pressure. However, it is unsuitable for combustion under high pressure, such as in gas turbine combustors.

上ム己した燃焼方式は、いずれも気相のみにおける均一
系反応によるものでわるが、最近、これらに対し、同相
触媒を用いた不均一系燃焼方式(以下−1触媒燃焼方式
と称す)が提案されている。触媒燃焼方式は、触媒を用
いて燃料と空気の混合気1+を燃焼せしめるものである
。この方式によれば、比較的低温で燃焼を開始させるこ
とができ、冷却用空気を必★とせず、燃焼用空気が増加
するために、最篩温度が低くなり、従って、発生するN
Ox1辻を極めて少なくすることかり能である。父、タ
ービン人[]温度も従来のものと変わりなく、燃料を充
全燃焼込せることかできる。第3図は、この、“[うな
触媒燃焼方式の燃焼器の概念図であり、触媒充填。β7
にはハニカム構造の触媒体が光横され/Cものである。
All advanced combustion methods rely on homogeneous reactions only in the gas phase, but recently, a heterogeneous combustion method using an in-phase catalyst (hereinafter referred to as the -1 catalytic combustion method) has been developed. Proposed. The catalytic combustion method uses a catalyst to combust a mixture 1+ of fuel and air. According to this method, combustion can be started at a relatively low temperature, cooling air is not required, and since the amount of combustion air is increased, the maximum sieve temperature is lowered, and therefore, the generated N
It is possible to minimize the number of Ox1 crossings. Father, Turbine Man [] The temperature is no different from the conventional one, and the fuel can be fully combusted. Figure 3 is a conceptual diagram of a combustor using the catalytic combustion method, with catalyst filling.
A catalyst body with a honeycomb structure is horizontally oriented.

尚、第1図と同じ装置又は物質である場合には、同じ符
号を付しである。第4図は、上hr2 したガスタービ
ン燃焼器の中で、a;従来の燃焼方式、b;二段燃焼方
式、c;触媒燃焼方式における、セルそれの燃焼器内の
温反分布を示すものである。触媒燃焼方式では、他の方
式と比較して最iQl温度が低ぐ、低温から徐々に不均
一系の燃焼反応が起こり、途中から均−系の燃焼反応を
伴って燃焼が進行していることがわかる。
Incidentally, when the device or material is the same as in FIG. 1, the same reference numeral is given. Figure 4 shows the temperature distribution within the combustor of each cell in the above hr2 gas turbine combustor: a: conventional combustion method, b: two-stage combustion method, c: catalytic combustion method. It is. In the catalytic combustion method, the maximum iQl temperature is lower than other methods, and a heterogeneous combustion reaction occurs gradually from a low temperature, and combustion progresses with a homogeneous combustion reaction halfway through. I understand.

現在、検討されている触媒燃焼方式の燃焼器において、
使用される触媒体の耐熱性は、せいぜい1200°0ぐ
らいである。ところが、燃焼器からタービンへ供給する
燃焼ガスの温度は1100〜1200℃であることから
、触媒体内で燃料を完全燃焼させると、触媒の劣化及び
融媒体の熱破損をもたらすことになる。また、触媒体内
のガス温度が高ければ烏いほど、触媒体内を通過するガ
ス流速が高くなるため、触媒体内での圧力損失が大きく
なり、ガスタービンの効率を低下させる原因となる。
In the catalytic combustion type combustor currently being considered,
The heat resistance of the catalyst used is about 1200°0 at most. However, since the temperature of the combustion gas supplied from the combustor to the turbine is 1,100 to 1,200° C., complete combustion of the fuel within the catalyst body results in deterioration of the catalyst and thermal damage to the fusion medium. Furthermore, the higher the gas temperature within the catalyst body, the higher the gas flow rate passing through the catalyst body, which increases the pressure loss within the catalyst body, causing a reduction in the efficiency of the gas turbine.

この対策として、燃料と空気の混合物の温度がある程度
高くなると、触媒活性の低い触媒体でも燃焼は円滑に進
行することから、触媒体の前段部に耐熱性は小さいが、
活性の高い触媒を後段部には、活性は低いが耐熱性の旨
い触媒を配置従し、触媒体の熱破損を防止する方法、あ
るいは、燃焼器への燃料の供給を触媒体の上流と下流に
行ない、触媒上流側のF/Aを断熱火焔温度が、触媒体
の耐熱温度以下になるように和定し、最終的に所望の温
度を得るために触媒体の下流に燃料を供給する方法が検
討されている。
As a countermeasure for this, when the temperature of the fuel-air mixture rises to a certain degree, combustion proceeds smoothly even with a catalyst with low catalytic activity.
A method to prevent heat damage to the catalyst body by placing a highly active catalyst in the rear stage and a catalyst with low activity but good heat resistance, or to supply fuel to the combustor by placing a catalyst upstream and downstream of the catalyst body. A method of adjusting the F/A on the upstream side of the catalyst so that the adiabatic flame temperature is below the allowable temperature of the catalyst, and finally supplying fuel downstream of the catalyst to obtain the desired temperature. is being considered.

しかしながら、触媒の活性は一般に時間とともに低下す
るため触媒燃焼の反応速度が遅くなり、燃料と空気の混
合物が触媒なしで燃焼する温度まで、触媒体内で上昇し
ないため、燃料が完全燃焼せず、タービン入口での所望
の流出速度、温度を得ることができないばかりか、多量
の未燃焼燃料を大気中に放出することになる。
However, the activity of the catalyst generally decreases over time, which slows down the reaction rate of catalytic combustion, and because the fuel and air mixture does not rise to the temperature within the catalyst body that would burn without a catalyst, the fuel is not completely combusted and the turbine Not only is it impossible to obtain the desired outflow velocity and temperature at the inlet, but a large amount of unburned fuel is released into the atmosphere.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した問題点を解消し、触媒体の高
温化を防止し、触媒体の長寿命化をはかり、触媒体内で
の圧力損失を小さくした、燃焼効率が極めて良好な触媒
燃焼方式のガスタービン燃焼器を提供することにある。
The purpose of the present invention is to provide catalytic combustion with extremely high combustion efficiency, which eliminates the above-mentioned problems, prevents the catalyst from becoming hot, extends the life of the catalyst, and reduces pressure loss within the catalyst. The object of the present invention is to provide a gas turbine combustor of the same type.

     ゛〔発明の概費〕 本発明のガスタービン燃焼器は、燃料の供給を触媒体の
上流部と下流部とで行ない、触媒体の上流に供給した空
気と燃料の混合物が触媒体を通過した直佼の温度検知し
、この検知した温度に応じて触媒の上流部と下流部に供
給する燃料の量を調整することfe:特徴とするもので
ある。
[Outline of the Invention] The gas turbine combustor of the present invention supplies fuel to the upstream and downstream parts of the catalyst body, and the mixture of air and fuel supplied upstream of the catalyst body passes through the catalyst body. It is characterized by detecting the temperature of the catalyst and adjusting the amount of fuel supplied to the upstream and downstream parts of the catalyst according to the detected temperature.

1’J、下において、本発明を図を用いて更に詳しく説
明する。第5図は本発明の一例を示すものである。
1'J, below, the invention will be explained in more detail with the aid of the figures. FIG. 5 shows an example of the present invention.

ガスタービンノズル6での燃焼ガスの条件が設定される
と、単位時間あたり必表な燃料と空気の値が決定される
。触媒活性が高い初期において、燃料を燃料ノズル1の
みから全て供給させると、これは、触媒体内で燃料を全
て燃焼させてしまうことになる。すなわち、触媒体内で
^温度に達し、触媒が熱により破損する原因となる。さ
らには混合物が高温になることによシ、触媒体内の通過
速度増大し、触媒体内での圧力損失が犬となる。また、
触媒体内に多量の燃料を通過させることも触媒体内の圧
力損失を増大させることになる。そこで、本発明では、
第1に所定の燃料を触媒体の上流部と下流に分割し、触
媒体内を通過する燃料の通過量をできるだけ少くして、
触媒体内の圧力損失を小さくするような工程を用いてい
る。
Once the combustion gas conditions in the gas turbine nozzle 6 are set, the necessary fuel and air values per unit time are determined. If all the fuel is supplied only from the fuel nozzle 1 in the early stage when the catalyst activity is high, all the fuel will be burned inside the catalyst body. That is, the temperature reaches within the catalyst body, causing damage to the catalyst due to heat. Furthermore, as the temperature of the mixture increases, the rate of passage through the catalyst body increases and the pressure loss within the catalyst body increases. Also,
Passing a large amount of fuel through the catalyst body also increases pressure loss within the catalyst body. Therefore, in the present invention,
First, the predetermined fuel is divided into upstream and downstream parts of the catalyst body, and the amount of fuel passing through the catalyst body is minimized.
A process is used to reduce pressure loss within the catalyst body.

触媒の活性が高い初期では、触媒体を通過する空気と燃
料のF/Aがある程度小さくても容易に触媒燃焼が生じ
、触媒体出口の流出物温度が希薄燃料の発火点まで十分
に上昇し、触媒体下流の燃料ノズル8から供給されて造
られた混合物を燃焼させることができる。
In the early stage when the activity of the catalyst is high, catalytic combustion easily occurs even if the F/A of the air and fuel passing through the catalyst body is small to some extent, and the temperature of the effluent at the outlet of the catalyst body rises sufficiently to the ignition point of the lean fuel. , the mixture produced by being supplied from the fuel nozzle 8 downstream of the catalyst body can be combusted.

しかしながら、触媒の活性が低下した場合、触媒体を通
過させるF/Aが小さいと触媒燃焼が十分でなく、触媒
体出口の流出物温度が希薄燃料の発火点まで上昇できず
触媒下流部から供給されて造られた混合物を燃焼させる
ことができず、不完全燃焼をもたらすことになる。
However, when the activity of the catalyst decreases, if the F/A passing through the catalyst is small, catalytic combustion will not be sufficient, and the temperature of the effluent at the outlet of the catalyst will not rise to the ignition point of the lean fuel, and the fuel will be supplied from the downstream part of the catalyst. The resulting mixture cannot be combusted, resulting in incomplete combustion.

一般に触媒燃焼反応の速度は、燃料濃度の増大とともに
大きくなるので、触媒活性が低下した場合、触媒体内を
通過させるF/Aを大きくすると、触媒体出口での混合
物温度を希薄燃料の発火点まで上昇さぜることかできる
。ここで、F/Aを増大さ71!−る除、触媒体出口の
流出物温度が触媒体の耐熱温度以下になるように調値し
なければならない。ここで、希薄燃料の発火点は、実験
により前もって測定しておく必要がある。したがって、
触媒体出口の流出物温度を検知する温度計9により検知
し、その温度が希薄燃料の発火点よシ低い場合には触媒
下流部に供給する燃料電磁弁10を閉じて触媒下流部か
らの燃料供給量を減らし、触媒体上流部から供給する混
合物のF/Aを増大させればよい。また温度計9による
温度が、触媒体の耐熱温度を越えた場合は前の操作の逆
を行なえばよい。なお、ここでは、1個の触媒体を用い
た場合について、本発明の一例を示したが、触媒体が2
個以上ある場合についても同様であるが、この場合、燃
料供給口と温度検知を各触媒体出口の全てか、あるいは
数ケ所に設けてもよい。
Generally, the speed of the catalytic combustion reaction increases as the fuel concentration increases, so if the catalytic activity decreases, increasing the F/A that passes through the catalytic body will raise the temperature of the mixture at the outlet of the catalytic body to the ignition point of the lean fuel. Can be stirred up. Here, increase F/A to 71! Except for this, the temperature must be adjusted so that the temperature of the effluent at the outlet of the catalyst is below the heat-resistant temperature of the catalyst. Here, the ignition point of the lean fuel must be determined in advance by experiment. therefore,
The temperature of the effluent at the outlet of the catalyst is detected by a thermometer 9, and if the temperature is lower than the ignition point of the lean fuel, the electromagnetic valve 10 for supplying fuel to the downstream part of the catalyst is closed, and the fuel from the downstream part of the catalyst is stopped. What is necessary is to reduce the supply amount and increase the F/A of the mixture supplied from the upstream part of the catalyst body. If the temperature measured by the thermometer 9 exceeds the allowable temperature limit of the catalyst, the previous operation may be reversed. Note that here, an example of the present invention has been shown for the case where one catalyst body is used, but when two catalyst bodies are used,
The same applies to the case where there are more than one catalyst body, but in this case, the fuel supply port and temperature detection may be provided at all or several locations of each catalyst body outlet.

〔発明の効果〕〔Effect of the invention〕

本発明のガスタービン燃焼器は、触媒燃焼により効率よ
く、かつ殆んどNOxを発生することなく燃料の燃焼を
行なわしめることができるものであり、触りvが長寿命
化され、触媒体内の圧力損失を小さくしたものである。
The gas turbine combustor of the present invention is capable of efficiently burning fuel by catalytic combustion and with almost no NOx generation, and has a long lifespan and a low pressure inside the catalyst body. This reduces losses.

〔発明の実施例〕[Embodiments of the invention]

触媒体としては、ハニカム構造を1吏用し、長ざ150
11+11、直径25.4111をゼするセラミック製
の短体に、触媒としてPt2wt%を担持さぜたものを
用いた。
The catalyst body uses a honeycomb structure with a length of 150 mm.
A ceramic short body with a diameter of 25.4111 mm and a diameter of 25.4111 mm was used, and 2 wt % of Pt was supported as a catalyst.

このハニカム徊造触媒体を、直径26」φを有する燃焼
管に充填し、燃料としてメタンを用い、メタンと空気の
1昆合物を500°Cに加熱し、全体の供給量として3
00Ω/min (F’/A= 0.035 )で導入
した。そして触媒体内外の温度分布とタービンノズルに
おける未然メタンの濃度を、燃料供給を触媒りについて
測定した。
This honeycomb catalyst body was filled into a combustion tube having a diameter of 26", and using methane as fuel, a mixture of methane and air was heated to 500°C, and the total supply amount was 3.
00Ω/min (F'/A=0.035). Then, the temperature distribution inside and outside the catalyst body and the concentration of unresolved methane in the turbine nozzle were measured with respect to fuel supply and the catalyst.

その結果、触媒初期においては触媒体内の温度(I は11(10’Qを越えており(のd)、タービンノズ
ルでのメタン訣度は10 ppm以下であったところが
、100時間1000℃で熱処理した場合は十分な1r
n吸上昇が得られず(’@−f7(D e )タービン
ノズルでのメタン倹度も10000 ppm以上であっ
た。
As a result, at the initial stage of the catalyst, the temperature inside the catalyst body (I exceeded 11 (10'Q) (d), and the methane concentration at the turbine nozzle was less than 10 ppm, but after heat treatment at 1000°C for 100 hours, If you do, 1r is enough
No uptake was obtained ('@-f7 (De)) and the methane frugality at the turbine nozzle was also over 10,000 ppm.

一方、本屈明においては、100時間1000°0で熱
処理した触媒体を使用した場合でも、触媒体入口のF/
Aを0.032にし、残りをノ独媒体出口から供給する
と触媒体出口で約950 ’Oの温度上昇が得られ、下
流では福薄混合物の均一燃焼がおこり、1100γ〕以
上址で上昇し、タービンノズルでのメタン鍵度も10p
pm以下であることが確認された。
On the other hand, in this case, even when using a catalyst body heat-treated at 1000°0 for 100 hours, the F/
When A is set to 0.032 and the remainder is supplied from the outlet of the medium, a temperature rise of approximately 950'O is obtained at the outlet of the catalyst body, and uniform combustion of the mixture occurs downstream, and the temperature rises by more than 1100γ]. The methane key level at the turbine nozzle is also 10p.
It was confirmed that it was below pm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のガスタービン燃焼器の概念図、第2図d
、週常のガスタービン燃焼器の温度分布を示す図、第3
図は触媒燃焼方式のガスタービン燃焼器の概念図、第4
図は通常のガスタービン燃焼器(a)、二段式ガスター
ビン燃焼器(b)及び触媒燃焼方式ガスタービン燃焼器
(c)におけるそれぞれの温度分布を示す図、第5図は
本発明による触媒燃焼方式のカスタービン燃焼器の翫念
図、第6図は、第31方式の燃焼器を使用した場合で、
触媒初期の場合(a)、t00時間1000”0で熱処
理した触媒体′f:使用した場合(e)と、本発明の燃
焼器を使用した賜酋で、10.0時間1000’Oで熱
処理した触媒体を被用した場合(f)の触媒体内外の温
度分布を示す図でめる。 1.8・・・燃料ノズル、2・・・スパークプラグ、3
・・・燃焼ハ」空気、4・・・冷却用空気、5・・・希
釈用空気、6・・・タービンノズル、7・・・触媒体、
9・・・温度計、10・・・電磁弁。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 天恰灘木方勾 1じ参ml久声巧何
Figure 1 is a conceptual diagram of a normal gas turbine combustor, Figure 2 d
, Diagram showing weekly gas turbine combustor temperature distribution, 3rd
The figure is a conceptual diagram of a catalytic combustion type gas turbine combustor.
The figure shows temperature distributions in a conventional gas turbine combustor (a), a two-stage gas turbine combustor (b), and a catalytic combustion type gas turbine combustor (c), and Fig. 5 shows a catalyst according to the present invention. Figure 6, a conceptual diagram of a combustion type Kasturbine combustor, shows the case where a No. 31 type combustor is used.
In the early stage of the catalyst (a), the catalyst body'f was heat-treated at 1000'O for t00 hours: (e), and in the case of using the combustor of the present invention, it was heat-treated at 1000'O for 10.0 hours. A diagram showing the temperature distribution inside and outside the catalyst body in case (f) when the catalyst body is used is shown below. 1.8...Fuel nozzle, 2...Spark plug, 3
... Combustion air, 4... Cooling air, 5... Dilution air, 6... Turbine nozzle, 7... Catalyst body,
9...Thermometer, 10...Solenoid valve. Agent: Patent attorney: Noriyuki Chika (and 1 other person) Figure 1: Tenkei-nada Mokugata 1st scale ml Takumi Kusei

Claims (1)

【特許請求の範囲】 燃料と空気の第1の混合物を遺り、少くとも一部分を燃
焼するために、前記第1の混合物を触媒へ通し、前記触
媒出口の流出物にさらに燃料を供給し、第2の混合物を
形成し、前記第2の混合物を均一に燃焼させて、ガス流
出物を生成させる触媒燃焼方式ガスタービン燃焼器にお
いて、a、触媒出口流出物温度を検知する工程と、b、
前日己流出物温度に応じて、前記第1混合物中の燃料の
献を変化させ、前記第1混合物中の燃料と空気の比(以
下F/Aと記す)を調節する工程と、 c、hσ記F/Aに応じて前記第2の混合物を造るだめ
の触媒下流の燃料供給量を調節する工程をもうけたこと
を特徴とするガスタービン燃焼器。
Claims: Passing the first mixture through a catalyst to leave and combust at least a portion of the first mixture of fuel and air; further supplying fuel to the catalyst outlet effluent; In a catalytic combustion gas turbine combustor forming a second mixture and uniformly combusting the second mixture to produce a gas effluent, a. sensing a catalyst outlet effluent temperature; b.
a step of changing the fuel concentration in the first mixture according to the temperature of the effluent on the previous day, and adjusting the ratio of fuel to air (hereinafter referred to as F/A) in the first mixture; c, hσ; A gas turbine combustor comprising a step of adjusting the amount of fuel supplied downstream of the catalyst for producing the second mixture according to F/A.
JP21709682A 1982-12-13 1982-12-13 Gas turbine combustor Granted JPS59108829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21709682A JPS59108829A (en) 1982-12-13 1982-12-13 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21709682A JPS59108829A (en) 1982-12-13 1982-12-13 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS59108829A true JPS59108829A (en) 1984-06-23
JPH0472984B2 JPH0472984B2 (en) 1992-11-19

Family

ID=16698774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21709682A Granted JPS59108829A (en) 1982-12-13 1982-12-13 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS59108829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218727A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPH0282019A (en) * 1988-09-16 1990-03-22 Toshiba Corp Combustion method in gas turbine combustion unit
JP2014178105A (en) * 2013-03-13 2014-09-25 General Electric Co <Ge> Turbomachine with transition piece having dilution holes and fuel injection system coupled to transition piece
US11859677B2 (en) 2022-04-25 2024-01-02 Ringspann Gmbh Cage freewheel with bearing rollers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284309A (en) * 1975-12-29 1977-07-13 Engelhard Min & Chem Method and device for carbon fuel combustion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284309A (en) * 1975-12-29 1977-07-13 Engelhard Min & Chem Method and device for carbon fuel combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218727A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPH0282019A (en) * 1988-09-16 1990-03-22 Toshiba Corp Combustion method in gas turbine combustion unit
JP2014178105A (en) * 2013-03-13 2014-09-25 General Electric Co <Ge> Turbomachine with transition piece having dilution holes and fuel injection system coupled to transition piece
US11859677B2 (en) 2022-04-25 2024-01-02 Ringspann Gmbh Cage freewheel with bearing rollers

Also Published As

Publication number Publication date
JPH0472984B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
JPH01208525A (en) Method of controlling combustion discharged article and discharged article combustion apparatus
JPH0670376B2 (en) Catalytic combustion device
JPS6066022A (en) Combustion in gas turbine
JPS59107119A (en) Combustion of gas turbine
JPS59108829A (en) Gas turbine combustor
JP2843035B2 (en) Gas turbine combustor
JP2543986B2 (en) Catalytic combustion type gas turbine combustor
JPH0245772B2 (en)
JPS60122807A (en) Low nitrogene oxide combustion
JPH01155007A (en) Operating method for exhaust heat recovery boiler
JPS60186622A (en) Catalytic burner
JPS62218727A (en) Gas turbine combustor
CN220852135U (en) Low-nitrogen gas boiler using ammonia gas as fuel
JP2634279B2 (en) Method for burning NOx-containing gas
JPH0311588Y2 (en)
JPS5924121A (en) Combustion in combustor for gas turbine
JP2672510B2 (en) Catalytic combustion type gas turbine combustor
JPS5969627A (en) Combustion method of gas turbine utilizing coal gas as fuel
JPS62141425A (en) Gas turbine combustor
JPH0463964B2 (en)
JPH06229554A (en) Burner for gas turbine
JPS58184427A (en) Combustor for gas turbine
JPH048686B2 (en)
JPS60205127A (en) Combustor for gas-turbine
JPH0833200B2 (en) Gas turbine combustor