JPS6066022A - Combustion in gas turbine - Google Patents

Combustion in gas turbine

Info

Publication number
JPS6066022A
JPS6066022A JP58173101A JP17310183A JPS6066022A JP S6066022 A JPS6066022 A JP S6066022A JP 58173101 A JP58173101 A JP 58173101A JP 17310183 A JP17310183 A JP 17310183A JP S6066022 A JPS6066022 A JP S6066022A
Authority
JP
Japan
Prior art keywords
catalyst
fuel
combustion
temperature
catalyst filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173101A
Other languages
Japanese (ja)
Inventor
Tomiaki Furuya
富明 古屋
Chikau Yamanaka
矢 山中
Terunobu Hayata
早田 輝信
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58173101A priority Critical patent/JPS6066022A/en
Publication of JPS6066022A publication Critical patent/JPS6066022A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Abstract

PURPOSE:To enable to maintain high combustion efficiency for a long period by passing a fuel pipe through a catalyst filling unit. CONSTITUTION:A combustion unit has largely two catalyst filling units. The first catalyst filling unit 7 contains a catalyst including mainly Pd, and the second catalyst filling unit uses a catalyst including mainly Pt. Since the thermal insulating flame temperature of mixture gas of fuel and air supplied to this unit is 800-1,200 deg.C, it is 1,200 deg.C or lower even is a combustion occurs, and noble metal catalyst is less deteriorated. Further, since a fuel pipe 9 is passed through the first unit 7, the catalyst heat exchanged from fuel is not overheated, and the temperature drop when fuel is injected in the first catalyst outlet is advantageously less. As a result that the combustion gas and fuel are mixed at the outlet of the first catalyst, it becomes the temperature and fuel density for effectively acting the second catalyst filling unit, thereby preferably performing a combustion.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービン発電システムに使用するガスタ
ービン燃焼法に関し、更に詳しくは、燃焼時に発生する
窒素酸化物、(以下、NOxと称す)の量が少なく、且
つ、良好な燃焼効率を有する触媒燃焼方式のガスタービ
ン燃焼法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine combustion method used in a gas turbine power generation system, and more specifically, to a gas turbine combustion method used in a gas turbine power generation system. The present invention relates to a gas turbine combustion method using a catalytic combustion method that uses a small amount of fuel and has good combustion efficiency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油資源等の枯渇化に伴ない、種々の代替エネル
ギーが希求されておシ、一方では、エネルギー資源の効
率的使用が要求されている。これらの要求に答えるもの
の中には、例えば、燃料として天然ガスを使用するガス
タービン、スチームタービン複合サイクル発電システム
或いは石炭ガス化ガスタービン、スチームタービン複合
サイクル発電システムが挙げられ、検討されつつある。
In recent years, with the depletion of petroleum resources and the like, various alternative energies have been sought, and on the other hand, efficient use of energy resources has been required. Examples of systems that can meet these demands include gas turbines that use natural gas as fuel, steam turbine combined cycle power generation systems, coal gasification gas turbines, and steam turbine combined cycle power generation systems, which are currently being studied.

これらのガスタービン、スチームタービン複合サイクル
発電システムは、化石燃料を使用した従来のスチームタ
ービンによる発電システムに比較して、発電効率が高い
ために、将来、その生産量の増加が予想される天然ガス
や石炭ガス化ガス等の燃料を、有効に電力に変換できる
発電システムとして期待されている。
These gas turbine and steam turbine combined cycle power generation systems have higher power generation efficiency than conventional steam turbine power generation systems that use fossil fuels, so natural gas production is expected to increase in the future. It is expected to be a power generation system that can effectively convert fuels such as coal and gasified gas into electricity.

しかし従来のガスタービン燃焼器には、部分的に高温部
が存在するために、NOxの生成量が多いという問題点
がある。従って、排煙脱硝装置等を設けねばならず、装
置が複雑になる等の問題点をも有している。
However, the conventional gas turbine combustor has a problem in that a large amount of NOx is produced due to the presence of a partially high-temperature section. Therefore, a flue gas denitrification device or the like must be provided, which poses problems such as the device becoming complicated.

均一系燃焼方式(以下、触媒燃焼方式と称す)が提案さ
れている。触媒燃焼方式は、触媒を用いて燃料と空気の
混合気体を燃焼せしめるものでちる。
A homogeneous combustion method (hereinafter referred to as catalytic combustion method) has been proposed. The catalytic combustion method uses a catalyst to combust a mixture of fuel and air.

この方式によれば、比較的低温で燃焼を開始させること
ができ、冷却用空気を必要とせず、燃焼用空気が増加す
るために、最高温度が低くなシ、従って、発生するNO
x量を極めて少なくすることが可能である。
According to this method, combustion can be started at a relatively low temperature, no cooling air is required, and the amount of combustion air is increased, so the maximum temperature is low and the NO generated
It is possible to make the amount x extremely small.

第1図は、このような触媒燃焼方式の燃焼器の概念図で
あシ、触媒充填部7にはハニカム構造の触媒体が充填さ
れたものである。
FIG. 1 is a conceptual diagram of such a catalytic combustion type combustor, in which the catalyst filling portion 7 is filled with a catalyst body having a honeycomb structure.

この上りに優れた方式である触媒燃焼方式にも欠点があ
る。すなわち、従来検討されている貴金属系触媒だけで
は長期運転した時の耐久性に問題がおる。通常貴金属系
触媒はコープライトなどの耐熱性担体の上にr−アルミ
ナからなる活性被覆層をコーテングし、そこにPd、P
L などの触媒金属を担持している。このような触媒は
活性は高いが、1100℃以上の高温では活性被覆層の
劣化及び貴金属の表面積の減少あるいは飛散などが起り
長期間の耐久性に問題がある。また貴金属系以外の触媒
ではこのような問題は少ないが、温度が低い時には活性
が低くそのままで使用することは困難である。
The catalytic combustion method, which is an excellent method for this purpose, also has drawbacks. That is, the noble metal catalysts that have been studied in the past have problems with durability during long-term operation. Noble metal catalysts are usually produced by coating an active coating layer made of r-alumina on a heat-resistant support such as coplite, and then applying Pd, Pd, and Pd.
It supports a catalytic metal such as L. Although such catalysts have high activity, at high temperatures of 1100° C. or higher, the active coating layer deteriorates and the surface area of the precious metal decreases or scatters, resulting in problems with long-term durability. Catalysts other than noble metals do not have such problems, but their activity is low at low temperatures and it is difficult to use them as they are.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、触媒燃焼法において、長期間の耐久性
がある触媒法を提供することにある。
An object of the present invention is to provide a catalytic combustion method that has long-term durability.

〔発明の概要」 本発明者らは、触媒燃焼用の触媒あるいは現象について
鋭意研究した結果、本発明に達した。すなわち、本発明
者らは、貴金属系触媒について研究した結果、低温での
燃焼効率はPdを主体とした触媒が優れていること、p
tl主成分とする触媒は600〜1100℃程度の時に
活性が優れていることを明らかとした。またこれらの触
媒で高濃度の燃料を燃焼させた時には、触媒の温度が高
くなりすぎて、劣化が早まり、触媒の温度は1100℃
を越えることは好しくないことを得た。その結果タービ
ン入口温度が1100℃を越える場合は、活性被覆層に
貴金属を担持したようなものでは長期間安定な燃焼をさ
せる事は困難であると考えた。そこで1100℃以上の
高温で安定な燃焼をさせる触媒について検討した結果、
貴金属触媒のような、活性被覆層が無いベースメタルを
生成分とした触媒が好しいことが明らかとなった。これ
らの触媒としては、Ca−?MgやYなどで安定化した
ジルコニアにCoやNi、Crなどをドープしたもの、
 C。
[Summary of the Invention] The present inventors have arrived at the present invention as a result of intensive research on catalysts and phenomena for catalytic combustion. That is, as a result of research on noble metal catalysts, the present inventors found that catalysts mainly composed of Pd have superior combustion efficiency at low temperatures;
It was revealed that the catalyst containing tl as the main component has excellent activity at a temperature of about 600 to 1100°C. Also, when these catalysts burn high-concentration fuel, the temperature of the catalyst becomes too high and deterioration accelerates, and the temperature of the catalyst reaches 1100℃.
I got that it's not good to go beyond that. As a result, it was considered that if the turbine inlet temperature exceeds 1100° C., it would be difficult to achieve stable combustion for a long period of time with a material in which precious metals are supported on the active coating layer. Therefore, as a result of studying catalysts that can achieve stable combustion at high temperatures of 1,100°C or higher, we found that
It has been found that catalysts based on base metals without an active coating layer, such as noble metal catalysts, are preferred. These catalysts include Ca-? Zirconia stabilized with Mg or Y, doped with Co, Ni, Cr, etc.
C.

やNi あるいはCrとアルミナのスピネルから成る触
媒、ランタンクロマイトあるいはそれにNi。
or Ni or a catalyst consisting of Cr and alumina spinel, lanthanum chromite or Ni.

Coをドープしたものなどが好しいことが明らかとなっ
た。これらの触媒は1100〜1600℃での安定性に
は問題がないが、燃料濃度あるいは温度が低いと燃焼効
率が高くならないという欠点がある。
It has become clear that those doped with Co are preferable. Although these catalysts have no problem in stability at 1100 to 1600°C, they have the disadvantage that combustion efficiency does not become high when the fuel concentration or temperature is low.

そこで、本発明者らは、これらのことを総合的に検討し
た結果、本発明に達した。ここで、本発明の概念図を第
2図に示したので、これによシ本発明を説明する。燃焼
器には大きく分けて2つの触媒充填部がある。第一段目
の触媒充填部には前半[Pdを主成分とした触媒が、後
半にはPiを主成分とした触媒が使用される。この部分
に供給される燃料と空気との混合気の断熱火炎温度は8
00〜1200℃であるため、燃焼が起っても1200
℃以下であるため、貴金属系触媒の劣化は少ない。
Therefore, the present inventors have comprehensively studied these matters and have arrived at the present invention. Here, since a conceptual diagram of the present invention is shown in FIG. 2, the present invention will be explained using this diagram. The combustor has two main catalyst filling sections. In the first stage catalyst filling section, a catalyst mainly composed of Pd is used in the first half, and a catalyst mainly composed of Pi is used in the second half. The adiabatic flame temperature of the mixture of fuel and air supplied to this part is 8
Since the temperature is 00 to 1200℃, even if combustion occurs, the temperature will be 1200℃.
Since the temperature is below ℃, there is little deterioration of the noble metal catalyst.

また、第1段目の触媒充填部に燃料パイプが通過してい
るため、燃料と熱交換され触媒が過熱しないと同時に第
1段の触媒出口において燃料が噴出された時の温度低下
も少ないというメリットがある。第1段目の触媒の出口
では燃焼ガスと燃料が混合−した結果、第2段の触媒充
填部が有効に作用する温度及び燃料濃度となっておシ、
良好な燃焼が起る。この部分では高温になるが触媒が前
記したベースメタルをドープした安定化ジルコニアなど
であるため、安定性が高く、長期間高い燃焼効率を維持
することができる。
In addition, since the fuel pipe passes through the first stage catalyst filling section, heat is exchanged with the fuel and the catalyst does not overheat, and at the same time, there is little temperature drop when the fuel is injected at the first stage catalyst outlet. There are benefits. At the outlet of the first stage catalyst, the combustion gas and fuel are mixed, resulting in a temperature and fuel concentration that enable the second stage catalyst filling to work effectively.
Good combustion occurs. Although the temperature is high in this part, since the catalyst is made of stabilized zirconia doped with the above-mentioned base metal, it is highly stable and can maintain high combustion efficiency for a long period of time.

以下に本発明を実施例によって詳細に説明する。The present invention will be explained in detail below using examples.

〔実施例1〕 実験に用いた装置を第3,4図に示した。第3図におい
て燃焼管12に貴金属ノ・ニカム触媒を充填し、上流か
ら加熱した燃料と空気の混合気体14を供給した。ハニ
カム触媒は25咽の径で長さが15L:rnのものを用
いた。第4図は、第3図と同じ装置を用いパイプ17を
触媒充填部に通じて、燃料16を供給できるようにした
ものである。パイプの内径は8簡とした。すなわち、第
3図の場合が従来の触媒燃焼法を想定したものであるに
対して、第4図は本発明の概念に基づく方法でおる。
[Example 1] The apparatus used in the experiment is shown in Figures 3 and 4. In FIG. 3, a combustion tube 12 was filled with a noble metal nickel catalyst, and a heated fuel/air mixture 14 was supplied from upstream. The honeycomb catalyst used had a diameter of 25 mm and a length of 15 L:rn. In FIG. 4, the same device as in FIG. 3 is used, and the pipe 17 is connected to the catalyst filling part so that the fuel 16 can be supplied. The inner diameter of the pipe was 8. That is, while the case in FIG. 3 assumes the conventional catalytic combustion method, the case in FIG. 4 shows a method based on the concept of the present invention.

第4図において、第一段目の触媒充填部には、前半に活
性被覆層が希土類を含むアルミナで、Pdを主体とした
触媒を充填して、後半に同様にPtを主体とした触媒を
充填した。第2段目の触媒充填部16にはNi をドー
プした安定化ジルコニアの触媒を5cn1充填した。
In Fig. 4, the first stage catalyst filling section is filled with a Pd-based catalyst whose active coating layer is alumina containing rare earth elements in the first half, and a Pd-based catalyst in the second half. Filled. The second stage catalyst filling section 16 was filled with 5 cn1 of a stabilized zirconia catalyst doped with Ni.

実験は第3図、第4図の場合も、触媒に供給される燃料
と空気との混合気14の温度は450℃とした。燃料は
天然ガスを用い、燃焼ガス15の温度が1100〜15
00℃になるように混合気14中の燃料濃度と燃料パイ
プ17に供給する燃料16を調整した。この時第3図の
場合は燃料濃度の調整は混合気14中の燃料濃度を変え
るのみであるが、第4図の場合は第1段目の触媒充填部
13に供給する混合気14の断熱火炎温度(計算値)は
1100℃となるようにして、燃焼ガス15の温度は燃
料パイプ17から供給する燃料16で調整した。このよ
うにした実験においてそれぞれの燃焼効率の経時変化を
第5図に示した。第5図において、曲線a、b、cは第
3靭に示した実験の結果であシ、曲線a、e、fは第4
図に示した実験の結果である。またa、dは燃焼ガス1
5の温度が1100℃となるように燃料を設定した場合
、b。
In the experiments shown in FIGS. 3 and 4, the temperature of the mixture 14 of fuel and air supplied to the catalyst was 450°C. Natural gas is used as fuel, and the temperature of combustion gas 15 is 1100-15
The fuel concentration in the air-fuel mixture 14 and the fuel 16 supplied to the fuel pipe 17 were adjusted so that the temperature was 00°C. At this time, in the case of FIG. 3, the adjustment of the fuel concentration only changes the fuel concentration in the air-fuel mixture 14, but in the case of FIG. The temperature of the combustion gas 15 was adjusted using the fuel 16 supplied from the fuel pipe 17 so that the flame temperature (calculated value) was 1100°C. Figure 5 shows the changes in combustion efficiency over time in these experiments. In Fig. 5, curves a, b, and c are the results of the experiment shown in the third column, and curves a, e, and f are the results of the experiment shown in the fourth column.
These are the results of the experiment shown in the figure. Also, a and d are combustion gas 1
If the fuel is set so that the temperature of No. 5 is 1100°C, then b.

eは同様に1300℃となるように設定した場合、c、
fは同様に1500℃となるように設定した場合である
。なお、空気流量は24017m1n とした。
If e is similarly set to 1300℃, c,
Similarly, f is set to 1500°C. Note that the air flow rate was 24017 m1n.

第5図に示したように従来例である第3図のような場合
は、高温の燃焼ガスを得ようとする程、早く劣化し耐久
性が少ないことが明らかであるが、本発明による第4図
のような場合はそのような劣化が少なく耐久性が有るこ
とがわかる。
As shown in FIG. 5, it is clear that in the case of the conventional example shown in FIG. 3, the higher the temperature of combustion gas is obtained, the faster the deterioration occurs and the durability is less. It can be seen that in the case shown in Figure 4, there is little such deterioration and there is durability.

〔実施例2〕 実施例10本発明の場合の実験と同じ装置を用いて一第
2段目の触媒充填部にはNi をドープしたランタンク
ロマイトを充填した。そして、第1段目の触媒充填部に
供給する混合気の断熱火炎温度を変え、かつ燃料パイプ
17がら供給する燃料16を変えて第2段目の触媒充填
部に入る混合気の断熱火炎温度を変えて燃焼効率を測定
した。測定値は運転開始後100hr後のものを比較し
た。
[Example 2] Example 10 Using the same equipment as in the experiment of the present invention, the first and second stage catalyst filling portions were filled with lanthanum chromite doped with Ni. Then, the adiabatic flame temperature of the mixture supplied to the first stage catalyst filling section is changed, and the fuel 16 supplied from the fuel pipe 17 is changed, and the adiabatic flame temperature of the mixture entering the second stage catalyst filling section is changed. The combustion efficiency was measured by changing the The measured values were compared 100 hours after the start of operation.

第6図にその結果を示した。第6図において横軸は第1
段目の触媒充填部に供給する混合気の断熱火炎温度を示
し縦軸は第2段目の触媒充填部に入る第1段目の触鉱充
填部出口の燃焼ガスと燃料16との混合気の断熱火炎温
度である。第6図のように横軸は800〜1200℃、
縦軸は1200〜1600℃の範囲Aで良好な燃焼効率
が得られておシ、この範囲で燃焼させることが重要であ
ることを示している。
The results are shown in Figure 6. In Figure 6, the horizontal axis is the first
The vertical axis represents the adiabatic flame temperature of the air-fuel mixture supplied to the catalyst filling section in the second stage and the mixture of combustion gas and fuel 16 at the outlet of the catalyst filling section in the first stage, which enters the catalyst filling section in the second stage. is the adiabatic flame temperature. As shown in Figure 6, the horizontal axis is 800 to 1200℃,
The vertical axis indicates that good combustion efficiency was obtained in range A of 1200 to 1600°C, indicating that it is important to perform combustion within this range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の触媒燃焼方式のガスタービン燃焼器の概
念図、第2図(a)は本発明の概念を用いたガスタービ
ンの部分断面、(b)はX−Yに沿う断面図、第3図は
従来検討されている触媒燃焼を想定したモデル実験装置
のフロー図、第4図は本発明の触媒燃焼を想定したモデ
ル実験装置の70一−第5図は燃焼効率の経時変化を示
す特性曲線図であり%(a)、φ) 、 (、C)は従
来のものの場合、(d) 、 (Cン。 (f)は発明のものの場合を示す説明図、第6図は本発
明の場合において良好な洋焼効率の範囲を示す図である
。 1・・・1次燃料ノズル、2・・・点火器、3・・・壁
気、4・・・スワラ−15・・・2次燃料ノズル、6・
・・クーヒンノズル・、7・・・貴金属系触媒充填部(
餓1段目の触媒充填部)8・・・第2段目の触媒充填部
、9・・・炉料の供給パイプ、lO・・・内筒、11・
・・外筒。 代理人 弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第3図 第 4 図 第 5 図 U寺開t(hz)
FIG. 1 is a conceptual diagram of a conventional catalytic combustion type gas turbine combustor, FIG. 2(a) is a partial cross-section of a gas turbine using the concept of the present invention, and FIG. 2(b) is a cross-sectional view along X-Y. Fig. 3 is a flow diagram of a model experimental device assuming catalytic combustion that has been studied in the past, and Fig. 4 is a flow diagram of a model experimental device assuming catalytic combustion of the present invention. % (a), φ), (, C) are for the conventional one, (d), (C) are explanatory diagrams for the inventive one, and FIG. It is a diagram showing the range of good firing efficiency in the case of the invention. 1... Primary fuel nozzle, 2... Igniter, 3... Wall air, 4... Swirler-15... Secondary fuel nozzle, 6.
...Kuhin nozzle...7...Precious metal catalyst filling part (
1st stage catalyst filling part) 8... 2nd stage catalyst filling part, 9... Furnace material supply pipe, lO... Inner cylinder, 11...
・Outer cylinder. Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Uji Kait (hz)

Claims (1)

【特許請求の範囲】[Claims] (1)触媒燃焼方式によシ、燃料を燃焼させるカスター
ビンの燃焼法において、第1段の触媒充填部に燃料とを
気の混合気を供給するとともに1本以上のパイプを通過
させ、パイ、プの入口から別に燃料を供給し、パイプの
出口端から噴出させ、第1段の触媒充填部からの燃焼ガ
スと混合した後、第2段の触媒充填部を通過させて燃焼
させることを部の触媒がさらに複数種の触媒から成って
おり、前半がPdを主成分とする触媒であり、後半がP
tを主成分とする触媒であることを特徴とするガスタ触
媒がGo、Ni、Crのうち少なくとも1種類以上をド
ープした安定化ジルコニアあるいはCo、Ni。 Crのアルミナスピネル、あるいはランタンクロマイト
あるいはNi、Coのうち少なくとも1種類以上をドー
プしたランタンクロマイトなどの触媒で触媒充填部への
燃料と空気との混合気体の断熱火炎温度が800〜12
00℃となるようにすると同時に第2段の触媒充填部へ
供給される混合気の断熱火炎温度が1200〜1600
℃となるように第1段の触媒充填部を通過している燃料
パイプから燃料を供給することを特徴とするガスタービ
ンの燃焼法0
(1) In the catalytic combustion method, in which fuel is combusted using a cast turbine, a mixture of fuel and air is supplied to the catalyst filling section of the first stage, and the mixture is passed through one or more pipes. , the fuel is separately supplied from the inlet of the pipe, jetted out from the outlet end of the pipe, mixed with the combustion gas from the first-stage catalyst-filled section, and then passed through the second-stage catalyst-filled section for combustion. The catalyst in the first half is further composed of multiple types of catalysts, the first half is a catalyst mainly composed of Pd, and the second half is a catalyst containing Pd as a main component.
A gasta catalyst characterized by being a catalyst mainly containing t is stabilized zirconia doped with at least one of Go, Ni, and Cr, or Co and Ni. Using a catalyst such as Cr alumina spinel, lanthanum chromite, or lanthanum chromite doped with at least one of Ni and Co, the adiabatic flame temperature of the mixed gas of fuel and air to the catalyst filling section is 800 to 12
00℃, and at the same time the adiabatic flame temperature of the mixture supplied to the second stage catalyst filling section is 1200 to 1600℃.
A gas turbine combustion method characterized in that fuel is supplied from a fuel pipe passing through a first stage catalyst filling section such that
JP58173101A 1983-09-21 1983-09-21 Combustion in gas turbine Pending JPS6066022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173101A JPS6066022A (en) 1983-09-21 1983-09-21 Combustion in gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173101A JPS6066022A (en) 1983-09-21 1983-09-21 Combustion in gas turbine

Publications (1)

Publication Number Publication Date
JPS6066022A true JPS6066022A (en) 1985-04-16

Family

ID=15954191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173101A Pending JPS6066022A (en) 1983-09-21 1983-09-21 Combustion in gas turbine

Country Status (1)

Country Link
JP (1) JPS6066022A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259758A2 (en) * 1986-09-01 1988-03-16 Hitachi, Ltd. Method for controlling a catalytic combustor of a gas turbine
FR2613042A1 (en) * 1987-03-23 1988-09-30 Westinghouse Electric Corp METHOD FOR REDUCING THE EMISSIONS OF NITROGEN OXIDES FROM A FIXED FUEL TURBINE
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
WO2003087672A1 (en) * 2002-04-10 2003-10-23 The Boeing Company A catalytic combustion system and method of operating a gas turbine incorporating such a system
US7017329B2 (en) 2003-10-10 2006-03-28 United Technologies Corporation Method and apparatus for mixing substances
US7111463B2 (en) 2004-01-23 2006-09-26 Pratt & Whitney Rocketdyne Inc. Combustion wave ignition for combustors
US7117674B2 (en) 2002-04-10 2006-10-10 The Boeing Company Catalytic combustor and method for substantially eliminating various emissions
US7127899B2 (en) 2004-02-26 2006-10-31 United Technologies Corporation Non-swirl dry low NOx (DLN) combustor
US7140184B2 (en) 2003-12-05 2006-11-28 United Technologies Corporation Fuel injection method and apparatus for a combustor
US7469544B2 (en) 2003-10-10 2008-12-30 Pratt & Whitney Rocketdyne Method and apparatus for injecting a fuel into a combustor assembly
EP1650499A3 (en) * 2004-10-20 2009-05-06 United Technologies Corporation Method and system for rich-lean catalytic combustion
US8196848B2 (en) 2005-04-29 2012-06-12 Pratt & Whitney Rocketdyne, Inc. Gasifier injector

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259758A2 (en) * 1986-09-01 1988-03-16 Hitachi, Ltd. Method for controlling a catalytic combustor of a gas turbine
FR2613042A1 (en) * 1987-03-23 1988-09-30 Westinghouse Electric Corp METHOD FOR REDUCING THE EMISSIONS OF NITROGEN OXIDES FROM A FIXED FUEL TURBINE
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
WO2003087672A1 (en) * 2002-04-10 2003-10-23 The Boeing Company A catalytic combustion system and method of operating a gas turbine incorporating such a system
US7117674B2 (en) 2002-04-10 2006-10-10 The Boeing Company Catalytic combustor and method for substantially eliminating various emissions
US7017329B2 (en) 2003-10-10 2006-03-28 United Technologies Corporation Method and apparatus for mixing substances
US7469544B2 (en) 2003-10-10 2008-12-30 Pratt & Whitney Rocketdyne Method and apparatus for injecting a fuel into a combustor assembly
US7516607B2 (en) 2003-10-10 2009-04-14 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for mixing substances
US7997058B2 (en) 2003-10-10 2011-08-16 Pratt & Whitney Rocketdyne, Inc. Apparatus for mixing substances
US7140184B2 (en) 2003-12-05 2006-11-28 United Technologies Corporation Fuel injection method and apparatus for a combustor
US7111463B2 (en) 2004-01-23 2006-09-26 Pratt & Whitney Rocketdyne Inc. Combustion wave ignition for combustors
US8356467B2 (en) 2004-01-23 2013-01-22 Pratt & Whitney Rocketdyne, Inc. Combustion wave ignition for combustors
US7127899B2 (en) 2004-02-26 2006-10-31 United Technologies Corporation Non-swirl dry low NOx (DLN) combustor
EP1650499A3 (en) * 2004-10-20 2009-05-06 United Technologies Corporation Method and system for rich-lean catalytic combustion
US8196848B2 (en) 2005-04-29 2012-06-12 Pratt & Whitney Rocketdyne, Inc. Gasifier injector

Similar Documents

Publication Publication Date Title
JPS6066022A (en) Combustion in gas turbine
JP2698134B2 (en) Method of controlling combustion emissions and emissions combustors
US5946917A (en) Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine
US6189310B1 (en) Combined gas turbine power system using catalytic partial fuel oxidation
JPH0153579B2 (en)
JPS59107119A (en) Combustion of gas turbine
RU2143643C1 (en) Burner, in particular for gas turbine
JPS59180220A (en) Gas turbine combustor
Dalla Betta et al. Development of a catalytic combustor for a heavy-duty utility gas turbine
JPS61237905A (en) Combustion method of methane fuel by contact combustion catalyst system
JPS60122807A (en) Low nitrogene oxide combustion
JP2672510B2 (en) Catalytic combustion type gas turbine combustor
Beebe et al. Design and test of a catalytic combustor for a heavy duty industrial gas turbine
JPH1073254A (en) Low nox combustion device
JPH0472984B2 (en)
JPS5969627A (en) Combustion method of gas turbine utilizing coal gas as fuel
JP2634279B2 (en) Method for burning NOx-containing gas
JPS60202206A (en) Low nox combustion apparatus
JPS58184427A (en) Combustor for gas turbine
JP3087266U (en) Structure of catalytic combustion device
JPS6014017A (en) Gas turbine combustor
JPS62141425A (en) Gas turbine combustor
JPS5924122A (en) Combustor for gas turbine
JPH0419449B2 (en)
JPH0617733B2 (en) Catalyst burner