JPS60202206A - Low nox combustion apparatus - Google Patents
Low nox combustion apparatusInfo
- Publication number
- JPS60202206A JPS60202206A JP59058116A JP5811684A JPS60202206A JP S60202206 A JPS60202206 A JP S60202206A JP 59058116 A JP59058116 A JP 59058116A JP 5811684 A JP5811684 A JP 5811684A JP S60202206 A JPS60202206 A JP S60202206A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- stage
- catalyst
- combustion
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、低NOx燃焼器に係り、特にガスターヒン発
電システムに使用するガスタービン燃焼器に適した触媒
燃焼方式による低NOx燃焼器に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a low NOx combustor, and particularly to a low NOx combustor using a catalytic combustion method suitable for a gas turbine combustor used in a gas turbine power generation system.
近年、石油資源等の枯渇化に伴ない、穐々の代替エネル
ギーが要求されでいるが、同時に、エネルギー資源の効
率的使用も要求されCいる。これらの要求に答えるもの
の中には、例えば、燃料とし゛C天然ガスを使用するガ
スタービン・スチームタービン複合サイクル発電システ
ム或いは石炭ガス化ガスタービン・スチームタービン複
合サイクル発電システムがあり、現在検討されつつある
。In recent years, with the depletion of petroleum resources and the like, there has been a demand for alternative energy sources, but at the same time there has been a demand for efficient use of energy resources. Examples of systems that can meet these demands include gas turbine/steam turbine combined cycle power generation systems that use C natural gas as fuel, or coal gasification gas turbine/steam turbine combined cycle power generation systems, which are currently being studied. .
これらのガスタービン・スチームタービン複合サイクル
発電システムは、化石燃料を使用した従来のスチームタ
ービンによる発電システムに比較して、発電効率が高い
ために、将来、その生産量の増加が予想される天然ガス
や石炭ガス化ガス等の燃料を、有効に電力に変換できる
発電システムとして期待されCいる。These gas turbine/steam turbine combined cycle power generation systems have higher power generation efficiency than conventional steam turbine power generation systems that use fossil fuels, so natural gas production is expected to increase in the future. It is expected to be a power generation system that can effectively convert fuels such as coal and gasified gas into electricity.
ガスタービン発電システムに使用されCいるガスタービ
ン燃焼器では、従来より、燃料と空気の混合物を、スパ
ークプラグ等を用いC着火して均−系の燃焼を行なっC
いる。このような燃焼器の一例を第1図に示す。第1図
の燃焼器においては、燃料ノズル1から噴射された燃料
が、燃焼用空気3と混合され、スパークプラグ2により
着火され゛C燃焼するものである。そし゛〔、燃焼した
気体すなわち燃焼ガスには、冷却空気4及び希釈空気5
が加えられ゛C1所定のタービン入口温度まで冷却・希
釈された後、タービンノズル6からガスタービン内に噴
射される。8はスワラ−である。このような従来の燃焼
器における重大な問題点の一つは、燃料の燃焼時に多量
のNOxガスが生成し’cm境汚染等を引き起こすこと
である。Conventionally, in gas turbine combustors used in gas turbine power generation systems, a mixture of fuel and air is ignited using a spark plug or the like to perform homogeneous combustion.
There is. An example of such a combustor is shown in FIG. In the combustor shown in FIG. 1, fuel injected from a fuel nozzle 1 is mixed with combustion air 3, ignited by a spark plug 2, and combusted. Then, the combusted gas, that is, the combustion gas, includes cooling air 4 and dilution air 5.
After being cooled and diluted to a predetermined turbine inlet temperature, C1 is injected into the gas turbine from the turbine nozzle 6. 8 is a swirler. One of the serious problems with such conventional combustors is that a large amount of NOx gas is generated during combustion of fuel, resulting in 'cm boundary pollution'.
上記したNOxが生成する理由は、燃料の燃焼時におい
゛C1燃焼器内には部分的に2000℃を超える高温部
が存在するということにある。The reason why the above-mentioned NOx is generated is that during fuel combustion, there is a high-temperature part that exceeds 2000° C. in the C1 combustor.
このようなガスタービン燃焼器の問題点を解決するため
に、種々の燃焼方式が検討されCいる。In order to solve these problems with gas turbine combustors, various combustion systems have been studied.
最近、同相触媒を用いた不均一系燃焼方式(以下、触媒
燃焼方式と称す)が提案され・Cいる。Recently, a heterogeneous combustion method (hereinafter referred to as catalytic combustion method) using an in-phase catalyst has been proposed.
この触媒燃焼方式においては触媒を用い°C1通常の燃
焼器では燃焼しない希薄な燃料を燃焼させることができ
る為、燃焼温度はNOxが発生する程には高温にならな
い。またタービン入口温度も従来のものと変わりなくす
ることが可能である。In this catalytic combustion method, a catalyst is used to combust lean fuel that would not be combusted in a normal combustor (°C1), so the combustion temperature does not become high enough to generate NOx. Furthermore, the turbine inlet temperature can also be kept the same as in the conventional case.
第2図は、触媒燃焼方式に用いる燃焼器の1例の概念図
である。図中の数字はそれぞれ第1図と同じ要素を表わ
す。この燃焼器は触媒充填部7を備えることが構造上の
特徴である。触媒充填部7には、通常、ハニカム構造の
燃焼触媒が充填され’(1/1 ’C、ここで燃料と空
気の混合気体が燃焼させられる。FIG. 2 is a conceptual diagram of an example of a combustor used in the catalytic combustion method. Each number in the figure represents the same element as in FIG. A structural feature of this combustor is that it includes a catalyst filling section 7. The catalyst filling portion 7 is normally filled with a combustion catalyst having a honeycomb structure (1/1 C), in which a mixed gas of fuel and air is combusted.
しかしながらこの触媒燃焼方式にも次のような欠点が存
在する。すなわち、従来から考えられCいる触媒燃焼方
式は、触媒充填部で触媒反応と気相反応による燃焼の両
者によっC燃料が燃焼するため、触媒の温度が高く、触
媒の熱劣化が大きく寿命が短かい。またガスタービン入
口温度の高温化にも触媒の耐熱性の面から対応が困難で
ある等の欠点を有しCいた。そこで本発明者らは、触媒
充填部では触媒反応のみによりC燃料の一部を燃焼する
だけとし、触媒の下流に燃料等を更に追加し、その部分
で気相燃焼(非触媒的な熱燃焼)を起すことによっ゛C
1従来より低い触媒の温度範囲においても長寿命な触媒
燃焼方式を既に提案した。However, this catalytic combustion method also has the following drawbacks. In other words, in the conventional C catalytic combustion method, the C fuel is combusted by both catalytic reaction and gas-phase reaction combustion in the catalyst filling section, so the temperature of the catalyst is high and the thermal deterioration of the catalyst is large, resulting in a shortened lifespan. It's short. Further, it has the disadvantage that it is difficult to cope with an increase in the gas turbine inlet temperature due to the heat resistance of the catalyst. Therefore, the present inventors decided to combust only a part of the C fuel by catalytic reaction in the catalyst-filled part, add fuel etc. further downstream of the catalyst, and use gas-phase combustion (non-catalytic thermal combustion) in that part. ) by causing ゛C
1. We have already proposed a catalytic combustion method that has a long life even in a lower catalyst temperature range than conventional ones.
このように触媒下流域で気相燃焼させ石ことは重要であ
り、本発明者らは既にこの部分に径の拡大による流れの
遅滞あるいは逆流域を設けて気相燃焼部の安定化につい
〔提案し゛〔きた。そこでさらに本発明者らは、触媒を
用いた燃焼器において触媒下流域で気相燃焼をより安定
化することを検討し′τきC本発明に達した。It is important to perform gas-phase combustion in the downstream region of the catalyst, and the present inventors have already proposed a method for stabilizing the gas-phase combustion section by creating a flow retardation or reverse region in this region by increasing the diameter. I came. Therefore, the present inventors further investigated ways to further stabilize gas phase combustion in the downstream region of the catalyst in a combustor using a catalyst, and arrived at the present invention.
本発明は、触媒下流域における非触媒的な熱燃焼(気相
反応燃焼)を一層安定壜ものとし、優れた低NOx燃焼
器を提供することを、目的とする。An object of the present invention is to further stabilize non-catalytic thermal combustion (gas-phase reactive combustion) in the downstream region of the catalyst, and to provide an excellent low NOx combustor.
本発明者らは上記目的を達成すべく鋭意研究を重ねた結
果、触媒下流域に追加する燃料と触媒充填部からの未燃
焼燃料を触媒下流域で気相反応燃焼させる時に、複紮の
流路を有する保炎構造体を設けると効果が有ることを見
い出した。この保炎構造体としては、パイプを複数束ね
たもの、あるいは、ハニカム構造の構造物などが上げら
れる。As a result of extensive research to achieve the above object, the present inventors have found that when the fuel added to the downstream region of the catalyst and the unburned fuel from the catalyst filling section are subjected to gas-phase reaction combustion in the downstream region of the catalyst, a double ligature flow is generated. It has been found that providing a flame-holding structure with channels is effective. Examples of this flame-holding structure include a plurality of pipes bundled together, a honeycomb structure, and the like.
また、材質としては、耐熱性、高熱容量を有するものを
用いる事が好ましく、例えばA40g 、 Zr01等
のセラミックスを用いる事が好しい。本発明の効果の原
因についCは必ずしも明らかでないが、触媒充填部にお
いて、流出物の温度が上昇しCいるうえ、燃料濃度も高
くなった燃焼性ガスが本発明の保炎構造体中の流路を通
過する際に、との流路の内表面での輻射及び対流等によ
り°〔エネルギーを得て燃焼が加速される為、安定した
燃焼を維持する保炎効果を生じるものと思われる。なお
保炎構造体の流路においC発せられるエネルギーは、保
炎構造体の後半部で燃焼した高温度のガスが保掛構遺体
の後半部を加熱し、その熱が保炎構造体前半に伝導しC
き〔いるものと考えられる。Further, as for the material, it is preferable to use a material having heat resistance and high heat capacity, for example, it is preferable to use ceramics such as A40g and Zr01. Although the cause of the effect of the present invention is not necessarily clear, the temperature of the effluent increases in the catalyst filling section, and the combustible gas with increased fuel concentration flows into the flame stabilizing structure of the present invention. When passing through the channel, combustion is accelerated by acquiring energy through radiation and convection on the inner surface of the channel, which is thought to produce a flame-holding effect that maintains stable combustion. The energy emitted in the flow path of the flame-holding structure is caused by the high-temperature gas combusted in the rear half of the flame-holding structure heating the latter half of the body, and the heat being transferred to the front half of the flame-holding structure. conduction C
It is thought that there is a
もちろん、燃焼開始時からこの効果は生じるわけではな
く、最初は、強制的に外部からエネルギーを与え〔、燃
焼を開始する必要がある。この強制的にエネルギーを与
える手段とし′Cはスパークプラグ等の点火源、あるい
は補助バーナー等が考える
られt≠。゛りまり一度この複数の流路をもつ保炎構造
体内で燃焼が開始すればその後は前述した機構によっ〔
安定した気相反応燃焼が継続する事となる。Of course, this effect does not occur from the start of combustion; initially, it is necessary to forcibly apply energy from the outside to start combustion. The means for forcibly applying energy may be an ignition source such as a spark plug, or an auxiliary burner. Once combustion starts within this flame-holding structure with multiple flow paths, the mechanism described above will
Stable gas phase reaction combustion continues.
本発明に用いる保炎構造体に設けられる流路の相当径(
円面積に換等した際の直径)は、5■〜200mm程度
で効果が有るが相当径が大きすぎると輻射及び対流によ
る伝熱表面が減少し、また相当径が小さいと圧力損失が
大きくなり好しくない。The equivalent diameter of the flow path provided in the flame-holding structure used in the present invention (
It is effective if the diameter (converted to a circular area) is about 5 mm to 200 mm, but if the equivalent diameter is too large, the heat transfer surface due to radiation and convection will be reduced, and if the equivalent diameter is small, the pressure loss will increase. I don't like it.
なお上記相当径は運転条件にもよるが、実用上10〜5
0IIIll程度が好しい。Although the above equivalent diameter depends on the operating conditions, it is practically 10 to 5.
About 0IIIll is preferable.
本発明に係る低NOx燃焼器例を第3図に示した。An example of a low NOx combustor according to the present invention is shown in FIG.
第3図においC1燃料ノズル1から燃料を注入しスパー
クプラグ2で点火し燃焼させる。この部分は、いわゆる
予燃焼部であって、触媒充填部7の触媒が作用する温度
までガス温度を上昇させるものであり、燃料の種類や触
媒の種類によりCは必要が9いとともあり、本発明に必
ずしも必要なわけではない。触媒が作用する温度になり
た予燃焼排ガスと燃焼用空気3との混合気体に、燃料ノ
ズル9から触媒充填部7へ供給される燃料が供給、−混
合される事により所望の混合気体が得られる。In FIG. 3, fuel is injected from the C1 fuel nozzle 1, ignited by the spark plug 2, and combusted. This part is the so-called pre-combustion part, which raises the gas temperature to the temperature at which the catalyst in the catalyst filling part 7 acts. Not necessarily necessary for invention. The fuel supplied from the fuel nozzle 9 to the catalyst filling part 7 is supplied to the mixture of pre-combusted exhaust gas and combustion air 3, which has reached the temperature at which the catalyst acts, and is mixed to obtain a desired mixture of gas. It will be done.
触媒充填部7では触媒反応のみによっC燃料の一部が燃
焼されガスの温度がさらに上昇する。そこに燃料ノズル
10からは、さらに燃料が追加され、複数の流路を持つ
保炎構造体11を通過する間に未燃焼の燃料が完全燃焼
する。なお第3図においで1燃焼を開始する時には、1
2で示したスパークプラグによっ゛C点火する。この時
、一時的に燃料ノズル10からの燃料を増加すると着火
が容易−例の斜視図を示す。この場合は、格子状の断面
を持つものの例である。第5図に′、流れに平行な流路
を複数も・り構造物のエレメントであるアルミナ製のセ
ラミックスパイプを示した。これを複数本束ねた保炎構
造体を第3図の11の部分に設置し′Cも良い。第6図
に本発明例の他の1例を示した。第6図におい′Cは、
第5図のような予燃焼部が無く、触媒充填部7に供給さ
れる燃料は、燃料ノ”ズル9より供給される。燃料ノズ
ル10からの燃料と触媒充填部7からの流出物は流れに
平行な流路を複数持つ保炎構造体に付給される。In the catalyst filling section 7, a part of the C fuel is combusted only by the catalytic reaction, and the temperature of the gas further increases. Further fuel is added from the fuel nozzle 10, and the unburned fuel is completely combusted while passing through the flame holding structure 11 having a plurality of flow paths. In addition, in Figure 3, when starting 1 combustion, 1
Ignition ``C'' using the spark plug shown in 2. At this time, if the amount of fuel from the fuel nozzle 10 is temporarily increased, ignition is facilitated. An example perspective view is shown. This case is an example of one having a grid-like cross section. Fig. 5' shows an alumina ceramic pipe which is an element of the structure and has a plurality of flow channels parallel to the flow. It is also possible to install a flame-holding structure made by bundling a plurality of these flame-holding structures at the part 11 in FIG. 3. FIG. 6 shows another example of the present invention. In Figure 6, 'C' is
There is no pre-combustion section as shown in Fig. 5, and the fuel supplied to the catalyst filling section 7 is supplied from the fuel nozzle 9.The fuel from the fuel nozzle 10 and the effluent from the catalyst filling section 7 flow It is attached to a flame-holding structure that has multiple flow paths parallel to the .
次に本発明の効果を模擬燃焼器を用いた実施例によっ゛
〔示す。Next, the effects of the present invention will be illustrated by an example using a simulated combustor.
第7図に実験装置の模式図を示した。触媒15はハニカ
ム形状のパラジウム系触媒を長さ10倒にわたっ゛〔充
填した。なお触媒の径は200■グとした。400℃に
加熱した空気13と燃料14とを混合した混合気体を触
媒15を通した。流れに平行な複数の流路を−もつ保炎
構造体18として線断面が正方形で流路−辺の長さが6
0−1流路を隔てる筒壁の厚さが8簡のセラミックス製
(Azt oJのものを用い九〇またこれが設置され”
Cいる部位の径は36ケとした。なお比較の為に前記保
炎構造体18を取り除い゛C実験した。実験条件は触媒
入口での流速が35m/secとなるように空気13の
量を調整した。燃料14.16は天然ガスを用い、触媒
入口での理論断熱火炎温度が1000℃となる濃度とし
た。燃料16を増加し、°着火後、この量を減少し“C
いり走時に燃焼効率が97%を切る時の装置全体とし′
Cの理論断熱火炎温度を比較し′C表に示した。なお触
媒は電気炉1000℃で4000時間加熱して強制的に
劣化を進行させたものを用いたO
表
〔発明の効果〕
以上の説明で明らかなよう罠、本発明の燃焼器は触媒を
出゛Cからの気相反応燃焼の安定化に効果が有り、広い
運転条件において安定した燃焼が得られることがわかる
。Figure 7 shows a schematic diagram of the experimental apparatus. The catalyst 15 was filled with a honeycomb-shaped palladium catalyst over a length of 10 times. The diameter of the catalyst was 200 μg. A mixed gas of air 13 and fuel 14 heated to 400° C. was passed through catalyst 15 . The flame holding structure 18 has a plurality of channels parallel to the flow, and the line cross section is square and the length of the channel side is 6.
The cylindrical wall that separates the 0-1 flow path is made of ceramics (made by AztoJ) and has a thickness of 8. This was also installed.
The diameter of the part with C was 36 pieces. For comparison, an experiment was conducted with the flame holding structure 18 removed. As for the experimental conditions, the amount of air 13 was adjusted so that the flow velocity at the catalyst inlet was 35 m/sec. Natural gas was used as fuel 14.16, and the concentration was such that the theoretical adiabatic flame temperature at the catalyst inlet was 1000°C. Increase the amount of fuel 16, and after ignition, reduce this amount to "C"
The entire system when the combustion efficiency is less than 97% during running.
The theoretical adiabatic flame temperatures of C were compared and shown in Table 'C. The combustor of the present invention uses a catalyst that has been heated for 4000 hours in an electric furnace at 1000°C to forcibly deteriorate the catalyst. It can be seen that this method is effective in stabilizing gas phase reaction combustion from carbon, and stable combustion can be obtained under a wide range of operating conditions.
第1図は、通常のガスタービン燃焼器の概略断面図。
右
第2図は、従来の触媒燃焼ろ式のガスタービン燃焼器の
概略断面図。
第3図は、本発明によるガスタービン燃焼器の概略断面
図。
第4図は、本発明に用いる保炎構造体の一例を示す斜視
図。
第5図は、本発明に用いる保炎構造体を構成するユニッ
トを示す斜視図。
第6図は、本発明によるガスタービン燃焼器の一例を示
す概略断面図。
第7図は、実施例の模擬実験に用いた燃焼器の模式断面
図である。
1、1’、 9.10.16. ・・・燃料ノズル。
2、12.17.・・・スパークグラブ。
3・・・燃焼用空気、4・・・希釈空気。
5・・・冷却空気、 6・・・タービンノズル。
7・・・触媒充填部、8・・・スワラ−911,18,
・・・流れに平行な流路を複数持つ構造物。
13 ・・・空気、14・・・燃料。
15 ・・・触媒。
代理人 弁理士 則 近 憲 佑
(他1名ン
第 5 図
第 7 図FIG. 1 is a schematic cross-sectional view of a typical gas turbine combustor. Figure 2 on the right is a schematic cross-sectional view of a conventional catalytic combustion filter type gas turbine combustor. FIG. 3 is a schematic cross-sectional view of a gas turbine combustor according to the present invention. FIG. 4 is a perspective view showing an example of a flame-holding structure used in the present invention. FIG. 5 is a perspective view showing a unit constituting the flame stabilizing structure used in the present invention. FIG. 6 is a schematic cross-sectional view showing an example of a gas turbine combustor according to the present invention. FIG. 7 is a schematic cross-sectional view of the combustor used in the simulation experiment of the example. 1, 1', 9.10.16. ...Fuel nozzle. 2, 12.17. ...Spark Grab. 3... Combustion air, 4... Dilution air. 5... Cooling air, 6... Turbine nozzle. 7... Catalyst filling part, 8... Swirler-911, 18,
...A structure with multiple channels parallel to the flow. 13...Air, 14...Fuel. 15...Catalyst. Agent: Patent attorney Kensuke Chika (and 1 other person) Figure 5 Figure 7
Claims (1)
空気ど′の混合気体を触媒に接触させて前記混合気体の
一部を触媒反応のみによっ゛C燃焼する第2の段階と;
第2の段階からの流出物に燃料あるいは燃料を主体とし
た混合物をさらに加え゛C1非触媒的な熱燃焼(気相反
応燃胤を行なわせる第3の段階とを具備し、かつ第3の
段階中に複数の流路を有する保炎構造体を設けた事を特
徴とする低N03C燃焼器。 2)前記の第3の段階に点火源がある事を特徴とする特
許請求の範囲第1項記載の低NOx燃焼器。 3)前記の第3の段階に設置される保炎構造体を流れに
平行な複数の流路を有するセラミックスで構成した事を
特徴とする特許請求の範囲第1項記載の低NOx燃焼器
。[Scope of Claims] 1) A first step of mixing fuel and air; bringing the mixed gas of the fuel and air into contact with a catalyst to convert a portion of the mixed gas into carbon by only a catalytic reaction; a second stage of combustion;
a third stage in which a fuel or fuel-based mixture is further added to the effluent from the second stage; A low N03C combustor, characterized in that a flame holding structure having a plurality of flow paths is provided in the stage. 2) Claim 1, characterized in that an ignition source is provided in the third stage. Low NOx combustor as described in section. 3) The low NOx combustor according to claim 1, wherein the flame stabilizing structure installed at the third stage is made of ceramic having a plurality of flow paths parallel to the flow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058116A JPS60202206A (en) | 1984-03-28 | 1984-03-28 | Low nox combustion apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058116A JPS60202206A (en) | 1984-03-28 | 1984-03-28 | Low nox combustion apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60202206A true JPS60202206A (en) | 1985-10-12 |
JPH0463964B2 JPH0463964B2 (en) | 1992-10-13 |
Family
ID=13075007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59058116A Granted JPS60202206A (en) | 1984-03-28 | 1984-03-28 | Low nox combustion apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60202206A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3636024A1 (en) * | 1986-10-23 | 1988-05-05 | Rheinische Braunkohlenw Ag | POWER PLANT PROCESS WITH A GAS TURBINE |
EP0784188A1 (en) * | 1996-01-15 | 1997-07-16 | Institut Francais Du Petrole | Catalytic combustion process with staged fuel injection |
EP0784187A1 (en) * | 1996-01-15 | 1997-07-16 | Institut Francais Du Petrole | Catalytic combustion system with staged fuel injection |
-
1984
- 1984-03-28 JP JP59058116A patent/JPS60202206A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3636024A1 (en) * | 1986-10-23 | 1988-05-05 | Rheinische Braunkohlenw Ag | POWER PLANT PROCESS WITH A GAS TURBINE |
EP0784188A1 (en) * | 1996-01-15 | 1997-07-16 | Institut Francais Du Petrole | Catalytic combustion process with staged fuel injection |
EP0784187A1 (en) * | 1996-01-15 | 1997-07-16 | Institut Francais Du Petrole | Catalytic combustion system with staged fuel injection |
FR2743616A1 (en) * | 1996-01-15 | 1997-07-18 | Inst Francais Du Petrole | CATALYTIC COMBUSTION SYSTEM WITH STAGE FUEL INJECTION |
FR2743511A1 (en) * | 1996-01-15 | 1997-07-18 | Inst Francais Du Petrole | CATALYTIC COMBUSTION PROCESS WITH INJECTION OF FUEL |
Also Published As
Publication number | Publication date |
---|---|
JPH0463964B2 (en) | 1992-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0356092B1 (en) | Gas turbine combustor | |
JPH08189380A (en) | Fuel reforming device and power generating system with it | |
JPS6066022A (en) | Combustion in gas turbine | |
JPS61259013A (en) | Catalyst combustion device | |
JP3922115B2 (en) | Low NOx combustion method for gas turbine and low NOx combustor | |
JPS60202206A (en) | Low nox combustion apparatus | |
JP2843035B2 (en) | Gas turbine combustor | |
CN207648854U (en) | A kind of soft homogeneous catalysis burner | |
CN109751622A (en) | A kind of compound soft catalytic combustion system | |
JP3706455B2 (en) | Hydrogen / oxygen combustor for hydrogen combustion turbine | |
JPS59180220A (en) | Gas turbine combustor | |
JPH0245772B2 (en) | ||
JPS60122807A (en) | Low nitrogene oxide combustion | |
JP2672510B2 (en) | Catalytic combustion type gas turbine combustor | |
JPS59170622A (en) | Combustor for gas turbine | |
JPH0311588Y2 (en) | ||
JPS59167621A (en) | Catalyst burner | |
JPH02217718A (en) | Gas turbine combustor | |
JPS59108829A (en) | Gas turbine combustor | |
JPS6179917A (en) | Catalyst combustor | |
JPS62141425A (en) | Gas turbine combustor | |
JPH0381047B2 (en) | ||
JP2500349B2 (en) | Low NOx burner for high temperature combustion gas generation | |
JPS5913830A (en) | Combustor of gas turbine | |
JPS58184427A (en) | Combustor for gas turbine |