JPS60186622A - Catalytic burner - Google Patents

Catalytic burner

Info

Publication number
JPS60186622A
JPS60186622A JP59041909A JP4190984A JPS60186622A JP S60186622 A JPS60186622 A JP S60186622A JP 59041909 A JP59041909 A JP 59041909A JP 4190984 A JP4190984 A JP 4190984A JP S60186622 A JPS60186622 A JP S60186622A
Authority
JP
Japan
Prior art keywords
combustion
catalyst body
catalyst
gas
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59041909A
Other languages
Japanese (ja)
Inventor
Chikau Yamanaka
矢 山中
Tomiaki Furuya
富明 古屋
Terunobu Hayata
早田 輝信
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59041909A priority Critical patent/JPS60186622A/en
Priority to EP84114852A priority patent/EP0144094B1/en
Priority to DE8484114852T priority patent/DE3474714D1/en
Publication of JPS60186622A publication Critical patent/JPS60186622A/en
Priority to US07/042,630 priority patent/US4731989A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To form a low NOx catalytic burner provided with a long-hour durability and capable of effecting a stable gaseous phase combustion in the downstream of a catalyst body by causing only a catalyst reaction combustion due to a catalytic reaction within the catalyst body to provide a non-steamlined body in the downstream of the catalyst body. CONSTITUTION:The mixing ratio, flow rate and the like of a gaseous mixture are controlled and the dimension of a catalyst body is suitably selected, whereby only the catalytic reaction combustion is caused in the catalyst body and at least a part of the fuel is burnt to generate a complex gas the temperature of which is increased. The complex gas flowing out of the catalyst body 7 is subjected to gaseous phase combustion in the downstream of the catalyst body. A non-steamlined type body 8 is placed in the downstream of the catalyst body, and the complex gas from which the catalyst body has flowed generates a vortex flow by the non-steamlined body. This vortex flow forms a closed circulating region. While a part of an ambient unburnt gaseous mixture is taken thereinto and stirred, the combustion proceeds and turned into a cumbustion gas of a high temperature. The high-temperature gas further heats the ambient unburnt gaseous mixture and simultaneously supplies active chemical pilot flame to play a role of a firing source to bring forth a flame holding effect.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、触媒燃焼方式を用いた燃焼器に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a combustor using a catalytic combustion method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油資源等の枯渇に伴ない、種々の代替エネルギ
ーが要求されているが、同時に、エネルギー資源の効率
的使用も要求されている。これらの要求に応えるものの
中に、例えば、燃料として天然ガスを使用するガスター
ビン・スチームタービン複合サイクル発電システム、若
しくは石炭ガス化ガスタービン−スチームタービン複合
サイクル発電システムがある。これらの発電システムは
In recent years, with the depletion of petroleum resources and the like, various alternative energies have been required, and at the same time, efficient use of energy resources has also been required. Examples of systems that meet these demands include gas turbine/steam turbine combined cycle power generation systems that use natural gas as fuel, or coal gasification gas turbine/steam turbine combined cycle power generation systems. These power generation systems.

化石燃料を使用した従来のスチームタービンによる発電
システムに比較してその発電効率が高いので、将来その
使用量の増加が予想される天然ガスや石炭ガス化ガス等
の燃料を有効に電力に変換できる発電システムとして期
待されている。
Its power generation efficiency is higher than that of conventional steam turbine power generation systems that use fossil fuels, so it can effectively convert fuels such as natural gas and coal gasified gas, whose usage is expected to increase in the future, into electricity. It is expected to be used as a power generation system.

ガスタービン発電システムに使用されているガスタービ
ン燃蝉器では、従来から、燃料と燃焼用空気の混合ガス
をスパークプラグ等により着火してなる均一系燃焼方式
が採用されている。このような燃焼器の1例の概念断面
図を第1図にしめす。
BACKGROUND ART Conventionally, a gas turbine burner used in a gas turbine power generation system employs a homogeneous combustion method in which a mixed gas of fuel and combustion air is ignited by a spark plug or the like. A conceptual cross-sectional view of one example of such a combustor is shown in FIG.

第1図の燃焼器では、燃料ノズル1から噴射された燃料
は燃焼用空気3と混合されたのち、スパークプラグ2に
より着火されて燃焼する。燃焼した気体、すなわち、燃
焼ガスには冷却空気4及び希釈空気5が添加されて所定
のガスタービン入口温度にまで冷却・希釈されたのち、
タービンノズル6からガスタービン内に噴射される。図
で8はスワラ−である。
In the combustor shown in FIG. 1, fuel injected from a fuel nozzle 1 is mixed with combustion air 3, and then ignited by a spark plug 2 and combusted. Cooling air 4 and dilution air 5 are added to the burned gas, that is, the combustion gas, and after cooling and diluting it to a predetermined gas turbine inlet temperature,
The gas is injected from the turbine nozzle 6 into the gas turbine. In the figure, 8 is a swirler.

例示した従来の燃焼器における最大の問題点の1つは、
燃料の燃焼時に多量の窒素酸化物(以下。
One of the biggest problems with the conventional combustor is:
During the combustion of fuel, large amounts of nitrogen oxides (see below) are produced.

NOx という)が生成して環境汚染等を引き起すこと
である。このNOxが生成する理由は、燃料の燃焼時に
、燃焼器内に1500℃を超える高温部が存在すること
にある。
NOx) is produced and causes environmental pollution. The reason why this NOx is generated is that a high temperature area exceeding 1500° C. exists in the combustor when fuel is combusted.

このような問題点を解決するために、種々の燃焼方式が
検討されておシ、最近では、同相触媒を用いた不均一系
燃焼方式(以下、触媒燃焼方式という)が提案されてい
る。
In order to solve these problems, various combustion methods have been studied, and recently, a heterogeneous combustion method using an in-phase catalyst (hereinafter referred to as a catalytic combustion method) has been proposed.

この触媒燃焼方式は、燃料と燃焼用空気の混合ガスを触
媒を用いて燃焼させる方式である。この方式によれば、
比較的低温で燃焼を開始することができ、さらに第1図
に示したような燃焼方式と比べて多量の燃焼用空気を燃
料と混合して燃焼させることができるため、燃焼の最高
温度が低くなシ、冷却用および希釈用空気はほとんどあ
るいは全く必要としない。従ってNOxの発生量を極め
て少なくすることが可能になる。第2図は、上記した触
媒燃焼方式を用いた燃焼器の1例の概念断面図であシ、
図中の数字はそれぞれ第1図と同じ要素を表わす。この
燃焼器は触媒部を備えていることが構造上の特徴である
。この触媒部には、ノ・ニカム構造の触媒体7が充填さ
れている。
This catalytic combustion method is a method in which a mixed gas of fuel and combustion air is combusted using a catalyst. According to this method,
Combustion can start at a relatively low temperature, and compared to the combustion method shown in Figure 1, a large amount of combustion air can be mixed with the fuel for combustion, so the maximum temperature of combustion is low. However, little or no cooling and dilution air is required. Therefore, it is possible to extremely reduce the amount of NOx generated. FIG. 2 is a conceptual cross-sectional view of an example of a combustor using the catalytic combustion method described above.
Each number in the figure represents the same element as in FIG. A structural feature of this combustor is that it includes a catalyst section. This catalyst section is filled with a catalyst body 7 having a no-nicum structure.

従来の触媒体においては、触媒体との反応によ相燃焼と
が通常起こる。触媒体入口部においては、混合ガスの温
度が該混合ガスの着火温度よシ低いためこの領域では、
気相燃焼は起こらず触媒体表面における接触による触媒
反応燃焼のみが起こり熱を発生する。未燃の混合ガスは
、この熱を受けて加熱される。そして、前記混合ガスの
着火温度にまで昇温すると、燃焼は触媒体表面だけでな
く触媒体近辺の領域でも生じて、気相燃焼をもおこす。
In conventional catalytic bodies, reaction with the catalytic body typically results in phase combustion. At the inlet of the catalyst body, the temperature of the mixed gas is lower than the ignition temperature of the mixed gas, so in this region,
Gas phase combustion does not occur, only catalytic reaction combustion due to contact on the surface of the catalyst occurs, generating heat. The unburned mixed gas receives this heat and is heated. When the temperature of the mixed gas is raised to the ignition temperature, combustion occurs not only on the surface of the catalyst but also in the vicinity of the catalyst, resulting in gas phase combustion.

この領域で社逆に気相部によυ触媒体が加熱されて高温
になり、その結果触媒活性が著しく低下したり、触媒体
が溶けたりして、触媒体の寿命を著しく短くする原因に
なる。
In this region, the υcatalyst is heated by the gas phase and reaches a high temperature, resulting in a significant decrease in catalytic activity and melting of the catalyst, significantly shortening the life of the catalyst. Become.

ところで、ガスタービンで要求されるタービンへ噴出す
る燃焼ガスの温度はおよそ1100℃程度であるため、
燃料と燃焼用空気とからなる混合ガスをすべて触媒体内
において燃焼させて前記1100℃程度まで燃焼ガスの
温度を昇温した場合も、上述のように触媒体の温度はか
なシ高温になる。本発明者らの実験でも触媒体の温度は
1000℃〜1300℃というデータが得られ、触媒体
の一部が溶けて破損しているのが観察されている。この
1100℃〜1300℃という高温に長期間耐え得る触
媒体はないのが現状であり、このような高温の燃焼ガス
を要求された場合、従来の触媒燃焼器ではその運用性困
難であり、効率も非常に悪くなる等の欠点を有していた
By the way, since the temperature of the combustion gas injected into the turbine required in a gas turbine is approximately 1100°C,
Even when all the mixed gas consisting of fuel and combustion air is combusted in the catalyst body and the temperature of the combustion gas is raised to about 1100° C., the temperature of the catalyst body becomes extremely high as described above. In experiments conducted by the present inventors, data that the temperature of the catalyst body was 1000°C to 1300°C was obtained, and it was observed that a part of the catalyst body was melted and damaged. Currently, there is no catalyst that can withstand this high temperature of 1100°C to 1300°C for a long period of time, and when such high-temperature combustion gas is required, it is difficult for conventional catalytic combustors to operate and reduce efficiency. It also had drawbacks such as being very bad.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる点に鑑みなされたもので、長時間の耐
久性を備えさらに触媒体下流における安することを目的
とする。
The present invention has been made in view of this point, and aims to provide a catalyst with long-term durability and to be inexpensive downstream of the catalyst.

〔発明の概要〕[Summary of the invention]

本発明者らは鋭意研究した結果、触媒体下流における気
相燃焼を有効に利用し、触媒体への負荷を低減した触媒
燃焼器を見い出した。すなわち、燃料および燃焼用空気
からなる混合ガスをすべて触一体内で燃焼;させるので
はなく、触媒体内では触媒反応による触媒反応燃焼だけ
をおこし、さらに、触媒体下流における気相燃焼を利用
して未燃物を燃焼させることによシ、触媒体の温度を該
触媒体の1lli4熱温度以下に保ち、もって触媒体の
劣化をおさえて長寿命化をはかった。そして前記触媒体
下流においては、必要に応じて補助燃料等を加えて、気
相燃焼を促進させる。ここで、触媒体下流における前記
気相燃焼において、安定に保炎しさらに未燃燃料等の混
合を促進させて、部分的な燃ネ・1の高f%度化による
高温化でのNOxの発生をもさけるためK、触媒体下流
に非流線形体を設けたことが本発明の特徴である。
As a result of extensive research, the present inventors have discovered a catalytic combustor that effectively utilizes gas phase combustion downstream of the catalyst and reduces the load on the catalyst. In other words, instead of combusting all the mixed gas consisting of fuel and combustion air within the catalytic body, only catalytic reaction combustion occurs within the catalytic body, and furthermore, gas-phase combustion downstream of the catalytic body is used. By burning the unburned materials, the temperature of the catalyst body was kept below 1lli4 thermal temperature of the catalyst body, thereby suppressing deterioration of the catalyst body and extending its life. Further, downstream of the catalyst, auxiliary fuel or the like is added as necessary to promote gas phase combustion. Here, in the gas-phase combustion downstream of the catalyst, the flame is stably held, and the mixing of unburned fuel, etc. is promoted, and NOx is reduced at high temperatures due to partial increase in f% of fuel. A feature of the present invention is that a non-streamlined body is provided downstream of the catalyst body in order to avoid this occurrence.

本発明による触媒燃焼器の1例を第3図の概念断面図に
示した。燃焼室内には触媒体7があり、燃焼器の上流端
には、燃料を供給する燃料噴射装置iが設置されて燃料
を噴射し、噴射された燃料に燃焼用空気3が供給されて
混合ガスをなしている。前記混合ガスは触媒体7に流入
し、燃焼をおこして昇温する。ここで、前記混合ガスの
混合比や前記混合ガスの流速等を制御し、触媒体の寸法
を適当に選ぶこと等により、前記触媒体内では触媒反応
燃焼だけをおこして少くとも燃料の一部を燃焼させて昇
温した複合ガスを生成する。そして、触媒体7から流出
した前記複合ガスを、触媒体下流において気相燃焼させ
る。ここで、必要に応じ触媒体下流に備えた補助燃料噴
射装置9および補助燃焼用空気噴射装置10から、補助
燃料および補助燃焼用空気を供給して、より効果的に気
相燃焼をさせることが好ましい。また、NOxは燃焼温
度が1500℃程度以上になると急激に増加発生するた
め、火炎温度が1500℃未満になるように、補助燃料
等の量を調整する必要がある。
An example of a catalytic combustor according to the present invention is shown in the conceptual cross-sectional view of FIG. There is a catalyst body 7 in the combustion chamber, and a fuel injection device i for supplying fuel is installed at the upstream end of the combustor to inject the fuel, and combustion air 3 is supplied to the injected fuel to produce a mixed gas. is doing. The mixed gas flows into the catalyst body 7, causes combustion, and increases the temperature. Here, by controlling the mixing ratio of the mixed gas, the flow rate of the mixed gas, etc., and appropriately selecting the dimensions of the catalyst body, only catalytic reaction combustion is caused in the catalyst body, and at least a part of the fuel is It is combusted to produce a heated composite gas. Then, the composite gas flowing out from the catalyst body 7 is combusted in a gas phase downstream of the catalyst body. Here, if necessary, auxiliary fuel and auxiliary combustion air can be supplied from the auxiliary fuel injection device 9 and the auxiliary combustion air injection device 10 provided downstream of the catalyst body to achieve more effective gas phase combustion. preferable. Further, since NOx rapidly increases when the combustion temperature becomes about 1500°C or more, it is necessary to adjust the amount of auxiliary fuel etc. so that the flame temperature becomes less than 1500°C.

気相燃焼がおこる触媒体下流には非流線形体8がおかれ
ていて、触媒体を流出した複合ガスは、前記非流線形体
によって渦流を発生する。この渦流は閉じた循環領域に
なっており1周囲の未燃混合ガスの一部がこの中に取り
込まれ攪拌される間に燃焼が進行して高温の燃焼ガスと
なる。この高温の燃焼ガスがさらに周囲の未燃混合ガス
を加熱すると同時に活性化学種を供給して、点火源の役
目をはだし、保炎の効果をもたらす。
A non-streamlined body 8 is placed downstream of the catalyst body where gas phase combustion occurs, and the composite gas flowing out of the catalyst body generates a vortex flow by the non-streamlined body. This vortex is a closed circulation area, and a portion of the surrounding unburned mixed gas is taken into this and stirred, while combustion progresses and becomes high-temperature combustion gas. This high-temperature combustion gas further heats the surrounding unburned mixed gas and at the same time supplies active chemical species, serving as an ignition source and providing a flame-holding effect.

また、前記非流線形体に発熱手段を備えることくよシ、
燃焼開始時における。触媒体下流の気相燃焼の着火源と
することができる。すなわち、燃焼開始時に、触媒体に
おける燃焼だけで燃料濃度を高める等して、触媒体下流
における前記気相燃焼が生じる温度にまで昇温すること
も可能であるが、触媒体を高温化することは触媒体への
負荷を増大し、触媒体の寿命を著しく損なう。よって、
触媒体下流には着火源を設けることが望ましいが発熱手
段を備えた前記非流線形体が予熱の効果も含んだ着火源
として好ましく、さらに、燃焼中に燃料と空気との組成
や流量の変動等による温度低下がおこって失火しそうに
なった場合にも、前記発熱手段によって加熱を行なうこ
とにより、失火を未然に防ぐことも可能になる。
Further, the non-streamlined body may include a heat generating means,
at the start of combustion. It can be used as an ignition source for gas phase combustion downstream of the catalyst. That is, at the start of combustion, it is possible to raise the temperature to a temperature at which the gas-phase combustion occurs downstream of the catalyst by increasing the fuel concentration only by combustion in the catalyst, but it is not possible to raise the temperature of the catalyst. increases the load on the catalyst and significantly shortens the life of the catalyst. Therefore,
Although it is desirable to provide an ignition source downstream of the catalyst, the non-streamlined body equipped with a heat generating means is preferable as an ignition source that also has a preheating effect. Even if a misfire is likely to occur due to a temperature drop due to fluctuations in the temperature, the heating means can perform heating, thereby making it possible to prevent the misfire from occurring.

一方、触媒燃焼においては、燃料の種類によっても異な
るが、触媒体との反応を有効におこすために一般に触媒
体へ流入する混合ガスの温度を。
On the other hand, in catalytic combustion, although it varies depending on the type of fuel, the temperature of the mixed gas flowing into the catalyst body is generally controlled in order to effectively cause a reaction with the catalyst body.

ある程度高くする必要がある。現在ガスタービン燃焼器
において、コンプレッサーから供給される燃焼用空気の
温度はおよそ300℃であるが、300℃以上の温度が
必要な場合には、燃料の一部をあらかじめ着火燃焼させ
て昇温する方法がある。しかしながら、燃料の一部を燃
焼させることは、燃焼室内へ供給する混合ガスの酸素濃
度の低下をもたらし、触媒燃焼へ悪影響をもたらすため
、燃料の一部燃焼による混合ガスの昇温にも限度がある
。そこで、第3図におけるA−A’断面図を示した第4
図に表したように、非流線形体8に流通路を設け、燃料
あるいは燃焼用空気を前記流通路に流し、非流線形体壁
を通して熱交換して、昇温した前記燃料あるいは前記燃
焼用空気を触媒体に供給することが可能である。もちろ
ん条件によっては補助燃料あるいは補助燃焼用空気を同
様に昇温しでもなんら差しつかえは々い。そして、その
流量等を調整することによシ、望ましい昇温を得ること
ができる。第3図では図示していないが、非流線形体8
の下流に所定の燃焼ガスの温度を得るために冷却用空気
等を導入してもよい。また。
It needs to be raised to some extent. Currently, in gas turbine combustors, the temperature of the combustion air supplied from the compressor is approximately 300°C, but if a temperature higher than 300°C is required, part of the fuel is ignited and combusted in advance to raise the temperature. There is a way. However, burning part of the fuel causes a decrease in the oxygen concentration of the mixed gas supplied into the combustion chamber, which has an adverse effect on catalytic combustion, so there is a limit to the temperature rise of the mixed gas by partially burning the fuel. be. Therefore, the fourth section showing the AA' cross-sectional view in FIG.
As shown in the figure, a flow path is provided in the non-streamlined body 8, and fuel or combustion air is passed through the flow path, and heat is exchanged through the walls of the non-streamlined body to raise the temperature of the fuel or the combustion air. It is possible to supply air to the catalyst body. Of course, depending on the conditions, there may be no problem in raising the temperature of the auxiliary fuel or the auxiliary combustion air in the same way. By adjusting the flow rate, etc., a desired temperature increase can be obtained. Although not shown in FIG. 3, the non-streamlined body 8
Cooling air or the like may be introduced downstream of the combustion gas in order to obtain a predetermined combustion gas temperature. Also.

こむで用いている燃焼用空気あるいは冷却用空気等は濃
縮され′た酸素等によシなる酸化性気体が用いられても
よいし、窒素あるいはその他の本質的には不活性なガス
がさらに加えられて希釈されてもよい。
The combustion air or cooling air used in the combustion chamber may be an oxidizing gas such as concentrated oxygen, or may be further supplemented with nitrogen or other essentially inert gas. It may also be diluted.

前記非流線形体は、触媒体下流において必要に応じた渦
流を生じる形状をしていればよく、第3図、第4図にお
いて示した非流線形体8は円柱の形状をしているが、こ
の他にもたとえは球1円すい、7字型をなした形状等諸
条件にあわせて選ぶことが可能であり、その個数も単数
あるいは複数であってよい。さらに、場合によっては前
記非流線形体は触媒体の下流にあれば補助燃料噴射装置
等の前に位置してもよい。また材質は耐熱性のあるもの
が要求され、たとえば炭化けい素を主体とした非金属等
を用いることが可能である。
The non-streamlined body may have a shape that generates a vortex flow as required downstream of the catalyst body, and the non-streamlined body 8 shown in FIGS. 3 and 4 has a cylindrical shape. In addition to this, the shapes can be selected according to various conditions, such as a sphere with a cone shape or a seven-figure shape, and the number of shapes may be singular or plural. Further, in some cases, the non-streamlined body may be located downstream of the catalytic body and before an auxiliary fuel injection device or the like. Further, the material is required to be heat resistant, and for example, a non-metal mainly composed of silicon carbide can be used.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第3図に示したような模擬燃焼器を使い、燃料は天然ガ
ス、触媒体としては、直径100 m 、長さ100鴎
の貴金属系ハニカム触媒体を用いて燃焼を行なりすfI
記天然ガス及び燃焼用空気よりなる混合ガスを450℃
まで加熱し、500℃換算で2Q m/ S〜5Qm/
s の流速で触媒体へ流入l−九また、直径30amの
円柱形状をした非流線形体を゛ 触媒体から40+m離
れた下流に設置し、燃焼ガスのサンプリングの位置は触
媒体の下流250mとした。1stI記混合ガスの断熱
火炎温度は1200℃である。流速を変えた時の結果を
第1表に示した。
Example 1 Combustion was carried out using a simulated combustor as shown in Figure 3, using natural gas as the fuel and a noble metal honeycomb catalyst with a diameter of 100 m and a length of 100 m as the catalyst.
A mixed gas consisting of natural gas and combustion air was heated to 450°C.
Heat to 2Q m/S to 5Qm/ in terms of 500℃.
In addition, a cylindrical non-streamlined body with a diameter of 30 am was installed downstream at a distance of 40+ m from the catalyst body, and the combustion gas sampling position was 250 m downstream of the catalyst body. did. The adiabatic flame temperature of the 1st I mixed gas is 1200°C. Table 1 shows the results when the flow rate was changed.

比較例として他は同様の条件で非線形体を設置しな゛か
った場合も示しである。なお、燃焼時におけるNOxは
すべて3 ppm以下であった。
As a comparative example, a case where no nonlinear body was installed under the same conditions is also shown. Note that NOx during combustion was all below 3 ppm.

第 1 表 本発明における触媒燃焼器では、ガスタービンに必要な
高流速においても失火せず非常に高い燃焼効率を安定し
て示すのに対して、比較例においては混合ガスの流速が
はやまるにつれて失火してしまった。
Table 1 The catalytic combustor of the present invention does not misfire even at the high flow velocity required for gas turbines and stably exhibits very high combustion efficiency, whereas in the comparative example, misfire occurs as the flow velocity of the mixed gas increases. have done.

実施例2 第3図に示したような模保燃焼器を使い、燃料はメタン
、触媒体には実施例1と同様の貴金属系ハニカム触媒体
を用いて燃焼を行なった。前記触媒体の直径は100m
11.長さ10.0mである。触媒体7へ流入する混合
ガスの組成は、燃料と燃焼用空気のモル比を1.8 %
とし、前記混合ガスの温度は電気炉で550℃まで昇温
した。そして、供給声れた全燃料と燃焼用空気とのモル
比が2.6%になるように、補助燃料噴射装置1t9よ
り燃料だけを供給した。さらに燃焼の開始時には非流線
形体8を発熱体として用いて、触媒体下流での燃焼を起
むさせた。定常状態忙達した後、触媒体の最後部の温度
は810℃であり、燃焼効率は99チ以上、発生したN
Oxは2 ppm以下であった。
Example 2 Combustion was carried out using a Moho combustor as shown in FIG. 3, using methane as the fuel and a noble metal honeycomb catalyst body similar to that in Example 1 as the catalyst body. The diameter of the catalyst body is 100m
11. The length is 10.0m. The composition of the mixed gas flowing into the catalyst body 7 is such that the molar ratio of fuel and combustion air is 1.8%.
The temperature of the mixed gas was raised to 550° C. in an electric furnace. Then, only fuel was supplied from the auxiliary fuel injection device 1t9 so that the molar ratio of the total fuel supplied to the combustion air was 2.6%. Furthermore, at the start of combustion, the non-streamlined body 8 was used as a heating element to cause combustion downstream of the catalyst. After reaching a steady state, the temperature at the rear end of the catalyst is 810℃, the combustion efficiency is more than 99℃, and the generated N
Ox content was 2 ppm or less.

一方比較のため1本発明による非流線形体8がラグを用
いて着火し他は上記と同様の条件で燃焼させたところ、
触媒体下流での燃焼の安定が悪く、着火後5分で失火し
た。本発明に係る触媒燃焼器では触媒体7の温度はおよ
そ800℃程度であり、触媒の耐熱温度内であった。
On the other hand, for comparison, a non-streamlined body 8 according to the present invention was ignited using a lug and burned under the same conditions as above.
Combustion downstream of the catalyst was unstable and misfired 5 minutes after ignition. In the catalytic combustor according to the present invention, the temperature of the catalyst body 7 was approximately 800° C., which was within the allowable temperature limit of the catalyst.

〔発明の効果〕〔Effect of the invention〕

本発明による触媒燃焼器では、触媒体においての寿命が
大巾にのびる。さらに、触媒体下流における気相燃焼も
、前記触媒体下流に設置した非流線形体で保炎されるこ
とによって失火を防ぎ、高流速下においてもより安定し
た燃焼をおこなうことができる。また前記非流線形体に
よって攪拌されることからよシ均一に気相側の燃焼が檜
テなわれ、部分的な燃料の高濃度化による高温化をふせ
ぎ、もってNOxの発生を防げる効果を有している。
In the catalytic combustor according to the invention, the life of the catalyst body is significantly extended. Furthermore, gas-phase combustion downstream of the catalyst body is flame-stabilized by the non-streamlined body installed downstream of the catalyst body, thereby preventing misfires and making it possible to perform more stable combustion even at high flow rates. In addition, since the non-streamlined body stirs, combustion on the gas phase side is more uniformly carried out, and this has the effect of preventing the rise in temperature due to partial high concentration of fuel, thereby preventing the generation of NOx. are doing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常燃焼方式のガスタービン燃焼器を示す概念
断面図、第2図り従来の触媒燃焼方式によるガスタービ
ン燃焼器の概念断面図、第3図は本発明に係る触媒燃焼
器の1例を示す概念断面図、第4図は第3回におけるA
−A’の断面図である。 1・・・燃料噴射装置、2・・・着火装置、3・・・燃
燐用空気、4・・・冷却用空気、5・・・希釈用空気、
6・・・タービンノズル、7・・・触媒体、8・・・非
流線形体、9・・・補助燃料噴射装置、10・・・補助
燃焼用空気噴射装置。 代理人 弁理士 則 近 憲 佑(ほか1名)第1図
Fig. 1 is a conceptual sectional view showing a gas turbine combustor using a normal combustion method, Fig. 2 is a conceptual sectional view showing a gas turbine combustor using a conventional catalytic combustion method, and Fig. 3 is an example of a catalytic combustor according to the present invention. Fig. 4 is a conceptual cross-sectional view showing A in the third session.
-A' is a sectional view. DESCRIPTION OF SYMBOLS 1... Fuel injection device, 2... Ignition device, 3... Air for combustion, 4... Air for cooling, 5... Air for dilution,
6... Turbine nozzle, 7... Catalyst body, 8... Non-streamlined body, 9... Auxiliary fuel injection device, 10... Auxiliary combustion air injection device. Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)燃料及び燃焼用空気を供給する手段と、供給され
/こ前記燃料及び前G[シ燃焼用空気を受ける入口端と
、燃焼ガスを排出する出口端と、前記入口端から前記出
口端に至る流路内に設置された触媒体とを有する触媒燃
焼器において、前記触媒体を。 前記燃料及び前記燃焼用空気よりなる混合ガスの着火温
度よシ低い温度に保持したまま前記混合ガスと接触させ
ることにより、前記触媒体では触媒反応燃焼だけをおこ
し、さらに前記触媒体の下流においては気相燃焼をおこ
して、かつ前記触媒体と出口端との間における流路に非
流線形体を設けたことを特徴とする触媒燃焼器。
(1) means for supplying fuel and combustion air; an inlet end for receiving the fuel and combustion air; an outlet end for discharging combustion gas; and an outlet end for discharging combustion gas; A catalytic combustor having a catalyst body installed in a flow path leading to the catalyst body. By bringing the mixed gas into contact with the mixed gas while maintaining the temperature lower than the ignition temperature of the mixed gas consisting of the fuel and the combustion air, only catalytic reaction combustion occurs in the catalyst body, and further downstream of the catalyst body, A catalytic combustor that causes gas phase combustion and is characterized in that a non-streamlined body is provided in a flow path between the catalyst body and the outlet end.
(2)前記触媒体の下流に、補助燃料または補助燃料と
補助燃焼用空気を供給する手段を備えたことを特徴とす
る特許請求の範囲第一項記載の触媒燃焼器。
(2) The catalytic combustor according to claim 1, further comprising means for supplying auxiliary fuel or auxiliary fuel and auxiliary combustion air downstream of the catalyst body.
(3)前記非流線形体が1発熱手段を備えたことを特徴
とする特許請求の範囲第一項記載の触媒燃焼器。
(3) The catalytic combustor according to claim 1, wherein the non-streamlined body is provided with one heat generating means.
JP59041909A 1983-12-07 1984-03-07 Catalytic burner Pending JPS60186622A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59041909A JPS60186622A (en) 1984-03-07 1984-03-07 Catalytic burner
EP84114852A EP0144094B1 (en) 1983-12-07 1984-12-06 Nitrogen oxides decreasing combustion method
DE8484114852T DE3474714D1 (en) 1983-12-07 1984-12-06 Nitrogen oxides decreasing combustion method
US07/042,630 US4731989A (en) 1983-12-07 1987-04-23 Nitrogen oxides decreasing combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041909A JPS60186622A (en) 1984-03-07 1984-03-07 Catalytic burner

Publications (1)

Publication Number Publication Date
JPS60186622A true JPS60186622A (en) 1985-09-24

Family

ID=12621403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041909A Pending JPS60186622A (en) 1983-12-07 1984-03-07 Catalytic burner

Country Status (1)

Country Link
JP (1) JPS60186622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138605A (en) * 1985-12-10 1987-06-22 Central Res Inst Of Electric Power Ind Catalyst burning method and its device
JPS62218731A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPS62218730A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138605A (en) * 1985-12-10 1987-06-22 Central Res Inst Of Electric Power Ind Catalyst burning method and its device
JPS62218731A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
JPS62218730A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor

Similar Documents

Publication Publication Date Title
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
EP0356092B1 (en) Gas turbine combustor
JPH01208525A (en) Method of controlling combustion discharged article and discharged article combustion apparatus
CN110878947A (en) Gas turbine combustor
JPS59107119A (en) Combustion of gas turbine
Hilt et al. Evolution of NOx abatement techniques through combustor design for heavy-duty gas turbines
JPS60186622A (en) Catalytic burner
JP3139978B2 (en) Gas turbine combustor
JP2755603B2 (en) Gas turbine combustor
JP2585798B2 (en) Low NOx combustion device
JPH0252930A (en) Gas turbine burner
JPH0245772B2 (en)
KR100708805B1 (en) Gas torch ignitor for a combustor ignition
JPH0128843B2 (en)
JP2543986B2 (en) Catalytic combustion type gas turbine combustor
JPS59108829A (en) Gas turbine combustor
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPS62141425A (en) Gas turbine combustor
JP2672510B2 (en) Catalytic combustion type gas turbine combustor
JP2665486B2 (en) gas turbine
JPS5924121A (en) Combustion in combustor for gas turbine
JPH0826992B2 (en) Gas turbine combustor
JPS60162108A (en) Low nox high efficiency combustion chamber
JPS60205128A (en) Combustor for gas-turbine
JPS6179917A (en) Catalyst combustor