JPS6257438B2 - - Google Patents

Info

Publication number
JPS6257438B2
JPS6257438B2 JP52096310A JP9631077A JPS6257438B2 JP S6257438 B2 JPS6257438 B2 JP S6257438B2 JP 52096310 A JP52096310 A JP 52096310A JP 9631077 A JP9631077 A JP 9631077A JP S6257438 B2 JPS6257438 B2 JP S6257438B2
Authority
JP
Japan
Prior art keywords
welding
current
value
arc
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52096310A
Other languages
Japanese (ja)
Other versions
JPS5431058A (en
Inventor
Hideyuki Yamamoto
Susumu Ogasawara
Takao Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP9631077A priority Critical patent/JPS5431058A/en
Publication of JPS5431058A publication Critical patent/JPS5431058A/en
Publication of JPS6257438B2 publication Critical patent/JPS6257438B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルゴン、ヘリウムなどの不活性ガス
中、または酸素、炭酸ガスなどを上記不活性ガス
に添加したシールドガス中で行う消耗電極式の直
流アーク溶接方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a consumable electrode method which is carried out in an inert gas such as argon or helium, or in a shield gas in which oxygen, carbon dioxide, etc. are added to the inert gas. This invention relates to a DC arc welding method.

[従来技術] 一般に、不活性ガスを主成分とするガス雰囲気
中で鋼、ステンレス鋼などの消耗電極ワイヤを用
いて逆極性で、(すなわち電極を陽極とし被溶接
物を陰極として)行う従来の直流アーク溶接方法
においては、電極材料、電極直径、シールドガス
成分によつて定まる一定の電流値以上で移行溶滴
が細粒化する現象が見られる。この電流値を臨界
電流と呼び、臨界電流値以上のアーク形態では溶
滴の移行は通常100〜200回/秒のスプレー状で行
なわれている。このアーク形態では巨視的にみた
アーク長(電極先端と溶融池表面間距離)の変動
がほとんどなく、アークが安定しているために、
実際の溶接ではスプレー移行が広く用いられてい
る。しかし、近年、被溶接材料の多様化にともな
い、従来から用いられてきたほゞ平滑な直流電源
による溶接方法では、アークの安定化及びビード
形状の改善の面で、その要求を満足できない場合
がきわめて多くなつてきた。
[Prior art] Generally, conventional welding is performed in a gas atmosphere containing an inert gas as a main component using a consumable electrode wire made of steel, stainless steel, etc. with opposite polarity (i.e., the electrode is used as an anode and the workpiece is used as a cathode). In the DC arc welding method, there is a phenomenon in which transferred droplets become finer when the current value exceeds a certain value determined by the electrode material, electrode diameter, and shielding gas components. This current value is called a critical current, and in arcs where the current value is higher than the critical current value, the transfer of droplets is usually carried out in the form of a spray at a rate of 100 to 200 times/second. In this arc form, there is almost no variation in the macroscopic arc length (distance between the electrode tip and the molten pool surface), and the arc is stable.
Spray transfer is widely used in actual welding. However, in recent years, with the diversification of materials to be welded, the conventional welding method using a nearly smooth DC power source may not be able to meet the requirements in terms of stabilizing the arc and improving the bead shape. It has become extremely popular.

第1図aは、従来から用いられている一般的な
直流溶接電源による消耗電極式直流アークのアー
ク電流波形を示している。同図にみられるリツプ
ルは、磁気増巾器またはサイリスタ素子による位
相制御によるもので、一次電源周波数に対応し、
50〜60Hzまたはその2、3、6倍波であり、また
リツプル波高値は通常可能なかぎり小さくしてい
る。
FIG. 1a shows an arc current waveform of a consumable electrode type DC arc using a conventionally used general DC welding power source. The ripples seen in the figure are due to phase control by a magnetic amplifier or thyristor element, and correspond to the primary power supply frequency.
The frequency is 50 to 60 Hz or its 2nd, 3rd, or 6th harmonic, and the ripple peak value is usually as small as possible.

[発明が解決しようとする問題点] このような出力電流波形の溶接電源を用い、そ
の平均電流値Iavを臨界電流値Icより大きく設定
して溶接を行なつた場合の溶滴移行形態を高速度
写真などで観測すると、第1図bのような溶滴の
移行が見られ、溶滴の平均の直径はワイヤ径と同
程度でスプレー状となるが、移行する時期は電流
リツプル周期とはまつたく同期していない。この
ような移行形態においては、主として溶接電流と
溶接速度で定まる被溶接物への入熱を一定とし、
かつ被溶接物の溶融を充分に確保して溶込み深さ
を大幅に変化させることは事実上不可能である。
[Problems to be solved by the invention] How to improve the droplet transfer form when welding is performed using a welding power source with such an output current waveform and setting the average current value Iav larger than the critical current value Ic. When observed with velocity photographs, the droplets migrate as shown in Figure 1b, and the average diameter of the droplets is about the same as the wire diameter, resulting in a spray-like shape, but the timing of migration is different from the current ripple cycle. It's not fully synchronized. In such a transition mode, the heat input to the workpiece, which is mainly determined by the welding current and welding speed, is constant,
Moreover, it is virtually impossible to significantly change the penetration depth by ensuring sufficient melting of the workpiece.

従来のMIGアーク溶接方法においては、鋼系の
消耗電極を使用した場合、アーク長を短くしてい
くと、スプレー状の溶滴から突然大粒の溶滴に変
化し、ビードが不連続で実用困難な溶接となる。
この現象はステンレス鋼やニツケル鋼等の高級鋼
においても同様に起る。またこの現象は不活性ガ
スであるアルゴン気中ではアーク長が3〜5mm以
下の場合に生じ、ヘリウム気中においてはアーク
長が7〜10mm程度の場合に起る。このため、鋼系
ワイヤを消耗電極とする従来のMIG溶接方法で
は、不活性ガスに1〜5%の酸素または炭酸ガス
を添加したシールドガスを用いて溶接を行つてい
る。このようなシールドガスを使用すれば安定し
たスプレー状の溶滴となり、アークは安定する
が、反面、溶接中の金属の酸化や溶接金属の性質
の低下、または溶接ビードのミルスケール等が問
題となる。
In the conventional MIG arc welding method, when a steel-based consumable electrode is used, as the arc length is shortened, spray-like droplets suddenly change to large droplets, making the bead discontinuous and impractical. This is a welding process.
This phenomenon also occurs in high-grade steels such as stainless steel and nickel steel. Further, this phenomenon occurs when the arc length is 3 to 5 mm or less in an inert gas of argon, and occurs when the arc length is about 7 to 10 mm in a helium atmosphere. For this reason, in the conventional MIG welding method using a steel wire as a consumable electrode, welding is performed using a shielding gas prepared by adding 1 to 5% oxygen or carbon dioxide gas to an inert gas. If such a shielding gas is used, it will form a stable spray-like droplet and the arc will be stabilized, but on the other hand, problems such as oxidation of the metal during welding, deterioration of the properties of the weld metal, and mill scale on the weld bead may occur. Become.

第2図は、不活性ガス気中でのステンレス消耗
電極による臨界電流値以上での溶滴移行状態を示
すもので、同図aはアーク長が長い場合であり、
この図から、溶滴が細粒化していることがわか
る。ところが、アーク長が特に短い場合や、アー
ク長が特に短くなくてもヘリウム気中の場合に
は、同図bの様な大粒の溶滴に変る。なお、7は
消耗電極、9は被溶接物である。
Figure 2 shows the state of droplet transfer using a stainless steel consumable electrode in an inert gas atmosphere above the critical current value, and Figure a shows the case where the arc length is long;
This figure shows that the droplets are becoming finer. However, if the arc length is particularly short, or even if the arc length is not particularly short but in helium air, the droplets will turn into large droplets as shown in Figure b. Note that 7 is a consumable electrode, and 9 is an object to be welded.

一般には同図aのようにアーク長を長く保つ
と、溶接の実際のねらい位置がはつきりしなくな
つたり、溶込み不良が生じたりする等の問題が生
じる。また、アーク長を長く保つとクリーニング
幅が広くなり、ビードが蛇行するという問題も生
じる。
In general, if the arc length is kept long as shown in Figure a, problems arise such as the actual target position of welding becoming unclear and poor penetration occurring. Furthermore, if the arc length is kept long, the cleaning width becomes wider, which also causes the problem of meandering beads.

また短いアーク長で溶滴の移行を連続的に安定
させるために不活性ガス中に酸素または炭酸ガス
を添加すると、溶滴の移行は連続するが、この場
合はビード表面にスケールが付着する。このスケ
ールは多層溶接の時にスラグの巻込み等の溶接欠
陥を生じる原因になるので、完全に除去しなけれ
ばならず、そのためグラインダー研磨等の手数を
必要とする。
Furthermore, if oxygen or carbon dioxide is added to the inert gas to stabilize the droplet transfer continuously with a short arc length, the droplet transfer will continue, but in this case scale will adhere to the bead surface. Since this scale causes welding defects such as slag entrainment during multilayer welding, it must be completely removed, which requires labor such as grinding.

[問題点を解決するための手段] 本発明は、上記のような場合、すなわち不活性
ガスを主成分とするシールドガス気中で逆極性で
溶接を行う消耗電極式の直流アーク溶接方法にお
いて、電極材料、電極直径、シールドガス成分な
どで定まる臨界電流値以上で溶接を行う場合に、
アークおよび溶滴移行の安定性を確保しつつビー
ド形状の改善を図ることを目的とした直流アーク
溶接方法を提案したものである。
[Means for Solving the Problems] The present invention is applicable to the above-mentioned case, that is, in a consumable electrode type DC arc welding method in which welding is performed with reverse polarity in a shielding gas atmosphere containing an inert gas as a main component. When welding at a critical current value or higher determined by the electrode material, electrode diameter, shielding gas composition, etc.
This paper proposes a DC arc welding method that aims to improve the bead shape while ensuring the stability of the arc and droplet transfer.

本発明は、第3図に示すように、平均電流値
Iavが臨界電流値Ic以上でしかも最小値Ilが臨界電
流値Icを越えないような波形の周期的脈動電流を
流して、脈動電流の周波数を250Hz乃至1000Hzの
範囲に設定すると、シールドガスとして純不活性
ガスを用いてしかも溶滴の移行をスムーズにし、
アークを安定させることができるため、シールド
ガスに酸素や炭酸ガスを添加することにより生じ
ていた上記の諸問題を解決することができる。こ
の場合シールドガスとしては、アルゴン中に5〜
50%のヘリウムを混合したガスを用いるのが適当
である。
As shown in FIG. 3, the present invention provides an average current value
If a periodic pulsating current with a waveform such that Iav is greater than or equal to the critical current value Ic and the minimum value Il does not exceed the critical current value Ic and the frequency of the pulsating current is set in the range of 250Hz to 1000Hz, pure shielding gas can be used. Using inert gas and smoothing the transfer of droplets,
Since the arc can be stabilized, the above-mentioned problems caused by adding oxygen or carbon dioxide to the shielding gas can be solved. In this case, the shielding gas is 5~
It is appropriate to use a gas mixed with 50% helium.

[作 用] 本発明の方法は、不活性ガスを主成分とするシ
ールドガスを使用し、材質が鋼、ステンレス鋼、
ニツケル合金鋼等の鋼系統の消耗電極を用いて逆
極性で溶接を行う直流アーク溶接方法であつて、
本発明においては、第3図に示すように、溶接電
流の平均値Iavを少なくとも臨界電流値Ic以上に
設定し、かつ250Hz以上1000Hz以下の周波数の周
期的脈動電流で波高値の最小値Ilが臨界電流値Ic
を越えないような電流波形の溶接電流を用いて溶
接を行う。
[Function] The method of the present invention uses a shielding gas mainly composed of an inert gas, and the material is steel, stainless steel,
A direct current arc welding method that performs welding with reverse polarity using a consumable electrode made of steel such as nickel alloy steel,
In the present invention, as shown in Fig. 3, the average value Iav of the welding current is set to at least the critical current value Ic, and the minimum value Il of the peak value is Critical current value Ic
Welding is performed using a welding current with a current waveform that does not exceed .

以下図面を参照して本発明の方法を説明する。 The method of the present invention will be explained below with reference to the drawings.

第3図aは、本発明の溶接方法に使用する溶接
電流波形の一例を示したもので、その平均値Iav
は第1図aと同一値に設定されているが、その脈
動分の振幅は大きく、かつその最小値Ilは臨界電
流値Ic以下である。第2図bはこのときの溶滴移
行形態を示すもので、移行回数乃び溶滴の直径は
第1図bに示した場合と同様であるが、脈動電流
の最小値Ilでは溶滴の移行は起らず、最大値付近
で確実に移行が生じており、脈動周波数との同期
移行が見られる。
Figure 3a shows an example of the welding current waveform used in the welding method of the present invention, and its average value Iav
is set to the same value as in FIG. 1a, but the amplitude of its pulsation is large, and its minimum value Il is less than the critical current value Ic. Figure 2b shows the form of droplet transfer at this time.The number of transfers and the diameter of the droplet are the same as those shown in Figure 1b, but at the minimum value Il of the pulsating current, the droplet is No transition occurs, but a transition occurs reliably near the maximum value, and a synchronous transition with the pulsation frequency is observed.

不活性ガスを主成分とするシールドガスを使用
し、パルス状電流を通電して行う従来の消耗電極
式直流アーク溶接方法では、平均値Iavが臨界電
流値Ic以下で最大値Ihが臨界電流値Ic以上のパル
ス状の脈動電流、すなわちIav<IcでIh>Icの電
流を通電して溶滴を同期移行させることにより溶
滴を細粒化していた。本発明はこのような従来の
方法とは全く異なるもので、平均電流値Iavが臨
界電流値Ic以上でしかも最小値Ilが臨界電流値Ic
を越えないような波形の周期的脈動電流、すなわ
ちIav>IcでIl<Icの電流を流して、溶滴の移行を
脈動電流と同期させることに大きな特徴がある。
In the conventional consumable electrode type DC arc welding method, which uses a shielding gas mainly composed of inert gas and passes a pulsed current, the average value Iav is less than the critical current value Ic and the maximum value Ih is the critical current value. The droplets were made finer by passing a pulsed pulsating current greater than Ic, that is, a current of Iav<Ic and Ih>Ic, to cause the droplets to move synchronously. The present invention is completely different from such conventional methods in that the average current value Iav is greater than or equal to the critical current value Ic, and the minimum value Il is less than the critical current value Ic.
The major feature is that the transfer of droplets is synchronized with the pulsating current by flowing a periodic pulsating current with a waveform that does not exceed , that is, Iav > Ic and Il < Ic.

本発明者が行つた種々の実験の結果によると、
上記本発明の方法を実施するのに好適な脈動電流
の周波数範囲は250Hz乃至1000Hzである。
According to the results of various experiments conducted by the present inventor,
The frequency range of the pulsating current suitable for implementing the method of the present invention is 250Hz to 1000Hz.

[実施例] 以下本発明者が行つた実験の結果について説明
する。
[Example] The results of experiments conducted by the present inventor will be described below.

本発明者は、スケールの発生をなくしてビード
外観を整えるために先ずシールドガスとしてアル
ゴンとヘリウムとの不活性ガスのみによる混合ガ
スを用いて実験を行つた。その結果の一部を第4
図に示す。同図に示すように、アルゴン気中への
ヘリウムの添加量(横軸%)を増加していくと、
同一電流値、同一溶接速度では、ビード幅BW
(縦軸mm)は最初増加し、次いで減少していく傾
向になる。ヘリウムの添加量が10%以上になると
ビード幅BWの増加が略止まり、ヘリウムの添加
量が50%までの範囲では、ビード幅BWが略一定
になる。一方、クリーニング幅CWはヘリウムガ
スの添加量の増大に伴つて減少して行き、ヘリウ
ムの添加量が50%以上になるとクリーニング幅
CWの減少が大きくなり過ぎてビード幅との差が
小さくなる。そのために、ヘリウムの添加量が50
%を越えるとビード幅BWが減少し始める。また
ヘリウムガスの添加量を50%以上とすると、ヘリ
ウムガスの影響が大きくなりすぎて、ヘリウムガ
スのみを用いる場合と同様にヒユームの発生を伴
う大粒粒子移行になりやすいことが判明した。従
つて、ヘリウムガスの添加量は10〜50%の範囲に
設定するのが適当であることが明らかになつた。
In order to eliminate scale formation and improve the appearance of the bead, the inventor first conducted an experiment using a mixed gas of only an inert gas of argon and helium as a shielding gas. Some of the results are shown in the 4th section.
As shown in the figure. As shown in the figure, as the amount of helium added to the argon atmosphere (horizontal axis %) increases,
At the same current value and welding speed, the bead width BW
(vertical axis mm) tends to increase at first and then decrease. When the amount of helium added is 10% or more, the bead width BW almost stops increasing, and when the amount of helium added is up to 50%, the bead width BW becomes approximately constant. On the other hand, the cleaning width CW decreases as the amount of helium gas added increases, and when the amount of helium added exceeds 50%, the cleaning width CW decreases as the amount of helium gas added increases.
The decrease in CW becomes too large and the difference from the bead width becomes small. For this purpose, the amount of helium added is 50
%, the bead width BW starts to decrease. It has also been found that when the amount of helium gas added is 50% or more, the influence of helium gas becomes too large, and large particle migration accompanied by fume generation is likely to occur, similar to when only helium gas is used. Therefore, it has become clear that it is appropriate to set the amount of helium gas added in the range of 10 to 50%.

次に本発明者は、アルゴンに10〜50%のヘリウ
ムを添加したシールドガスを用い、鋼系の消耗電
極を用いて溶接を行う場合に、重畳する周期的脈
動電流の周波数を250〜500Hzの範囲に設定して溶
滴の移行を安定化させ得ることを確認するための
実験を行つた。その結果を第5図に示す。この実
験では、消耗電極として直径が1.6mmのステンレ
ス鋼消耗電極(臨界電流は約220A)を用い、平
均電流値を300A(一定)とし、ベース電流値
140A、ピーク電流値460Aの矩形波脈動電流を流
した。そして脈動電流の周波数Fを0Hz〜1、
000Hzまで変化させて、周波数Fとワイヤの溶融
部分の長さLoとの関係を調べた。
Next, when welding is performed using a steel-based consumable electrode using a shielding gas containing argon with 10% to 50% helium added, the inventor has determined that the frequency of the superimposed periodic pulsating current is 250 to 500 Hz. An experiment was conducted to confirm that the transfer of droplets could be stabilized by setting the droplet within a certain range. The results are shown in FIG. In this experiment, a stainless steel consumable electrode with a diameter of 1.6 mm (critical current is approximately 220 A) was used as the consumable electrode, the average current value was set to 300 A (constant), and the base current value
A rectangular pulsating current of 140A and a peak current value of 460A was applied. Then, the frequency F of the pulsating current is set to 0Hz to 1,
The relationship between the frequency F and the length Lo of the melted portion of the wire was investigated by changing the temperature up to 000Hz.

第5図はワイヤ溶融部分の長さLoが溶滴の落
下直前と落下直後とで変化する変動の大きさと脈
動電流の周波数Fとの関係を示したもので、横軸
に周波数Fをとり、縦軸には最大及び最小消耗電
極の溶融長Loをとつている。消耗電極の溶融長
Loの最大値と最小値との差ΔLoが溶滴移行の安
定性に影響を与える。第5図から明らかなよう
に、脈動電流の周波数が、直流0Hzから250Hzま
では、例えば100HzではΔLhと大きいために、相
当にアーク長を大にしなければ短絡を生じる。そ
こで短絡を生じないようにアーク長を大にする
と、アークが不安定となり、実用範囲から除外さ
れる。脈動電流の周波数が250Hz以上になると、
例えば250HzではΔLlと小さくなり、略一定値と
なるので、アーク長を短くしてもアークが安定す
る。脈動電流の周波数が1000Hzをこえると、周期
が短くなりすぎるために、消耗電極先端の溶滴移
行が脈動電流の最大値に追従することができない
ために、1000Hzを越えると本発明の効果がほとん
ど得られない。
Figure 5 shows the relationship between the frequency F of the pulsating current and the magnitude of the variation in the length Lo of the wire melting portion immediately before and immediately after the droplet falls, with the frequency F plotted on the horizontal axis. The vertical axis shows the melting length Lo of the maximum and minimum consumption electrodes. Melting length of consumable electrode
The difference ΔLo between the maximum and minimum values of Lo affects the stability of droplet transfer. As is clear from FIG. 5, the frequency of the pulsating current is as large as ΔLh from 0 Hz to 250 Hz, for example at 100 Hz, so a short circuit will occur unless the arc length is increased considerably. Therefore, if the arc length is increased to prevent short circuits, the arc becomes unstable and is excluded from practical use. When the frequency of pulsating current exceeds 250Hz,
For example, at 250 Hz, the value becomes small as ΔLl and becomes a substantially constant value, so the arc is stable even if the arc length is shortened. When the frequency of the pulsating current exceeds 1000Hz, the period becomes too short and the droplet transfer at the tip of the consumable electrode cannot follow the maximum value of the pulsating current. I can't get it.

上記のように、脈動電流の周波数を250Hz乃至
1000Hzの範囲に設定しておけば、鋼系の溶接にお
いても溶滴を安定に移行させることができ、しか
もシールドガスとして純不活性ガスを用いること
ができる。
As mentioned above, change the frequency of the pulsating current to 250Hz or
If it is set in the 1000 Hz range, droplets can be transferred stably even when welding steel, and pure inert gas can be used as the shielding gas.

一例として、75%アルゴンと25%ヘリウムとの
混合ガスをシールドガスとして使用し、パルス電
流の周波数を500Hzとして溶接を行つたところ、
ビードの蛇行がなく、かつスケールの付着がない
均一で安定した溶接結果を得ることができた。
As an example, when welding was performed using a mixed gas of 75% argon and 25% helium as a shielding gas and a pulsed current frequency of 500Hz,
We were able to obtain uniform and stable welding results with no bead meandering and no scale adhesion.

第6図a乃至dは、本発明を実施する場合の電
流波形の例を示したもので、同図aは略正弦波、
同図bは略三角波、同図cは矩形波、同図dは同
図b,cなどの波形を複合したものであるが、い
ずれも平均電流値は臨界電流値以上、脈動分の最
小値は臨界電流値以下である。
Figures 6a to 6d show examples of current waveforms when implementing the present invention, where a is approximately a sine wave;
The figure b shows a substantially triangular wave, the figure c shows a rectangular wave, and the figure d shows a composite of the waveforms shown in figures b and c, but in all cases the average current value is greater than the critical current value and the minimum value of the pulsating component. is below the critical current value.

上記の波形は、各々、溶接目的によつてその利
用価値が異なる。例えば第6図a,bの波形は高
調波成分が少ないため、1KHz近くの周波数にお
いてアーク音が低く作業者に不快感を与えない。
同図cは逆にアーク音はかなり強いが、高い電流
値と低い電流値の時間率やその電流値の比率を変
えることにより広範囲にわたつて波形率を変化さ
せることができるため、溶込み深さやビード幅を
大幅に制御することができる利点がある。また、
同図dは、高電流の時間に溶滴に微細な振動を与
え、かつ確実な移行が可能であるため同期移行の
可能周波数が増大でき、従つて粘性の大きい鋼系
の金属の溶接に適している。
The above waveforms have different utility values depending on the purpose of welding. For example, the waveforms shown in FIGS. 6a and 6b have few harmonic components, so the arc noise is low at frequencies near 1 KHz and does not cause discomfort to the operator.
On the other hand, in c of the same figure, the arc sound is quite strong, but the waveform rate can be varied over a wide range by changing the time rate of high and low current values and the ratio of the current values, so the penetration depth can be changed. There is an advantage that the sheath bead width can be greatly controlled. Also,
Figure d gives minute vibrations to the droplet during high current and enables reliable transfer, increasing the possible frequency of synchronous transfer, and is therefore suitable for welding steel-based metals with high viscosity. ing.

なお上記の波形例を実現する手段としては、従
来から広く実用されているサイリスタなどのスイ
ツチング素子によるパルス重畳方法では、一次電
源周波の整数倍の周波数の波形しか発生出来ず、
また任意の波形を出力することは不可能であるた
めに、アナログ式のトランジスタ増幅器を主制御
素子とした溶接電源を用いる必要がある。
As a means of realizing the above waveform example, the pulse superimposition method using switching elements such as thyristors, which has been widely used in the past, can only generate waveforms with frequencies that are integral multiples of the primary power supply frequency.
Furthermore, since it is impossible to output an arbitrary waveform, it is necessary to use a welding power source with an analog transistor amplifier as the main control element.

第7図は、アナログトランジスタを用いた溶接
電源による本発明の溶接方法を実施する装置の一
例を示す。
FIG. 7 shows an example of an apparatus for carrying out the welding method of the present invention using a welding power source using an analog transistor.

同図において、1は溶接機、2,2は溶接機の
入力端子、3は溶接用変圧器、4は整流器、5は
並列接続された複数のトランジスタ、6は電流検
出器、7は消耗電極、8は電極送給機構、9は被
溶接物である。複数のトランジスタ5は、溶接電
流設定器11の出力信号とパルス信号発生器12
の出力信号と電流検出器6の出力信号とを入力と
する演算増幅器13の出力信号によつて制御さ
れ、例えば第6図a乃至dに示されたような波形
の出力が消耗電極7と被溶接物9との間に供給さ
れ、本発明の溶接方法が実施される。
In the figure, 1 is a welding machine, 2 and 2 are input terminals of the welding machine, 3 is a welding transformer, 4 is a rectifier, 5 is a plurality of transistors connected in parallel, 6 is a current detector, and 7 is a consumable electrode. , 8 is an electrode feeding mechanism, and 9 is an object to be welded. The plurality of transistors 5 are connected to the output signal of the welding current setting device 11 and the pulse signal generator 12.
It is controlled by the output signal of the operational amplifier 13 which receives the output signal of the current detector 6 and the output signal of the current detector 6, and outputs having waveforms as shown in FIGS. The welding method of the present invention is carried out by being supplied between the workpiece 9 and the workpiece 9 to be welded.

[発明の効果] 以上のように、本発明の鋼系統の材質を溶接す
る不活性ガスシールド消耗電極式の直流アーク溶
接方法によれば、溶接電流の平均値を少なくとも
臨界電流値以上に設定し、かつ250乃至1000Hzの
周波数の周期的脈動電流でその波高値の最小値が
臨界電流値を越えないような電流波形を用いて消
耗電極の溶滴を脈動電流の最大値に同期させて強
いアーク力により移行させることにより、従来の
パルス溶接にくらべて、被溶接物の溶融を充分に
確保して溶込み深さを大幅に変化させることがで
き、効果が大である。
[Effects of the Invention] As described above, according to the inert gas shielded consumable electrode DC arc welding method for welding steel-based materials of the present invention, the average value of the welding current is set to at least the critical current value or more. , and a periodic pulsating current with a frequency of 250 to 1000 Hz, using a current waveform whose minimum peak value does not exceed the critical current value, synchronizes the droplets of the consumable electrode with the maximum value of the pulsating current, and generates a strong arc. By transferring the material by force, it is more effective than conventional pulse welding, as it can ensure sufficient melting of the welded object and greatly change the penetration depth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは、従来から用いられている一般的な
直流電源によるアーク電流波形を示す線図、同図
bは、同図aとの関係において溶滴の移行形態を
示す説明図、第2図は、不活性ガス中でのステン
レス消耗電極による臨界電流値以上の溶滴移行状
態を説明する図であつて、同図a及びbは、それ
ぞれアーク長が長い場合及び短い場合を示す説明
図、第3図aは、本発明の溶接方法に使用する溶
接電流波形の一例を示す線図、同図bは、同図a
との関係において、溶滴の移行形態を示す説明
図、第4図はステンレス消耗電極を使用したMIG
溶接においてアルゴンとヘリウムとの混合ガスの
成分とクリーニング幅CW及びビード幅BWとの
関係を示す線図、第5図は、パルス周波数と最大
及び最小消耗電極の溶融長Loとの関係を示す線
図、第6図a乃至dは、それぞれ本発明の溶接方
法に使用する溶接電流波形の異なる例を示す線
図、第7図は、本発明の溶接方法を実施する溶接
機の回路構成の概略図である。 1……溶接機、3……溶接用変圧器、4……整
流器、5……トランジスタ、6……電流検出器、
7……消耗電極、9……被溶接物、11……溶接
電流設定器、12……パルス信号発生器、13…
…演算増幅器。
Figure 1a is a diagram showing the arc current waveform from a conventionally used general DC power supply, Figure 1b is an explanatory diagram showing the transfer form of droplets in relation to Figure 2 The figure is a diagram illustrating the state of droplet transfer at a critical current value or higher using a stainless steel consumable electrode in an inert gas, and figures a and b are explanatory diagrams showing cases where the arc length is long and short, respectively. , FIG. 3a is a diagram showing an example of the welding current waveform used in the welding method of the present invention, and FIG.
Figure 4 is an explanatory diagram showing the transfer form of droplets in relation to the MIG using stainless steel consumable electrodes.
A line diagram showing the relationship between the components of a mixed gas of argon and helium and the cleaning width CW and bead width BW in welding. Figure 5 is a line showing the relationship between the pulse frequency and the melting length Lo of the maximum and minimum consumable electrodes. Figures 6a to 6d are diagrams showing different examples of welding current waveforms used in the welding method of the present invention, and Figure 7 is a schematic circuit configuration of a welding machine that implements the welding method of the present invention. It is a diagram. 1... Welding machine, 3... Welding transformer, 4... Rectifier, 5... Transistor, 6... Current detector,
7... Consumable electrode, 9... Work to be welded, 11... Welding current setting device, 12... Pulse signal generator, 13...
...Operation amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガスを主成分とするシールドガスを使
用し、材質が鋼、ステンレス鋼、ニツケル合金鋼
等の鋼系統の消耗電極を用いて逆極性で溶接を行
う直流アーク溶接方法において、溶接電流の平均
値を少なくとも臨界電流値以上に設定し、かつ
250Hz以上1000Hz以下の周波数の周期的脈動電流
で波高値の最小値が前記臨界電流値を越えないよ
うな電流波形の溶接電流を用いて溶接を行う直流
アーク溶接方法。
1. In the direct current arc welding method, which uses a shielding gas mainly composed of inert gas and performs welding with reverse polarity using a consumable electrode made of steel, stainless steel, nickel alloy steel, etc., the welding current is Set the average value to at least the critical current value, and
A DC arc welding method in which welding is performed using a periodic pulsating current with a frequency of 250 Hz or more and 1000 Hz or less, and a welding current with a current waveform such that the minimum value of the peak value does not exceed the critical current value.
JP9631077A 1977-08-11 1977-08-11 Arc welding Granted JPS5431058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9631077A JPS5431058A (en) 1977-08-11 1977-08-11 Arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9631077A JPS5431058A (en) 1977-08-11 1977-08-11 Arc welding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15000286A Division JPS6297775A (en) 1986-06-25 1986-06-25 Arc welding method

Publications (2)

Publication Number Publication Date
JPS5431058A JPS5431058A (en) 1979-03-07
JPS6257438B2 true JPS6257438B2 (en) 1987-12-01

Family

ID=14161441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9631077A Granted JPS5431058A (en) 1977-08-11 1977-08-11 Arc welding

Country Status (1)

Country Link
JP (1) JPS5431058A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273988A (en) * 1979-08-23 1981-06-16 Rockwell International Corporation Pulse welding process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB975412A (en) * 1960-06-17 1964-11-18 Air Reduction Are welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB975412A (en) * 1960-06-17 1964-11-18 Air Reduction Are welding

Also Published As

Publication number Publication date
JPS5431058A (en) 1979-03-07

Similar Documents

Publication Publication Date Title
US8704135B2 (en) Synergistic welding system
US9895760B2 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
EP1779957B1 (en) Synergistic welding system
Street Pulsed arc welding: an introduction
JPH079149A (en) Gas shielded arc welding method for galvanized steel sheet, welding machine therefor and galvanized steel sheet product welding by the welding method and the machine
JPS6257438B2 (en)
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
JPH11138265A (en) Dc pulsed mag welding method and its equipment
JPS60255276A (en) Consumable electrode type arc welding method
JP2854613B2 (en) AC arc welding method and apparatus for consumable electrode type gas shielded arc welding
JPS58176074A (en) Consumable electrode type pulse arc welding method
JPH038870B2 (en)
JPS6056486A (en) Arc welding method using consumable electrode
JP3088782B2 (en) TIG arc welding method for aluminum alloy
JPS642779A (en) Automatic welding method for rail
JPH01299769A (en) Output control method for gas shielded arc welding power source
JPS62114772A (en) Mig welding method
JP2011110600A (en) Plasma mig welding method
JP3856355B2 (en) Consumable electrode type AC gas shielded arc welding method and apparatus
JP3421014B2 (en) TIG arc welding method for aluminum alloy
JPS639913B2 (en)
JPH0351506B2 (en)
JPS58224070A (en) Arc welding
Mita Study for Reducing Spatter in CO sub 2 Gas Shielded Arc Welding. I. Waveform Control Method in CO sub 2 Gas Shielded Arc Welding
JPH0237974A (en) Consumable electrode type gas shielded arc welding method