JPS60255276A - Consumable electrode type arc welding method - Google Patents

Consumable electrode type arc welding method

Info

Publication number
JPS60255276A
JPS60255276A JP11193784A JP11193784A JPS60255276A JP S60255276 A JPS60255276 A JP S60255276A JP 11193784 A JP11193784 A JP 11193784A JP 11193784 A JP11193784 A JP 11193784A JP S60255276 A JPS60255276 A JP S60255276A
Authority
JP
Japan
Prior art keywords
welding
wire
current
short
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11193784A
Other languages
Japanese (ja)
Inventor
Eizo Ide
栄三 井手
Hiroshi Fujimura
藤村 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11193784A priority Critical patent/JPS60255276A/en
Publication of JPS60255276A publication Critical patent/JPS60255276A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0732Stabilising of the arc current

Abstract

PURPOSE:To suppress the generation of defective shape beads such as welding defects lacking in fusion, etc., and drooping of beads in attitude welding by repreating alternately by an optional number of times each a short-circuit shift and a spray shift for controlling a heat input and controlling the bead shape. CONSTITUTION:Electric conduction is executed between a wire 31 and a material to be welded 35 from a welding power source 37 while supplying a shielding gas (g) from a feed port 32b, the wire 31 is melted by generating an arc (a) and dropped down onto a base metal 35, and a welding torch 32 is moved and the base metal is deposited by heating it and making molten pool (m). Its welding condition and a wire 31 feed speed are set by setting devices 40, 41, and an output of the power source 37 and rotation of a motor 46 are controlled by a controller 42 so as to reach said set condition. The welding condition is controlled by monitoring a welding current level, but a welding current and a current waveform being the origin of this control are obtained from an output of a welding current detector 38, for instance, short-circuit and pulse shifting periods Ta, Tb are as shown by waveforms in the figure. This waveform is processed by a device 39, and each shifting time T1, T2 is detected.

Description

【発明の詳細な説明】 本発明は消耗電極式アーク溶接法に関するものである。[Detailed description of the invention] The present invention relates to a consumable electrode arc welding method.

消耗電極式アーク溶接法は溶接箇所に送給されるワイヤ
(ソリッドまたはフラックス入り)の周囲からシールド
ガスを流しつつ可視アーク溶接する自動または半自動溶
接方法である。この消耗電極式アーク溶接法は、用いる
シールドガスの種類によって、ミグ、マグ、炭酸ガスア
ーク溶接法に分けられており、これらが実用に供されて
いる。
The consumable electrode arc welding method is an automatic or semi-automatic welding method that performs visible arc welding while flowing shielding gas around the wire (solid or flux-cored) that is fed to the welding location. This consumable electrode type arc welding method is divided into MIG, MAG, and carbon dioxide arc welding methods depending on the type of shielding gas used, and these are in practical use.

これらのうち、ミグ溶接法はアルゴン(Ar)、ヘリウ
ム(He)などの不活性ガスまたはこれに少量の酸素(
02)、炭酸ガス(CO2)を加えた混合ガスをシール
ドガスとして用いるもので、アルミニウム合金やステン
レス鋼、耐熱合金鋼などの溶接に適用される。
Among these, the MIG welding method uses an inert gas such as argon (Ar) or helium (He) or a small amount of oxygen (
02), a mixed gas containing carbon dioxide (CO2) is used as a shielding gas, and is applied to welding aluminum alloys, stainless steel, heat-resistant alloy steel, etc.

また、炭酸ガス溶接法はシールドガスとして炭酸ガスを
用いる溶接法であり、マグ溶接法はシールドガスとして
炭酸ガスとアルゴンガス(および酸素)の混合ガスを用
いる溶接法であって、これらは軟鋼や低合金鋼に広く利
用されている。
In addition, carbon dioxide welding is a welding method that uses carbon dioxide gas as a shielding gas, and MAG welding is a welding method that uses a mixed gas of carbon dioxide and argon gas (and oxygen) as a shielding gas. Widely used for low alloy steels.

ところで、マグ溶接法においては、ワイヤとしてソリッ
ドワイヤを用いる。ソリッドワイヤでは大電流密度が適
用でき、不活性ガスを主成分とするシールドガス中では
溶滴移行が円滑で、溶着速度も高いので作業能率が良い
。一方、低電流域では短絡アーク溶接法あるいはパルス
アーク溶接法が採用でき、これらは薄板の溶接、全姿勢
溶接などに極めて有利である。
By the way, in the MAG welding method, a solid wire is used as the wire. With solid wire, high current density can be applied, droplet transfer is smooth in shielding gas mainly composed of inert gas, and the welding speed is high, so work efficiency is good. On the other hand, in the low current range, short-circuit arc welding or pulsed arc welding can be employed, and these are extremely advantageous for welding thin plates, all-position welding, and the like.

ここで、ArとCO2の混合ガスによるシールド雰囲気
中で溶接を行う場合において、溶接電流を低くく設定し
、アーク長を短く保持して溶接した際の溶滴の移行状態
を第1図に示す。すなわち、第1図(a)は溶接時の電
流値変化を示す図であり、また:第1図(b)は第1図
(a)における各電流値でのアーク溶接溶滴の状態を示
している。
Figure 1 shows the droplet transfer state when welding is performed in a shielded atmosphere with a mixed gas of Ar and CO2, with the welding current set low and the arc length kept short. . That is, Fig. 1(a) is a diagram showing changes in current value during welding, and Fig. 1(b) shows the state of arc welding droplets at each current value in Fig. 1(a). ing.

Aは平均電流値であり、この平均電流値Aはドロップ・
レート移行からスプレ移行への臨界電流よりも通常、小
さく選ばれており、第1図(a>のような移行形態を短
絡移行と云う。第1図(b)は被溶接材11とワイヤ1
2との間での溶融池13およびワイヤ12の溶滴14の
変化の様子を示し、■の状態では被溶接材11どワイヤ
12との間に発生したアーク15の熱により被溶接材1
1どワイヤ12が溶けて、被溶接材11上に溶融池13
をつくっている様子を示す。そして、この状態から■に
移行する。この状態ではワイヤ12の溶滴14により、
溶融池13の溶融金属が次第に盛上って、やがて■のよ
うに溶滴14がワイヤ12と被溶接材11との間に満ち
て短絡状態となる。
A is the average current value, and this average current value A is the drop
The critical current from rate transition to spray transition is usually selected to be smaller than the critical current, and the transition form shown in Figure 1 (a) is called short circuit transition. Figure 1 (b) shows the welding material 11 and wire 1.
2 shows how the molten pool 13 and the droplets 14 of the wire 12 change, and in the state (2), the welded material 1
The first wire 12 melts and a molten pool 13 is formed on the material 11 to be welded.
This shows how it is made. Then, from this state, the state shifts to ■. In this state, the droplet 14 of the wire 12 causes
The molten metal in the molten pool 13 gradually swells up, and eventually the globule 14 fills up between the wire 12 and the material to be welded 11 as shown in (3), resulting in a short-circuit condition.

この状態ではアーク15が生じないので、溶融面が次第
に下がり、■の状態を経て■′の状態に移る。そして、
再び上述のサイクルを繰返すことにより、溶接を行って
ゆく。このような短絡移行による溶接法によれば、短絡
時では低入熱となるので、溶融池は小さくなり、従って
、溶滴の滴下が押えられることから、全姿勢溶接や薄板
の溶接に適している。
Since no arc 15 is generated in this state, the melting surface gradually lowers, passing through the state (2) and then moving to the state (2). and,
Welding is performed by repeating the above-mentioned cycle again. According to this welding method using short-circuit transfer, the heat input is low during short-circuit, so the molten pool becomes small and dripping of globule is suppressed, so it is suitable for all-position welding and welding of thin plates. There is.

また、前述の臨界電流よりも大きい電流をパルス的に加
えてパルス移行(またはスプレ移行)を行わせる溶接を
パルスアーク溶接法と言うが、このパルスア−り溶接法
による溶滴の移行状態を第2図に示す。
In addition, welding in which a current larger than the above-mentioned critical current is applied in a pulsed manner to cause pulse transfer (or spray transfer) is called pulse arc welding. Shown in Figure 2.

すなわち、第2図(a)は溶接時の電流値変化を示す図
であり、図に示すように溶接電流はBをベース電流とし
、Pをピーク電流とするとともに平均電流をAとする周
期Tのパルス状に変化させる。また、第2図(b)は第
2図(a)における各電流値でのアーク溶接溶滴の状態
を示している。
That is, FIG. 2(a) is a diagram showing changes in current value during welding, and as shown in the figure, the welding current has a period T where B is the base current, P is the peak current, and the average current is A. change in a pulse-like manner. Moreover, FIG. 2(b) shows the state of arc welding droplets at each current value in FIG. 2(a).

被溶接材11とワイヤ12との間での溶融池13および
ワイヤ12の溶滴14の変化の様子は第2図(b)に示
すように、■の状態では被溶接材11とワイヤ12との
間に発生したアーク15の熱により被溶接材11とワイ
ヤ12が溶け1・被溶接材11上に溶融池13をつくっ
ている様子を示す。そして、この状態から■に移行する
。この状態ではワイヤ12の溶滴14により、溶融池1
3の溶融金属が次第に盛上って行くが、電流はベース電
流Bを最低レベルとするパルス状であるため、やがて電
流値がBに下がってアーク14か弱くなり溶滴14の滴
下が無くなって、■のように溶融池13の液面が被溶接
材11の表面と同一レベルとなる。そしてアーク15に
よる熱のため、■のように被溶接材11の溶融池13部
分が被溶接材11の内部に広がる。その後、再び電流値
が上昇するので、■′の状態に移る。そして、再び上述
のサイクルを繰返すことにより、溶接を行ってゆく。こ
のパルスアー、り溶接によれば、安定な溶滴移行が行え
る。
The changes in the molten pool 13 and the droplets 14 of the wire 12 between the welded material 11 and the wire 12 are shown in FIG. 2(b). The figure shows how the material 11 to be welded and the wire 12 are melted by the heat of the arc 15 generated during this process, creating a molten pool 13 on the material 1 and the material 11 to be welded. Then, from this state, the state shifts to ■. In this state, the molten pool 1 is caused by the droplets 14 of the wire 12.
The molten metal 3 gradually rises, but since the current is pulsed with the base current B being the lowest level, the current value eventually drops to B, the arc 14 weakens, and the droplets 14 stop dripping. As shown in (2), the liquid level of the molten pool 13 is at the same level as the surface of the welded material 11. Then, due to the heat generated by the arc 15, the molten pool 13 portion of the welded material 11 spreads inside the welded material 11 as shown in (2). After that, the current value rises again, so the state shifts to ■'. Then, welding is performed by repeating the above-mentioned cycle again. According to this pulsed arc welding, stable droplet transfer can be achieved.

ところで、以上のような短絡移行による溶接法及びパル
スアーク溶接法には次のような欠点がある。
By the way, the short-circuit transition welding method and pulsed arc welding method described above have the following drawbacks.

=5− すなわち、 (1) 短絡移行溶接法は第1図に説明したように、ア
ーク長が短く、かつ、短絡期間は、アークによる入熱が
小さいことから、融合不良などの溶接欠陥が生じ易い。
=5- That is, (1) As explained in Fig. 1, the short-circuit transition welding method has a short arc length and the heat input by the arc is small during the short-circuit period, so welding defects such as poor fusion may occur. easy.

また、類アーク長および短絡によるスパッタの発生が多
い。
In addition, spatter is often generated due to similar arc lengths and short circuits.

(2) パルスアーク溶接法は臨界電流を超える一定電
流によるスプレ移行に比較すると截入熱であるが、安定
なパルス移行を維持するにはある程度、長いアーク長が
必要であり、このため、入熱を低く押えることは出来な
い。従って、立て向き、上向きなどのいわゆる姿勢溶接
においては、ビードの垂れ下がりなどの不良形状ビード
が発生し易い。
(2) Pulsed arc welding requires less heat input than spray transfer using a constant current that exceeds the critical current, but a somewhat long arc length is required to maintain stable pulse transfer; It is not possible to suppress the heat. Therefore, in so-called positional welding such as vertical or upward welding, defects in the shape of the bead, such as sagging of the bead, are likely to occur.

本発明は上記の事情に鑑みて成されたもので、消耗電極
式アーク溶接法において、入熱制御およびビード形状制
御のため短絡移行とスプレ移行とを任意の回数づつ交互
に繰返すようにし、短絡移行とスプレ移行とを溶滴の移
行回数で制御することによって、入熱制御およびビード
形状制御を行6一 い、これにより、融合不良などの溶接欠陥や姿勢溶接に
おけるビードの垂れ下がりなどの不良形状ビード発生を
抑制できるようにした消耗電極式アーク溶接法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and in the consumable electrode type arc welding method, short-circuit transition and spray transition are alternately repeated an arbitrary number of times for heat input control and bead shape control. By controlling transfer and spray transfer by the number of droplet transfers, heat input and bead shape control can be performed. The object of the present invention is to provide a consumable electrode type arc welding method that can suppress bead formation.

以下、本発明の一実施例について、第3図及び第4図を
参照しながら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

第3図は本発明方法に用いる装置の構成を示すブロック
図である。図において31は溶接用のワイヤであり、リ
ールに巻回されていて溶接トーチ32に供給される。溶
接1〜−チ32には管状の本体32aの中間に該本体3
2aにシールドガスqを供給するためのガス供給口32
bが設けられている。本体32a内の先端側はシールド
ノズルとなっていて、このシールドノズル内にはその中
心に管状の電極チップ32cが配されており、この電極
チップ32c内を通して前記ワイヤ31は本体32aの
基端側より先端側へ送られる。このワイヤ31の送りは
本体32aの基端側に設けられ、このワイヤ31を両側
から挟む一対の送給ローラ33を回転駆動することによ
り行う。また、本体32aはシールドガスQが先端側に
吹き出すようにガスの供給経路を形成しである。34ば
前記本体32を保持し、且つ、溶接の進行方向に移動さ
せるための図示しない台車に該本体32を取付ける金具
である。前記シールドノズルは吹き出したシールドガス
qによりアークaと被溶接材溶接部を大気からシールド
するためのものである。
FIG. 3 is a block diagram showing the configuration of an apparatus used in the method of the present invention. In the figure, 31 is a welding wire, which is wound around a reel and supplied to a welding torch 32. Welding 1 to 32 includes a tubular main body 32a in the middle thereof.
Gas supply port 32 for supplying shielding gas q to 2a
b is provided. The distal end side of the main body 32a is a shield nozzle, and a tubular electrode tip 32c is disposed at the center of the shield nozzle. It is sent to the tip side. The wire 31 is fed by rotating a pair of feed rollers 33 which are provided on the base end side of the main body 32a and sandwich the wire 31 from both sides. Further, the main body 32a forms a gas supply path so that the shielding gas Q is blown out toward the tip side. 34 is a metal fitting for attaching the main body 32 to a cart (not shown) for holding the main body 32 and moving the main body 32 in the welding progress direction. The shield nozzle is used to shield the arc a and the welding part of the welded material from the atmosphere by the blown-out shield gas q.

35は被溶接材、36はこの被溶接材35の溶接部裏面
に設けられた裏当金である。37は溶接電源であり、こ
の溶接電源37の一方の極は前記溶接ト′−チ32の給
電部32dに、また、他方の極はシャントなどの溶接電
流検出器38を介して被溶接材35に接続されている。
35 is a material to be welded, and 36 is a backing metal provided on the back surface of the welded portion of the material to be welded 35. 37 is a welding power source, one pole of this welding power source 37 is connected to the power supply part 32d of the welding torch 32, and the other pole is connected to the workpiece 35 via a welding current detector 38 such as a shunt. It is connected to the.

前記給電部32dは前記電極チップ32cに接続されて
いて、ワイヤ31はこの電極チップ32cを介して電流
の供給を受ける。
The power supply section 32d is connected to the electrode tip 32c, and the wire 31 receives current supply via the electrode tip 32c.

39は波形処理装置であり、前記溶接電流検出器38か
らの出力(溶接電流値)を処理してそのレベルから溶滴
がワイヤ31に先端から液体状の溶接金属である溶融池
へ移る時期を検出する。4Oは溶接条件設定器であり、
短絡移行溶接時の電源電圧、短絡移行回数及びパルスア
ーク溶接時のパルス条件(パルス周期、ピーク電流時の
電圧、ベース電流時の電圧)、パルス移行回数を予め設
定しておくものである。
39 is a waveform processing device that processes the output (welding current value) from the welding current detector 38 and determines, from that level, when the droplets move from the tip of the wire 31 to the molten pool, which is liquid weld metal. To detect. 4O is a welding condition setting device,
The power supply voltage during short-circuit transition welding, the number of short-circuit transitions, the pulse conditions (pulse period, voltage at peak current, voltage at base current) during pulsed arc welding, and the number of pulse transitions are set in advance.

41はワイヤ速度設定器であり、短絡移行溶接時のワイ
ヤ送給速度及びパルスアーク溶接時のワイヤ送給速度を
予め設定しておくものである。42は制御器であり、前
記溶接条件設定器40およびワイヤ速度設定器41によ
る設定条件に合うよう、前記波形処理装置39の検出信
号をもとにワイヤ31の送給量と溶接電流制御量を出力
するもので、溶接電流は設定回数ずつ交互に短絡移行溶
接、スプレ(パルス)移行溶接のモードとなるように制
御する。43はこの制御器42からの信号を受けて前記
溶接電源37の出力を制御する溶接電源制御器であり、
44は前記制御器42の出力を受けてモータ駆動出力発
生用のモータ駆動装置45の制御を行うモータ制御器で
ある。46は前記送給ローラ33を回転駆動するための
モータで一〇− あり、前記モータ駆動装置45の出力により回転駆動さ
れる。
Reference numeral 41 denotes a wire speed setting device, which presets the wire feeding speed during short-circuit transition welding and the wire feeding speed during pulsed arc welding. 42 is a controller which adjusts the feeding amount of the wire 31 and the welding current control amount based on the detection signal of the waveform processing device 39 so as to match the conditions set by the welding condition setting device 40 and wire speed setting device 41. The welding current is controlled so that the welding current is alternately set to short circuit transition welding and spray (pulse) transition welding mode by a set number of times. 43 is a welding power source controller that receives a signal from this controller 42 and controls the output of the welding power source 37;
A motor controller 44 receives the output of the controller 42 and controls a motor drive device 45 for generating motor drive output. 46 is a motor for rotationally driving the feeding roller 33, and is rotationally driven by the output of the motor driving device 45.

次に上記構成の本装置の作用を説明する。Next, the operation of this device having the above configuration will be explained.

本装置においてはガス供給口32bよりシールドガス0
を供給してアークa及び溶接部を外気からシールドしつ
つ、溶接電源37よりワイヤ31と被溶接材35間に電
流を供給し、これによりワイヤ31と被溶接材35間に
アークaを発生させて、その熱でワイヤ31を溶かし、
被溶接材35上に滴下させるとともに被溶接材35を加
熱し、溶融池mをつくりながら溶接トーチ34の移動に
より、該溶融池mを移動させ、溶着を行ってゆく。
In this device, the shielding gas is zero from the gas supply port 32b.
While supplying current to shield the arc a and the welding part from the outside air, a current is supplied between the wire 31 and the welded material 35 from the welding power source 37, thereby generating an arc a between the wire 31 and the welded material 35. and melt the wire 31 with that heat,
The welding torch 34 moves the welding torch 34 while heating the welding material 35 to create a molten pool m, moving the molten pool m and performing welding.

その溶接条件は溶接条件設定器40で、また、ワイヤ3
1の送給速度はワイヤ速度設定器41で予め設定され、
この設定条件になるように制御器42で溶接電源37の
出力及びモータ46の回転が制御される。
The welding conditions are set by the welding condition setting device 40, and also by the wire 3
The feeding speed of No. 1 is set in advance by the wire speed setting device 41,
The output of the welding power source 37 and the rotation of the motor 46 are controlled by the controller 42 so that these setting conditions are met.

溶接条件性制御は溶接電流のレベルを監視しながら設定
条件になるように溶接部m37の制御を□することによ
って行うが、この制御の元となる溶10− 接電流及び電流波形は溶接電流検出器38の出力より得
る。
Welding condition control is performed by monitoring the welding current level and controlling the welding part m37 to meet the set conditions.The welding current and current waveform that are the source of this control are determined by welding current detection. It is obtained from the output of the device 38.

その波形の一例を第4図に示す。図において、Taは短
絡移行期間、Tbはパルス移行期間である。
An example of the waveform is shown in FIG. In the figure, Ta is a short circuit transition period and Tb is a pulse transition period.

このような溶接電流検出器38からの電流波形は、波形
処理装置39によって処理され、短絡移行時期(Tlt
 、 Tt 2 、〜Tl n )およびパルス移行同
期(T21 、 T22 、〜T2 m)が検出される
。この各時期の検出法は、短絡移行の場合は、溶接電流
の瞬時波形1(t)が、増加から減少に転じる時、また
、パルス移行の場合はある閾値1pをi (t)が大き
い方から小さい方へ横切る時をもって行う。従って、I
pを定めてそのレベルとの比較を行うことにより、パル
ス移行時期の各パルスを検出でき、また、電流波形がI
p以下の期間ではそのピークを検出することにより、短
絡移行の時期と回数を検出することが出来る。
Such a current waveform from the welding current detector 38 is processed by a waveform processing device 39 to determine the short circuit transition timing (Tlt
, Tt2, ~Tln) and pulse transition synchronization (T21, T22, ~T2m) are detected. The method for detecting each period is to detect when the instantaneous waveform 1(t) of the welding current changes from increasing to decreasing in the case of a short-circuit transition, and to set a certain threshold 1p when i(t) is larger in the case of a pulse transition. This is done at the time of crossing from the beginning to the smaller side. Therefore, I
By determining p and comparing it with that level, each pulse at the pulse transition period can be detected, and the current waveform can be
By detecting the peak in the period below p, it is possible to detect the timing and number of short-circuit transitions.

上述したように、短絡移行溶接のモードにおいて、モー
タ速度設定器41により設定されたワイヤ送給速度での
短絡移行を安定に行わせることのできる電源電圧が溶接
条件設定器40によって、予め設定されている。また、
その短絡回数も溶接条件設定器40に予め設定されてい
る。一方、パルスアーク溶接モードにおいては、溶接条
件設定器40のパルス条件と組み合わされ、その平均電
流が臨界電流を超えないワイヤ送給速度となるようなワ
イヤ送給速度がワイヤ送給速度設定器41に予め設定さ
れている。また、そのパルス移行回数も溶接条件設定器
40に予め、設定されている。
As described above, in the short-circuit transition welding mode, the welding condition setting device 40 sets in advance a power supply voltage that can stably perform short-circuit transition at the wire feeding speed set by the motor speed setting device 41. ing. Also,
The number of short circuits is also set in advance in the welding condition setting device 40. On the other hand, in the pulsed arc welding mode, the wire feeding speed is set by the wire feeding speed setting device 41 such that the wire feeding speed is combined with the pulse condition of the welding condition setting device 40 and the average current does not exceed the critical current. is set in advance. Further, the number of pulse transitions is also set in advance in the welding condition setting device 40.

従って、本システムでは波形処理装置39の出力を受け
たIIJ m器42は、溶接条件設定器40で設定され
たこれら回数m(m≧1)分だけ短絡移行を行うと、次
は同じく溶接条件設定器40で設定された回数n(n≧
1)分だけパルス移行を行うよう制御出力を出す。そし
て、111all器42の出力を受けた溶接電源制御装
置43は制御出力に対応した溶接電流波形が得られるよ
う、制御出力を溶接電源装置37に与える。これにより
、溶接電源37は第4図に示す如き波形の電流を出力し
てワイヤ31と被溶接材35に与える。
Therefore, in this system, after receiving the output of the waveform processing device 39, the IIJ m device 42 performs the short-circuit transition for the number of times m (m≧1) set by the welding condition setting device 40, and then the welding condition The number of times n (n≧
1) Outputs a control output to perform pulse transition by the amount of time. Then, the welding power source control device 43 that receives the output of the 111all device 42 provides a control output to the welding power source device 37 so that a welding current waveform corresponding to the control output is obtained. As a result, the welding power source 37 outputs a current having a waveform as shown in FIG. 4, and applies it to the wire 31 and the material to be welded 35.

また、電流波形と対応するワイヤ送給速度となるように
制卸器42はモータ制御器44に制御出力を与えるので
、このモータ制御器44の制御出力にて動作するモータ
駆動装置45は、電源波形と対応するワイヤ送給速度と
なるようにモータ46を回転駆動する。これにより、ワ
イヤは最適な速度で送給される。
Further, since the regulator 42 provides a control output to the motor controller 44 so that the wire feeding speed corresponds to the current waveform, the motor drive device 45 operated by the control output of the motor controller 44 is operated by the power supply. The motor 46 is driven to rotate so that the wire feeding speed corresponds to the waveform. This allows the wire to be fed at an optimal speed.

これによって、短絡移行とパルス移行とを設定条件で交
互に繰返しながら、かつ、その時の各モードでの最適な
ワイヤ送給速度でワイヤ31を送りつつ、溶接を行って
行く。
As a result, welding is performed while short circuit transition and pulse transition are alternately repeated under the set conditions, and the wire 31 is fed at the optimum wire feeding speed for each mode at that time.

このように低入熱の短絡移行溶接と中入熱のパルスアー
ク溶接を短時間で交互に繰返すので、両溶接法の長所を
兼ね備えた溶接法を実現出来る。
In this way, short-circuit transition welding with low heat input and pulsed arc welding with medium heat input are alternately repeated in a short period of time, so it is possible to realize a welding method that combines the advantages of both welding methods.

また、短絡移行回数とパルス移行回数を適宜に組み合せ
ることにより、入熱のらl IIJが容易に行えるよう
になる。更に、これにより、ビード形状を改善すること
ができ、姿勢溶接が容易に行えるようになる。
Further, by appropriately combining the number of short-circuit transitions and the number of pulse transitions, heat input can be easily controlled. Furthermore, this makes it possible to improve the bead shape and facilitate positional welding.

13− 以上詳述したように本発明は入熱制御およびビード形状
制御のため、短時間移行とスプレ(パルス)移行とを任
意回数ずつ交互に繰返すようにしたので、低入熱の短時
間移行溶接と中入熱のパルスアーク溶接を短時間で交互
に繰返すことから、両溶接法の長所を兼ね備えた溶接法
を実現でき、また、短絡移行溶接回数とパルス移行回数
を適宜に組み合せることにより、入熱の制御が容易に行
えるようになる他、これによりビード形状を改善するこ
とができ、姿勢溶接が容易に行えるようになるなどの特
徴を有する消耗電極式アーク溶接法を提供することがで
きる。
13- As detailed above, the present invention alternately repeats short-time transition and spray (pulse) transition an arbitrary number of times for heat input control and bead shape control, so short-time transition with low heat input can be achieved. By repeating welding and medium heat input pulse arc welding alternately in a short period of time, it is possible to realize a welding method that combines the advantages of both welding methods, and by appropriately combining the number of short-circuit transition welds and the number of pulse transition welds. It is an object of the present invention to provide a consumable electrode arc welding method that has the following characteristics: heat input can be easily controlled, the bead shape can be improved, and posture welding can be easily performed. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は短絡移行溶接を説明するた
めの図、第2図(a)および(b)はパルス(スプレ)
移行溶接を説明するための図、第3図は本発明に用いる
システムの構成を説明するためのブロック図、第4図は
本発明に用いる溶接電流波形の一例を示す図である。 31・・・ワイヤ、32・・・溶接トーチ、32a・・
・本14− 体、32b・・・ガス供給口、32G・・・電極チップ
、33・・・送給ローラ、34・・・金具、35・・・
被溶接材、う#+設定器、41・・・ワイヤ速度設定器
、42・・・制御器、43・・・溶接電源制御器、44
・・・モータ制御器、45・・・モータ駆動装置、46
・・・モータ。 出願人復代理人 弁理士 鈴江武彦 15−
Figures 1 (a) and (b) are diagrams for explaining short-circuit transition welding, Figures 2 (a) and (b) are pulse (spray)
FIG. 3 is a block diagram for explaining the configuration of a system used in the present invention, and FIG. 4 is a diagram showing an example of a welding current waveform used in the present invention. 31...Wire, 32...Welding torch, 32a...
- Book 14 - Body, 32b... Gas supply port, 32G... Electrode chip, 33... Feeding roller, 34... Metal fitting, 35...
Material to be welded, #+setting device, 41... Wire speed setting device, 42... Controller, 43... Welding power source controller, 44
... Motor controller, 45 ... Motor drive device, 46
···motor. Applicant Sub-Agent Patent Attorney Takehiko Suzue 15-

Claims (1)

【特許請求の範囲】[Claims] 消耗電極式アーク溶接法において、入熱制御およびビー
ド形状制御のため短絡移行とスプレ移行とを任意の回数
づつ交互に繰返すことを特徴とする消耗電極式アーク溶
接法。
A consumable electrode arc welding method characterized by alternately repeating short circuit transfer and spray transfer an arbitrary number of times for heat input control and bead shape control.
JP11193784A 1984-05-31 1984-05-31 Consumable electrode type arc welding method Pending JPS60255276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11193784A JPS60255276A (en) 1984-05-31 1984-05-31 Consumable electrode type arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11193784A JPS60255276A (en) 1984-05-31 1984-05-31 Consumable electrode type arc welding method

Publications (1)

Publication Number Publication Date
JPS60255276A true JPS60255276A (en) 1985-12-16

Family

ID=14573872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11193784A Pending JPS60255276A (en) 1984-05-31 1984-05-31 Consumable electrode type arc welding method

Country Status (1)

Country Link
JP (1) JPS60255276A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042199A1 (en) * 2003-10-23 2005-05-12 Fronius International Gmbh Method for controlling and/or adjusting a welding process and welding device for carrying out a welding process
WO2017169899A1 (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Arc welding control method
WO2017169900A1 (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Arc welding control method
EP3208024A4 (en) * 2014-10-17 2018-02-28 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
WO2018043626A1 (en) * 2016-09-05 2018-03-08 パナソニックIpマネジメント株式会社 Arc welding control method
US10413987B2 (en) 2014-11-11 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10807180B2 (en) 2015-09-03 2020-10-20 Panasonic Intelletual Property Management Co., Ltd. Arc welding method and arc welding device
JP2022516610A (en) * 2018-12-27 2022-03-01 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング A method for controlling the welding process using the electrode to be melted, and a welding device having such a control device.

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042199A1 (en) * 2003-10-23 2005-05-12 Fronius International Gmbh Method for controlling and/or adjusting a welding process and welding device for carrying out a welding process
US8124913B2 (en) 2003-10-23 2012-02-28 Fronius International Gmbh Method for controlling and/or adjusting a welding process and welding device for carrying out a welding process
JP2012081524A (en) * 2003-10-23 2012-04-26 Fronius Internatl Gmbh Method for controlling welding process and welding device for carrying out welding process
JP2015205347A (en) * 2003-10-23 2015-11-19 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFronius International Gmbh Method for controlling welding process and welding device for carrying out welding process
US10870161B2 (en) 2014-10-17 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
EP3208024A4 (en) * 2014-10-17 2018-02-28 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10413987B2 (en) 2014-11-11 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10807180B2 (en) 2015-09-03 2020-10-20 Panasonic Intelletual Property Management Co., Ltd. Arc welding method and arc welding device
CN108883485A (en) * 2016-03-29 2018-11-23 松下知识产权经营株式会社 arc welding control method
CN108883486A (en) * 2016-03-29 2018-11-23 松下知识产权经营株式会社 arc welding control method
JPWO2017169900A1 (en) * 2016-03-29 2019-02-07 パナソニックIpマネジメント株式会社 Arc welding control method
JPWO2017169899A1 (en) * 2016-03-29 2019-02-07 パナソニックIpマネジメント株式会社 Arc welding control method
WO2017169900A1 (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Arc welding control method
WO2017169899A1 (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Arc welding control method
JPWO2018043626A1 (en) * 2016-09-05 2019-06-24 パナソニックIpマネジメント株式会社 Arc welding control method
WO2018043626A1 (en) * 2016-09-05 2018-03-08 パナソニックIpマネジメント株式会社 Arc welding control method
JP2022516610A (en) * 2018-12-27 2022-03-01 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング A method for controlling the welding process using the electrode to be melted, and a welding device having such a control device.

Similar Documents

Publication Publication Date Title
US7397015B2 (en) Metal cored electrode for open root pass welding
US8704135B2 (en) Synergistic welding system
JP3134197B2 (en) Short circuit welding machine
US7271365B2 (en) System and method for pulse welding
KR102134045B1 (en) Adaptable rotating arc welding method and system
EP0607819A1 (en) Pulsed arc welding apparatus having a consumable electrode wire
WO2015132651A2 (en) Method and system to start and use combination filler wire feed and high intensity energy source for root pass welding of the inner diameter of clad pipe
JP2001058265A (en) Welding method for pipe
US8536487B2 (en) Arc welding method
EP0342691A2 (en) Pulse arc discharge welding apparatus
JP2009113117A (en) Short-circuit arc welding process using consumable electrode
JP2017144480A (en) Arc-welding method and arc-welding device
JPH0694074B2 (en) Hot wire TIG welding method and welding apparatus
JPS60255276A (en) Consumable electrode type arc welding method
MXPA06012592A (en) Synergistic welding system.
KR102493386B1 (en) A method for controlling a welding process with a consumable electrode and a welding device having a controller of this type
JP4317998B2 (en) MIG welding or MAG welding method
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
JPH10146673A (en) Alternating current self shield arc welding method
CN114340827B (en) Method and welding device for carrying out a multiple welding method
JPH04182071A (en) Consumable electrode arc welding equipment
CN113677471B (en) Method and welding device for carrying out multiple welding processes
Zhang Arc physics of gas tungsten and gas metal arc welding
WO2015022569A2 (en) Method and system to start and use combination filler wire feed and high intensity energy source for welding aluminium to steel
JP2023044501A (en) Weld control method, weld control device, weld power source, weld system, program, weld method and addition manufacturing method